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Abstract figurations, e.g. wide angle lenses observing a scene
at close range. Experiments on real and synthetic data
We present a batch method for recovering Euclidian camlemonstrate the ability to reconstruct scenes which are
era motion from sparse image data. The main purposevefry problematic for previous structure from motion tech-
the algorithm is to recover the motion parameters usingques due to local ambiguities and error accumulation.
as much of the available information and as few computa-
tional steps as possible. The algorithm thus places itself i
the gap between factorisation schemes, which make use dfeywords Structure from motion, batch recovery, clo-
all available information in the initial recovery step, andure constraints, affine camera model, autocalibration,
sequential approaches which are able to handle spar&@ntraction mapping.
ness in the image data. Euclidian camera matrices are
approximated via the affine camera model, thus making .
the recovery direct in the sense that no intermediate prd- Introduction
jective reconstruction is made. Using a little known clo-
sure constraint, th& 4-closure, we are able to formulateThe structure from motion problem has been studied ex-
the camera coefficients linearly in the entries of the affibensively since the publication of the seminal paper[17]in
fundamental matrices. The novelty of the presented wd¥81. The following efforts have been diverse and fruitful
is twofold: Firstly the presented formulation allows fomnd a variety of algorithms now exist to recover the pre-
a particularly good conditioning of the estimation of theumed camera motion and the observed 3D structure. Ex-
initial motion parameters but also for an unprecedentasting algorithms can be classified in two families, namely
diversity in the choice of possible regularisation term$atchalgorithms [16, 20, 4, 1, 14], which recover all pose
Secondly, the new autocalibration scheme presented hamel structure parameters in a single global step,ssad
is in practice guaranteed to yield a Least Squares Estjuentialalgorithms [2, 19] where the parameters are re-
mate of the calibration parameters. covered progressively as new views become available.
As a bi-product, the affine camera model is rehabili- Also, substantial effort has been put into so-called au-
tated as a useful model for most cameras and scene cmealibration [5, 11, 13, 21], where the initially unknown



intrinsic parameters of the camera are recovered togetAssuming zero skew and unit aspect ratio, the algorithm
with the pose. in practice guarantees a least squares error on the es-

In theory, the batch approaches should be the mtstated intrinsic parameters. The optimality of the al-
suitable for off-line processing, where the data acquigierithm is difficult (if possible at all to) prove theoret-
tion is concluded prior to processing, since all the avaitally. A tentative proof, based on several conjectures,
able information is included in the initial estimation ohas nevertheless been included in the appendix in order to
the parameters. Also in theory, the sequential approacktEsngthen the conclusion that the point of convergence is
should be relevant primarily for realtime applicationstsuéndeed optimal.
as navigation or interactive applications and should beAlthough the affine camera model is often viewed as
avoided otherwise, since accumulation of the error tiso simple for many if not most applications, our experi-
unavoidable. However, existing batch algorithms suffarents show that within our framework, the affine approx-
from one major drawback, which is that roughly speakingation is clearly sufficient. The somewhat widespread
all features have to be present in all images for the initialle of thumb that the depth of the observed object should
reconstruction to be feasible. Consequently, theypare be no more than 10% of the distance to the object is seri-
seunapplicable to the common case where the imagesimsly undermined in our experimental section. The bene-
a sequence have been taken from very different pointdfits of the presented algorithm are the following:
view and thus in majority have no features in common.

Certainly, successful suggestions have been made t8
extend the common batch approaches, i.e. factorisation
schemes to thenissing datecase [14, 18, 1], howeverwe o The reconstruction is direct in the sense that no in-
here wish to distinguish that case from thgarse data termediate projective reconstruction is done, and the
case that we will be treating in this paper. Thereis arad- parq part of autocalibration, i.e. detecting the plane
|c_al difference between ‘patthpg’ the measurement Ma- 4t infinity, is performed inherently.
trix for a small amount of missing features, and solving
the problem for a measurement matrix that is say 90-99%» Constraints related to equality/proximity of cameras
unavailable. are easily included. (Section 4.2).

The method presented here is in essence founded on the
so-called closure constraints [25, 15], which we extend®
with a new variant, th& 4-closure for the affine camera,
based on a formulation originally developed in [27, 26].
This constraint allows a formulation of the camera ma- , constraints related to equality of 3D points are natu-
trix coefficients whlch is linear in the coefficients of the rally accounted for.
fundamental matrices.We can thus recover all the camera
poses in a single computational step. This initial pose ese Constraints modelling smoothness of the camera tra-
timate subsequently needs refining which is done with a jectory are easily included. (Section 4.1).

Euclidian bundle adjustment.

The work is thus has some similarities with [15] but ®

differs on two important points: Firstly, the derivationdan

the final formulation of théF 4-closure is of a surprising ¢ The algorithm is very fast, with an execution time

simplicity. Secondly, all the affine camera parameters are |\ hich is linear in the number of estimated cameras
estimated, in particular the coordinates of the cameracen- ¢,; certain common types of scene configurations

ter. This eliminates the need for relative coordinates and (Sections 3 and 6).

thus the need for at least one point to be visible in all the

frames, making the algorithm significantly more genergbumming up, the presented algorithm is very robust, in
Another contribution of the present work is a new ayparticular to local ambiguities. Generally speaking, this

tocalibration algorithm based onGontraction Mapping is the consequence of the choice of the affine camera

All the available information on the epipolar geome-
try is used in the initialisation step. (Equation (14)).

Constraints imposed by some cameras being known,
even only approximately, are naturally included.
(Section 4.2).

Local ambiguities may in general be overcome, since
the problem is solved globally. (Section 6).



model, which is simple and thus potentially leading toomposed as
a good conditioning of the problem, and yet sufficiently

rich to adequately model the problem at hand. One spe- Yaf S e rlTr t

cific advantage of the presented approach is the ability P = 0 Yf we I‘QT lo (3
to naturally handle a closed sequence, i.e. a sequence in 0 0 1 r3 I3

which the same 3D features appear on several occasions in K RT ]

the sequence. Another advantage over factorisation algo- (4)
rithms is robustness towards outliers, since the algorithm -

is based on fundamental matrix calculations, which can =KR [I3x3 —c], (5)
be done robustly. where f denotes the focal length,, and~, the scaling

The paper is organised as follows: The notation a'&ﬂ)ng the imagest- andy-axes i.ea = 2 is the as-

the ZlerT%ntary baclfgrgu.nd Isdglve(;] in Seth'O"‘. idln S,?géct ratio. s is the skew andz., y.) the priﬁcipal point.
tlonh t (ta ACOqStrS'f?t |S|r:ttro uceftoge} e.rV\{['.t eft?rlw her; are the three columns of a rotation matixand
on how to use it. Different types of regularisation of the _ “R(t1, s, 13)" is the camera centre. In general,

. . . . . C=
problem are described in Section 4. The autocallbranoryﬁdyc are highly correlated to the camera rotation, highly
biguous and only of interest if the rotation needs to be

described in Section 5 and the appendix. Experiments
real and synthetic data are presented in Section 6, the e Xermined precisely. They are thus often, and will be
irq'the sequel be, assumed to be zefig. and~, are in

analysed in Section 7 and conclusions given in Section
general not written out explicitly, since they algebrdigal
yield an overparameterisation of the intrinsic calibratio

2 Notation and Background i.e. in the literaturey, = 1 and (3) becomes
2.1 Generalities fosf oz ][l t

P= 0 af vy r;r to . (6)
We denote 2D homogeneous image points by a sub- 0 0 1 ri  t3

scriptedx, 3D homogeneous points B¢ = [X 1] and . . .
3 Z camera matricges b Tﬁese e%ties[ are r]elated b)l/:ormulatlon (3) will be needed to understand the relation-
the following projection ' ship between the perspective and affine image formation

processes. The affine camera matrix has the form

3

wherem andn denote the number of views and 3D object _ _
points respectively, and is the projective deptiof the where the uncalibrated state is expressed by the prime (

given point. When calibrated it may be decomposed as
The fundamental matri¥s; encapsulates the geomet- . T
. . . . o Yo s O r,
rical relationship between two views (for simplicity of no- P,=| 0 ~ 0 o ®)
tation we consider views 1 and 2). It constrains the posi- A 0 ’By 1 02T 12 ’
tion of corresponding image points; andx,; through 3
the relation wherey, = v, and~, = ~, are the scaling factors from
(3). The calibrated affine camera model is an approxi-
xlTnglej =0, j=1...n. (2) mation to the calibrated perspective model where the fo-

cal length is considered infinite and the camera centre has
The line defined byF,; x5, is the epipolar line oky; in  been retracted to infinity, i.e.
image 1, i.e. the line joining the epipadg, andx;. .
i i i . ]| h 1
We now introduce the perspective camera matnx,PA ~ lim {w fovsf a ] [ri ] ©

. . . 0 V'ny Ye 252 - .
which models a classical pinhole camera. It may be de- vooo | 0 0 1 ] tstw-1)f |



where v indicates how much the camera has retractétie upper lef3 3 matrix is the result of the correspond-

from the scene, measured in multiples of the focal lengthg bilinear term containing either a zero-coefficient ei-

In Figure 1 the process is illustrated. Roe 1, the cam- ther from the fundamental matrix or one of the camera

era matrix is the one from (3). Asincreases, the cameranatrices. The rest of the structure®fis a consequence

centre retracts in the negative direction of thaxis and of the skew-symmetry, ancbncerns only linear termis

the focal length, i.e. the distance between the camera cére- entries of the camera matrices since these terms in-

tre and the image plane, increases accordingly. clude the lower right 1 of eithé?; or P,. By rearranging
The disappearance of in (8) implies that the projec- the equations in (12) these turn into four linear constsaint

tions onto the image plane are parallel. Also, in the affima the coefficients oP; andPs:

case, the projective depths; = 1. P ¢
The affine fundamental matrix has five non-zeroentries [a b ¢ d] { p; t; ]

= [ 03 - 6] ) (13)
defined up to scale, i.e. four degrees of freedom: —_—

ri2

0 0 a wherea, b, c,d and e are entries offy; in (10). The
Foy={0 0 b |. (10) above formulation was originally developed in [26].
c d e The constraints of (13) apply for each pair of views

Computing the affine fundamental matrix thus requirégil’P”}’ i1 7 iz, providedF,;, is defined. Affine

at least four point correspondences. However as ma] gal or quadrifocal tensors could be used as well by ex-
points as possible should be included to minimise the [@eting fundame_ntal matrices, or along the Ilngs of [15].

fect of noise. A closed-form solution for the Maximum ¢ cOnstruct a linear system of equations using (13) as

Likelihood Estimate of the affine fundamental matrix eihe building block, with the forn$7> = R:

ists [12]. C Pt ]
Py to
- - 512 . . r12
3 A Simple Formulation of the S1i, o |
Affine Closure Constraints : b e
sikim . . rikim
In [25], Triggs introduces the so-calleéll — e closure P4

constraint, namelyF2; P> + [e21]xP1 = 0 and the L J (14)
e — G — e closure. In [15] closure constraints for the . . . .

affine camera model are derived. We will here give a shW—hererm2 is the right hand side in equation (13) ang,
ple derivation of an alternative closure constraint Whi&'{e1 X 2m row vectors

is specific to the affine case, tli®,-closure. Letx; and Sivip =[.. a b ... c d ...], (15)
x, denote the projections & € P? onto two images. Fir;’bTOCk Seca{(;block

Combining equations (2) and (1) we obtain: o
dots indicating an adequate number of zeros. One pos-

X"P{F;P; X =0, VXeP’ (11) sible structure forS is shown in Figure 2. Since the
S global 12-parameter affine coordinate system has not been

specified prior to solving the system, the solution is a
" 12-dimensional subspace which may be recovered by
SVD. However, this is rather inefficient compared to us-
ing sparse linear solvers, which require the system to be
€6/ full rank. Full rank is obtained by choosing an overall
affine coordinate system arbitrarily. This can be done e.g.
by fixing all the coefficients of a cameR, and 4 coeffi-
cients of some arbitrary second camBsgand modifying

which is a quadratic form. Consequendyis skew sym
metric, i.e.ST = —S as noted in [6].

In the affine case, the structure 8fbecomes particu-
larly simple, which stems from the structure of the cam
matrices (7) and the affine fundamental matrix (10):

0
S =PIF, P, = [ o g ] . (12)
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Figure 1:From perspective to affine projection.As the camera centre away retracts from the image planeotia f
length increases and the projection becomes more and mi@ibepar he figure shows the situation for three different
focal lengthesy, fo = 2f; andf3 = 3f;.

the design matrix accordingly. The choice of affine refer-
ence frame is important. An example of an a priori valid
but bad choice would be the matrices

0 0 0 O 0 0 0 O
Pa_[OOOO] ande_{****}’

since this would force all the other cameras to be of the
form
0 0 0 =
[ 0 0 0 = ] ’
A choice of frame that seems to work well (the one used
in the experimental section) is given by the pair

Pa:[l 0 0 0] and Pb:[() 11 0]

01 00 ENE S S
Figure 2: Structure of the central design matrix con-

straining the camera matrices. The structure shown is forl N€ design matrix will often have a diagonal structure,
a minimal configuration, i.&m — 3 block-row entries for Since this amounts to each 3D point being visible in a

m views, before fixing the 12-parameter gauge freeddifited number of consecutive frames. Thus the advised
(see text for further detalils). solver would be based on band or profile Cholesky fac-

torisation with back-substitution. The execution time of
the band Cholesky being linear in the height of the matrix,
the presented algorithm becomes linear in the number of
recovered camera matrices.

Alternatively, a supernodal approach could be used in
case the sparseness structure is nagr@oc For a more
in-depth description of the suggested solvers, see [9] and
e.g. [3] for implementational details.



4 Regularising Camera Motion 4.2 Equality of Cameras and Fixed Cam-

eras
One well-known and common problem in structure from

motion is ill-conditioning, and the ability to regularidest As described in (15) each camera corresponds to a pair of
problem using prior knowledge thus becomes particuladglumns in the design matrix. Enforcing equality among
important. two cameras simply amounts to adding the corresponding

Within this framework, different types of prior knowl-columns. In contrast to the smoothness constraints, the
edge of the motion parameters may be formulated as la@mera equality constraint is not imposed as an additional
ear constraints among the parameters, which may be tatm appearing in the minimal least squares solution to
urally incorporated into the design mati$xin (14). The (14), but as a hard constraint that is inherently satisfied.
two types of constraints we consider are smoothness coni a given camera has a known position, this is easily
straints on the trajectory and equality of some camerasmposed by multiplying the corresponding columnsSin

by the camera matrix and substracting the result on the

4.1 Smoothness of the Trajectory right hand side of (14).

The system (14) is in general over-determined unless a

minimal case is being dealt with. Thus, we will in gen5 ~ Recovery of Euclidian Motion and
eral consider solving (14) in a minimal least squares sense

through the normal equations: Structure

S'SP=STR. (16) Recovery of the Euclidian perspective equivalents to the
One straightforward way of imposing soft constrain@ffineé camera matrices is done in two steps, a separation
would thus be to augmeist with the desired linear con-0f the affine intrinsic and extrinsic parameters, i.e. a cal-
straints. For instance, smoothness of the camera traféation step, followed by a an upgrading from affine to
tory and orientation could be obtained by softly imposirfy!l Perspective cameras.
equality between adjacent cameras in the sequence. The

linear equality constraints would I8P = 0 with 51 Euclidian Calibration
1 0 -1 ...
01 0 -1 .. Autocalibration for affine cameras is classically done as
S ) _ 17 described in the method in [22], i.e. by assuming skew
s I A7 ¢ — o and aspect ratit% = 1 and determining an up-
10 -10 grading affine transformaticH that maps (7) to (8), i.e.
... 1 0 -1 P = PH.
and may be included in (16) as We here propose an alternative iterative scheme which

in practice guarantees convergence to a unique Least
(STS+aS[S,)P=S'R, (18) Squares Estimate of the three parameters up to an over-
wherea expresses the desired strength of the constraiit.scaling.
Note that imposing the constraints is likely not to affect The basic idea of the algorithm is to iteratively find an
the execution time of an implementation based on spaegtne transformatiorH,. that will transform the uncali-
diagonal solvers. If we let denote the number of viewsbrated affine cameras so as to get them as close to the
in which a minimum number of common features agalibrated form (8) as possible. The idea is very simple,
pears, i.e. the number of consecutive views "sharing'aihough the formal presentation within the framework of
fundamental matrix, the structure 8f' S is essentially the contraction mapping theorem tends to make it some-
(2k — 1)-diagonal.k being of an order of magnitudé, what opaque. The detailed presentation has been included
the structure won't be affected by the pentadiagonal struc-an appendix in order to strengthen the understanding of
ture ofS; S;. the algorithm.



We begin by considering that the information neededAlthough r; has disappeared in the limit (9), it may
for the calibration of an affine camera is contained in be easily recovered sincR is a rotation matrix with
the upper triangular form of the intrinsic calibration madet(R) = +1. To summarise, the Euclidian matrices in
trix K, and 2) in the orthonormality of the two vectorshe form (6) are recovered by
r; andr, defining the rotation of the camera. In order to

recover the form (8) we start out by aligning our existing I3 =11 XTIy
estimate of the form (8) with a plausible candidate, the f= Yz . (29)
plausible candidate being the currantandr, of each a= %

camera. These current andry are obtained via QR-

factorisation of each of the current matrices and subge- :

qguently stacked in a large matrix. In this alignment, tkﬁ Experlments
aligned estimate will hopefully inherit some of the strug%l .

ture of the target. Furthermore, repeating the alignm Synthetic Data

brings the camera matrices as close as possible to thefigo experiments on synthetic data are presented. The first
sired form (see appendix). The algorithm proceeds as fgbncerns the reconstruction of a large cubic point cloud

lows: from circular motion and the second the reconstruction

of a room seen from within, also from a circular camera

1. Stack the x 3 camera matrices in&m x 3 matrix .
trajectory.

P,

2. Perform a QR factorisation of each of the cameGbject Centered Trajectory

matrices; ' . . . -
The first dataset, the cubic point cloud, is shown in Fig-

3. Stack the resulting rotation matrices itva x 3 ma- ure 3 (Top). It consists of 300 3D points evenly distributed

trix R. in the cub€0, 5] x [0, 5] x [0, 5] and of 30 cameras with

. ) L . focal lengthf = 100 distance units equidistantly placed

4. Align P to R, i.e. minimise/reduce the Frobeniug, 5 circular path centered é, 0,0). Each frame con-

norm|(|PH — R||r. tains features which are visible in the 9 following frames.
Gaussian noise with = 1 is present in the images. Fig-
ure 3 (Center) shows the initial reconstruction of the cam-
Even though the algorithm is iterative, it converges vegya trajectory with the method from Section 3 and 5 and
fast, 1-3 iterattions tend to suffice to obtain valid paramig Figure 3 (Bottom) an alternative reconstruction where
ters, and each iteration takes a few milliseconds{ 100 equality has been assumed between the first and the last
cameras). camera (closed the sequence). Clearly, the initial recon-

In the appendix, it is shown that given that the algstructions capture the overall structure of the scene and
rithm converges, the point of convergence is the Ledbe motion, thus allowing for the subsequent bundle ad-
Squares Estimate of the calibration parameters. Howeyestment to converge to the global minimum. One point
convergence can presently not be guaranteed formadifyspecial interest (see the discussion in Section 5.2gis th
only experimentally (see Figure 16). fact that within this framework, the affine camera model
approximates the perspecitive camera sufficiently well,
even though the depth of the object is approximately the
same as the distance to the object, i.e. a lot more than the
Once the form (8) has been recovered, the perspecti@®% that are usually considered the upper limit.
equivalents (3) are obtained by taking advantage of then this experiment (Figure 3,Bottom) equality was as-
f < v, ambiguity: Since (3) is overparameterised witsaumed between the first and the last camera. It should be
respect tof and~,, we are free to initially assumg, f = noted that in general, known relative positions between
~, and subsequenthy, = 1. any of the cameras can be imposed. This would be done

5. Goto 1. unless the algorithm has converged.

5.2 Affine-to-Perspective Upgrading
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Figure 4:Reconstruction of a structure observed from
within: experimental setup. The camera describes a cir-
cular trajectory and has an angular aperturé of o <

s
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by eliminating the parameters of all but one of the cam-
eras of such a set of mutually fixed cameras from the left
hand side of (14), as discussed in Section 4.

Interior of a Room

The second experiment on synthetic data describes a
scene configuration that is known to be quite difficult, i.e.
the case of a camera taking views of the interior of a room
in order to reconstruct the walls and ceiling, see Figure
4: Each feature is present only in a little subset of the
frames, planar structures dominate the scene thus leading
to focal length— translation ambiguities and finally if the
sequence is reconstructed sequentially, the accumulated
error will be likely to be irrepairable. The experimental
setup is shown in Figure 4.

It consists of a square ‘room’ with 600 points evenly
distributed on each of the four walls and the roof, the
i . i i 2D image points being subject to Gaussian noise with
Figure 3: Reconstruction, object centered configura- , _ 1~ The camera describes an almost circular path
tion (closed sequencejop: original configuration. Cen-yithin the room, pointing inwards. The initial reconstruc-
ter: initial reconstruction using affine approximationign shown in Figure 5 (Top) and Figure 6 (a) clearly cap-

Bottom: same as (b) but assuming equality between {\eas the overall closed structure of the scene and a sub-
first and last camera. sequent bundle adjustment converges to the global min-
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Figure 6:Post-processing with bundle adjustmentAfter a few bundle adjustment steps (respectively 0, 2,di@n
the initial reconstruction has gotten very close to theréesiesult.

imum. However, better results can be obtained by inm 2.1 milliseconds (Pentium IV@1.8Ghz). After Euclid-

posing equality of the first and the last camera (Figui@n bundle adjustment, the final reprojection error is 0.62

5, Center) and smoothness of the camera centres trajagels and the scene looks like Figure 8 (Bottom).

tory (Figure 5, Bottom). The dinosaur sequence is known to have been taken
Note that some of the cameras have been reconstruatétti a high focal length, implying that the data set would

outside the room. This is however only a problem if thee particularly well adapted for an algorithm based on the

3D points they see were to be reconstructed behind #ffine camera model. In the next experiment, this is not

camera, which can be avoided by retracting the cametaéd case.

assigning a higher focal length.

Palazzo Pitti sequence

6.2 Real Data . :

The second experiment has a sequence of 41 images as
Two experiments were performed on real data, on the Diput data, of the type shown in Figure 9 (a). The images
nosaur sequence and the Palazzo Pitti sequence. were taken within a room in the Palazzo Pitti in Florence
with a wide angle camera. This type of sequence is par-
ticularly difficult to reconstruct, which is probably best
illustrated by the absence of such reconstructed scenes
The Dinosaur sequence consists of 37 images, of whigsing structure from motion in the literature. The diffi-
the first and the last are known to coincide. A total aulty lies in the fact that the measurement matrix is sparse,
1888 3D points were tracked across the sequence usirigch makes the problem impracticable for factorisation
the KLT-tracker [23]. Figure 7 shows a sample imaggehemes. Also, no feature appears in all the images,
from the sequence (Left) and the structure of the camhich is a problem for sequential approaches since the ab-
era configuration (Right), i.e. whether a given pair a&fence of a common reference allows the camera positions
frames has sufficient overlap to allow for a fundamential drift, and the error accumulation becomes exception-
matrix among them. Note that the first and the last imally severe. As it can be seen from Figure 9b, fundamen-
ages haven't been registered to each other, although ttaymatrices exist between the first and the last images in
are practically identical. The reconstruction is done witlthe sequence. It has been ‘stitched’ together, which was
out imposing the constraint that the first and the last cadone semiautomatically, i.e. a few points were selected in
era positions are equal, and the result is shown in Figurth@ first and the last frame and the rest of the matching
(Top). The reprojection error after the initial affine rewas guided by the induced homography between the im-
construction is 5.4 pixels, and the system (13) is solvades. A total of 2564 point matches were reconstructed,

The Dinosaur Sequence
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go om as shown in Figure 10.
10} o%“éoo";(’;"%g ° The experiment illustrates an important point, namely
" &?@f@?f;’ ??E?Ekiogj’ that imposing equality of reconstructed 3D points is done
5l % q%@“*\ﬂ\a inherently. When applying a sequential approach, the
gff‘gw é A constraints contained in this equality have to be imposed
. 69 £.8 e 95‘3,@ in a post-processing step, e.g. as described in [10]. Here,
or k) %*;; %o the 3D points never get reconstructed as different in-
PN stances and the problem thus never occurs.
5r Tows Note that for both experiments, Euclidian structure and
b motion were obtained directly, i.e. without an intermedi-
10 ‘ c ate projective reconstruction. Autocalibration was done
8 46 4 2 0 2 48 8 by applying a few (2-3) iterations.
8 - T
NPT SR RS .
°r PTG T 7 Error Analysis
UL ro
2l Sk % In order to assess the error on the reconstruction algo-
o ?‘?& %0 @%@g% %a rithm, the setup shown in Figure 11 is used as a test
0 Y SN bench. m cameras are laid out on a circular path, all
2r ‘E\E °°‘?;o%§° . pointing inwards. The observed object consists &D
4t ° | points uniformly distributed within a cube.
6l 5 b
8t ° i )
Ve s 4 2 0 2 4 5 s

7.1 Comparison to Existing Methods

Figure 5:Reconstruction of a structure observed from Recovery of Motion Parameters

within Top: Initial reconstruction. Center: initial reconp,e proposed algorithm is compared to two methods: The
struction assuming equality between first and last camef@y; is the classical factorisation from [24]. The second is

Bottom: assuming equality between the first and the 138 ¢|assical sequential schemes from [2] where 6 cameras
camera and with smoothening of the trajectory. and all the 3D points are computed from the first frames in

10
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Figure 9:The Palazzo Pitti in Florence(a) sample image
from the sequence (b) matrix showing the availability of
a fundamental matrix between two views (a black entry
signifies presence)

the sequence, followed by a series of resections and inter-
sections in order to recover the remainder of the motion
and structure [2]. In the experimenty = 12 cameras
andn = 100 3D points were used, with Gaussian noise
added to ther- and y-coordinates of the image points,
all 3D points being visible in all views. As it can be
seen from Figure 12, the presented batch algorithm lies
between the resection/intersection-approach and cissic
factorisation. The error is the mean Euclidean distance
between the measured and the reprojected points.

Autocalibration

In the traditional approach to affine autocalibration de-
scribed by Quan in [22] the problem is formulated as
that of solving a set of homogeneous quadratic equations
in a least squares sense which is done using Levenberg-
Marquardt minimisation. Such an approach is generally
prone to stranding in local minima.

In the following experiment, a varying number
(2,4,8,16 and 32) of random cameras were generated and
transformed by a randothix 3 transformatiorH.,..

<08 06 -04 02 0 02 04 0§ 08 1 The success rates of Quan’s and the proposed algo-
rithm were compared together with their execution times.
Figure 8:Reconstruction from the Dinosaur sequence Quan’s algorithm reached the global minimum approxi-
Top: initial reconstruction (assuming proximity betweemately 90% of the time fom > 2, compared to 100% for
the first and last camera positions) Bottom: final recothe contraction mapping scheme we propose. Also, the
struction after Euclidian bundle adjustment. execution times were significantly lower for the contrac-
tion mapping scheme.

The results, success rates and execution times, are

shown in Figure 13 (implementation on a standard PC).

11
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Figure 10: Reconstruction of a room in the Palazzo

Figure 11:The experimental setup for the error analy-

sis m affine cameras pointed inwards on a circular path,
observing a cubic cloud af uniformly distributed points.

0 indicates the angle between the focal axis of two neigh-
bouring cameras and is used as a measure of the baseline

Reprojection error for the proposed method compared to Factorisation

7

6 Sequential |

X *

" Batch |

a1
T

IN
:
X
.

w
T

Factorisation |

Reprojection error

N
T

[y
T

15 2 25 3 35 4
Pixel error in images
Figure 12: Comparison between the classical factorisa-
tion method from [24], the proposed batch method and a
sequential scheme where an initial structure is computed
using 6 cameras, whereupon the remaining cameras are
obtained by resectioning. The graph shows the reprojec-
tion error as a function of the (Gaussian) image noise. The
proposed batch algorithm performs better than the resec-
tion/intersection approach and is close to the factonsati
algorithm.

Pitti Top: structure, top view. Center: motion, top view.

Bottom: structure, profile.
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7.2 The Influence of Various Parameters
Width of the camera baseline

In order to assess the importance of the width of the
baseline, the experiment shown in Figure 14a was per-
formed. Again,m» = 12 cameras were used, positioned
on the arc of the circle of Figure 11 and the angle of
incidence of their focal axig varied from2° to 30°, i.e.

the overall baseline varied frog4° to 360°. The noise

in the image is Gaussian noise= 1 pixel. Fundamental
matrices were computed between each view and 10 of
its neighbours. The reprojection error is seen to peak for
B =~ 7°. For lower values of3, the constraints imposed
on the structure by the cameras are so loose that they are
easily satisfied. For higher values, the computation of the
fundamental matrices is getting well-conditioned, thus
yielding lower reprojection errors.

Sensitivity to degenerate matching tensors

In this experiment:p = 12, n = 20, andg = 18°, image
noisec = 1 pixel) the sensitivity of the algorithm with
respect to the number of deficient fundamental matrices
is investigated. This is done by successively setting the
images2...m — 1 equal to then'th, thus ensuring de-
generate fundamental matrices among them. The result is
shown in Figure 14b, where the reprojection error is plot-
ted against the percentage of equal views in the sequence.
As the number of equal views increase, i.e. the degenera-
cies become more numerous, the reprojection error is ac-
tually seen to decrease. When all the views are the same,
the configuration is globally degenerated and the repro-

tion, see [22]Top: Success rate (%). The existing staté@Ction error is meaningless. Again, the more equal views

of-the-art algorithm reaches the global minimesro0%

in the sequence, the looser the constraints on the structure

of the time. The proposed algorithm shows a 100% siRventually leading to a lower reprojection error. Itis how-
cess rate. Bottom: Execution times. Even though the pRYe" noteworthy that degenerate fundamental matrices are
posed algorithm is iterative, every iteration is very fagtot invalidating the system.

only few iterations are needed and the execution time

scales linearly with the number of cameras.

8 Conclusions

A batch algorithm for recovering the Euclidian camera
motion from sparse data was presented. A new formula-
tion of the closure constraint for the affine camera allowed
for a formulation of the camera matrix coefficients which

13



12 Importance of baseline
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Figure 14: The influence of various parameters (a)

The effect of enlarging the baseline. The figure shows the

decrease in error as the baseline gets larger (ffom2°
to 8 = 30°). m = 12 views were used and = 150

is linear in the fundamental matrix coefficients. Using the
affine camera matrix as a model for the perspective cam-
era, this allows approximated Euclidian camera matrices
to be recovered via the solution of a single linear system
followed by an affine-Euclidian calibration step. Several
types of constraints are naturally included, e.g. proximit
of given cameras or equality of 3D points.

A highly robust autocalibration scheme applied to
affine-Euclidian calibration was introduced, a scheme that
is generalisable to projective-Euclidian calibration.

Experiments on synthetic and real data showed that the
algorithm performs well, i.e. succeeded in reconstructing
even unprecedented difficult scenes.

As it is often the case for computer vision algorithms, a
successful outcome is highly dependent on various imple-
mentational details. Hence a suggested implementation
including a tracker, the presented algorithm and bundle
adjustment is freely available for download at [8].

A On Euclidian Autocalibration

A.1 The Contraction Mapping Theorem

Before addressing the central problem, we defimom:
traction and introduce a common tool from functional
analysis, the so-calle€ontraction Mapping Theorem
here reproduced from [7]:

Definition A.1. Contraction: A mappingT : X — X
whereX is a subset of a normed spateis called acon-
traction mapping or simply acontraction if there is a
positive numbet < 1 such that

ITk; — Tko|| < allk; — ks||, Vkike € X. (20)

The definition is central to

points, each camera was related to 10 neighbours Us{fborem A.1. Contraction Mapping Theorem If

fundamental matrices. Image noise= 1 pixel.

0) 1. x — xisa contraction mapping a closed subset

The effect of degenerate camera matrices in the sequengeys 4 Banach space, then there is exactly one X

The graph shows the reprojection error as a functiongj
the percentage of views which are equal in the sequeneRined by, i1 =

(m =12, n = 150, 3 = 18°, o = 1 pixel).

ch thatTx = x. For anyx, € X, the sequenceéx,,)
Tx,, converges tex.

The challenge is thus to determine a contractiowith
a suitable fixed point, i.e. a fixed point solution which

14



these2m 3D points corresponding to the affine cam-
eras and conjecture that it is a contraction.
We consider the mapping

T:S*" 'V2m) — S 'V2m), (1)

whereS*™~1(y/2m) denotes thé¢3m — 1)-dimensional
hypersphere iR with radius\/2m (the choice oft =
S#m=1(y/2m) will become clear shortly). For complete-
ness we point out tha®®”~'(v/2m) is a closed subset
Figure 15:Geometrical interpretation: R represents theof a Banach space: the embedding vector sjfte is
manifold of calibrated cameras assuming no error on thermed and complete and the sphere is indeed closed.
intrinsic parameters. L represents the linear subspace colLet k € S*™~!(v/2m) be the vector containing the
ered by H. E is the error on the intrinsic parameters withree affine intrinsic calibration parametets ~, ands,
|E|| being the Euclidian distance between correspondingrmalised td|k||s = v/2m. k has the form
representatives R and KR on the respective manifolds. _ -

The dashed line represents the iterations performed (3 it- Te1
erations shown). Tyl
S1 1
k= . (22)
N S$vam
minimises the sum of squared errors betweerBthees- Tam
timated intrinsic parameters and the wanted parameters Tym
from (8). L Sm |

A geometrical interpretation is given in Figure 13, are is a scale factor ensuridge S~ (v/2m)
where the manifolds to whick andK'R belong are de- 4 i@duce}? as the2m x 3 stack of all the2 x 3

noted R and L respectively. L_is simply the Ii_near subsatricesP from @), ie.

space covered b} whereas R is clearly non-linear and - o
would intuitively appear as related to a sphere. In the fig- Py KiR;
ure, three iterations are shown, beginning at some starting P = : - :
pointon L. Itis of particular interest to note that the error P. K 'R
E is simply the Euclidian distance between the two cor- mn mem
responding representatives R and KR on R and L. Miwhere the right-hand side is RQ-factorisationof each
imising the error thus amounts to find the point on thsf the P’s, i.e. K; is 2 x 2 upper triangular containing 3
manifolds where this distance is minimised, proceediegtries formk andR,; has two orthonormal rows. Fur-

iteratively as shown on the figure. thermore, we define the block-diagonal x 2m matrix
K and the2m x 3 matrix R such that

A.1.1 Constructing a ContractionT K, R

Essentially, we constru¢t as a mapping that takes all K= , R= : J

the involved forms (7) closer to their forms (8). The char- K,, R,

acteristic that will be central to constructifigis thatr;
andr, are orthonormalin (8). We will thus only considel®
the upper lef2 x 3 blocks of the affine camera matrices. P =KR.

Also, it will be practical to visualise; andr, as orthog- Note that the pairs of rows oR are orthonormal and
onal points or2. We will then consider a transformatiorthat the structure of each of the point pairsfnis en-
T that gradually enforces pairwise orthonormality on atioded in/C. Also note that the representation Bf on
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S3m=1(y/2m) would be overall scale). It is simple to see by inspection thht
should have the form

1
1 * % 0 1
0 H=|0 % 0 - (26)
S
p=|: m repetitions of 1 10]",  (23) R BT
1 in order to preserve (25}% ensuring the right overall
1 scale.x indicates a possibly non-zero entry.
L O] We now conjecture that aligning two point clouds

_ ) ) o KiR: € V andKoRs € V to the point cloudsk,; and
i.e. pis a3m x 1 vector with normy/2m containing the -, which have the local structure (orthogonal point pairs)
ideal calibration parameter valugswould thus be a per- prings each of the local structures closer to each other

attainable since that would require complete absence of

noise. [Tki — Tkal]2 < afki — kall2, 27)
Let H denote the affine transformation that minimises
the distance betweegh andR i.e. with a < 1. As formulated in (27), the conjecture seems
to be somewhat false and overly general. However, the
min IPH - R||F, precise delimitation is not very clear, and it experimen-

tally appears to be sufficiently true within the domain re-

where| A || denotes the Frobenius-norm, i.e. the squagigired by our application. In the experiment, a set of
root of the sum of the squares of all the elements of the = 10 cameras where generated randomly with intrin-
matrix A. Note thatH may be considered as the affingic parameters normalised4g = v, = 1 ands = 0.
transformation that optimally aligns the point clouds dédditive Gaussian noise with standard deviatrwas
scribed by the rows of the twayn x 3 matricesP andR  applied to the parameters, and two instanke®,; and
and let 1R, and their corresponding; andk, were created

P=PH=KR (24) by applying two random transformatioi¥, andH, of
the form (26). They were subsequently transformed by
¥ and it was verified if they fulfilled (27). The results
are shown in the lower curve in Figure 16 for a varying
noise level. It was experimentally found (Section 6) that a
) typical autocalibration application will have a noise leve
A.1.2 Some Constraints ortH o =~ 0.25 corresponding to a probability ef .97 to fulfill

For the sake of the present demonstration, i.e. in ord@f conjecture. Note also that lying within the conjecture
to obtain a unique fixed point, we need to eliminate t#$ We Will see guarantees an optimal estimate, however
3-parameter ambiguity stemming from the undeterminEf optimal estimate might very well be reached without

global rotation. This may be done by fixing the three pgpe conjecture bging satisfied. This is iIIus_trated by the
rameters of the first camera’s rotation, for instance ~ UPPer curve, which is the percentage of tries where the
algorithm converged to the desired minimum. The curve

_ i i 0,
R, — { (1) (1) 8 } . (25) lies steadily at a 100% success rate.

denote the optimally aligned point cloud. By extractin
the new estimate of the intrinsic parameters friimde-
notedk, the output ofT is obtained.

We thus consider the 5-dimensional subgetf the 6m — A-1.3  Validity of the Fixed Point

3 — 1 dimensional vector space of all the possiBlevith Equation (27) implies theal is a contraction. It follows
fixed first cameradm for the coefficients of all thé x 3 from the Contraction Mapping Theorem that the equation
blocks, —3 for fixing the first camera and 1 for fixing k = Tk has a unique solutioRy. It now remains to be
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and eactK; — I into

100
K' i . /{1 kg _ 1 O o €1 €3
e T ¢ o 0 ko 0 1| | 0 e |’
80 f 3
2
¢ we see that
@ 60r
g KR — Rl = [(Ki —DRy[l%
» 40t = €f(ui +u3 +u3)
+ e3(0f +v3 +03)
20 | + e3(0f +v3 + )
—+ 26163 (Ul’Ul —+ U2V —+ Ug’Ug)
0 5 : : : = 6% + 6% + e%,
0 1 2 3 4 5 (29)
Noise which is valid for every of then point pairs. Thus the

minimisation in (28) which is the one that is performed,
Figure 16: Validity of the conjecture in equation (27) s equivalent to the minimisng (29) for all the= 1..m
and convergence to a fixed point.Graph showing the cameras, which affirms the estimate as a Least Squares
validity of the conjecture (lower curve) and the percengstimate.
age of succesful convergence of the algorithm to a fixedrinq)ly, if the estimated at each iteration is denoted
point (upper curve), when applied to the autocalibraticpij,j — 1..,m;, j denoting the iteration number amd;

problem with varying noise level. Theaxis indicates the e number of iterations, the upgrading (calibrating)sran
standard deviation of the noise applied to the normahs%qmatioan is obtained as

intrinsic parameter$y,,4,,s) = (1,1,0). They-axis

indicates the percentage of times the conjecture is true m

(lower curve) and convergence to the desired fixed point H. = H H;

(upper curve). The typical autocalibration applicatios ha j=1

o = 0.25. The upper curve indicates a 100% success rate ) )
(convergence to the desired minimum) of the algorithm@nd is applied to each camePg according to

P4; =PH,.. (30)

proven that the fixed poirk, is a Least Squares Estimate
of the affine intrinsic parameters (up to an undefined sca&CKnowledgements
factor).
Sincek, is a fixed pointk, = Tk, and accordingly The authors wish to thank Bill Triggs for valuable inspi-

H = I, 5 (according to (24) ) and the point cloukis Ry ration concerning th& 4-closure and its application it in
andR, Zre thus optimally aligned, i.e. a useful way, and Eric Hayman for valuable comments of

the proposed ideas.

HICORO - ROHF = min ||ICR — R”F . (28)
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