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Abstract

We present a batch method for recovering Euclidian cam-
era motion from sparse image data. The main purpose of
the algorithm is to recover the motion parameters using
as much of the available information and as few computa-
tional steps as possible. The algorithm thus places itself in
the gap between factorisation schemes, which make use of
all available information in the initial recovery step, and
sequential approaches which are able to handle sparse-
ness in the image data. Euclidian camera matrices are
approximated via the affine camera model, thus making
the recovery direct in the sense that no intermediate pro-
jective reconstruction is made. Using a little known clo-
sure constraint, theFA-closure, we are able to formulate
the camera coefficients linearly in the entries of the affine
fundamental matrices. The novelty of the presented work
is twofold: Firstly the presented formulation allows for
a particularly good conditioning of the estimation of the
initial motion parameters but also for an unprecedented
diversity in the choice of possible regularisation terms.
Secondly, the new autocalibration scheme presented here
is in practice guaranteed to yield a Least Squares Esti-
mate of the calibration parameters.

As a bi-product, the affine camera model is rehabili-
tated as a useful model for most cameras and scene con-

figurations, e.g. wide angle lenses observing a scene
at close range. Experiments on real and synthetic data
demonstrate the ability to reconstruct scenes which are
very problematic for previous structure from motion tech-
niques due to local ambiguities and error accumulation.

Keywords: Structure from motion, batch recovery, clo-
sure constraints, affine camera model, autocalibration,
contraction mapping.

1 Introduction

The structure from motion problem has been studied ex-
tensively since the publication of the seminal paper [17] in
1981. The following efforts have been diverse and fruitful
and a variety of algorithms now exist to recover the pre-
sumed camera motion and the observed 3D structure. Ex-
isting algorithms can be classified in two families, namely
batchalgorithms [16, 20, 4, 1, 14], which recover all pose
and structure parameters in a single global step, andse-
quentialalgorithms [2, 19] where the parameters are re-
covered progressively as new views become available.

Also, substantial effort has been put into so-called au-
tocalibration [5, 11, 13, 21], where the initially unknown

1



intrinsic parameters of the camera are recovered together
with the pose.

In theory, the batch approaches should be the most
suitable for off-line processing, where the data acquisi-
tion is concluded prior to processing, since all the avail-
able information is included in the initial estimation of
the parameters. Also in theory, the sequential approaches
should be relevant primarily for realtime applications such
as navigation or interactive applications and should be
avoided otherwise, since accumulation of the error is
unavoidable. However, existing batch algorithms suffer
from one major drawback, which is that roughly speaking
all features have to be present in all images for the initial
reconstruction to be feasible. Consequently, they areper
seunapplicable to the common case where the images in
a sequence have been taken from very different points of
view and thus in majority have no features in common.

Certainly, successful suggestions have been made to
extend the common batch approaches, i.e. factorisation
schemes to themissing datacase [14, 18, 1], however we
here wish to distinguish that case from thesparse data
case that we will be treating in this paper. There is a rad-
ical difference between ‘patching’ the measurement ma-
trix for a small amount of missing features, and solving
the problem for a measurement matrix that is say 90-99%
unavailable.

The method presented here is in essence founded on the
so-called closure constraints [25, 15], which we extend
with a new variant, theFA-closure for the affine camera,
based on a formulation originally developed in [27, 26].
This constraint allows a formulation of the camera ma-
trix coefficients which is linear in the coefficients of the
fundamental matrices.We can thus recover all the camera
poses in a single computational step. This initial pose es-
timate subsequently needs refining which is done with a
Euclidian bundle adjustment.

The work is thus has some similarities with [15] but
differs on two important points: Firstly, the derivation and
the final formulation of theFA-closure is of a surprising
simplicity. Secondly, all the affine camera parameters are
estimated, in particular the coordinates of the camera cen-
ter. This eliminates the need for relative coordinates and
thus the need for at least one point to be visible in all the
frames, making the algorithm significantly more general.

Another contribution of the present work is a new au-
tocalibration algorithm based on aContraction Mapping.

Assuming zero skew and unit aspect ratio, the algorithm
in practice guarantees a least squares error on the es-
timated intrinsic parameters. The optimality of the al-
gorithm is difficult (if possible at all to) prove theoret-
ically. A tentative proof, based on several conjectures,
has nevertheless been included in the appendix in order to
strengthen the conclusion that the point of convergence is
indeed optimal.

Although the affine camera model is often viewed as
too simple for many if not most applications, our experi-
ments show that within our framework, the affine approx-
imation is clearly sufficient. The somewhat widespread
rule of thumb that the depth of the observed object should
be no more than 10% of the distance to the object is seri-
ously undermined in our experimental section. The bene-
fits of the presented algorithm are the following:

• All the available information on the epipolar geome-
try is used in the initialisation step. (Equation (14)).

• The reconstruction is direct in the sense that no in-
termediate projective reconstruction is done, and the
hard part of autocalibration, i.e. detecting the plane
at infinity, is performed inherently.

• Constraints related to equality/proximity of cameras
are easily included. (Section 4.2).

• Constraints imposed by some cameras being known,
even only approximately, are naturally included.
(Section 4.2).

• Constraints related to equality of 3D points are natu-
rally accounted for.

• Constraints modelling smoothness of the camera tra-
jectory are easily included. (Section 4.1).

• Local ambiguities may in general be overcome, since
the problem is solved globally. (Section 6).

• The algorithm is very fast, with an execution time
which is linear in the number of estimated cameras
for certain common types of scene configurations.
(Sections 3 and 6).

Summing up, the presented algorithm is very robust, in
particular to local ambiguities. Generally speaking, this
is the consequence of the choice of the affine camera
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model, which is simple and thus potentially leading to
a good conditioning of the problem, and yet sufficiently
rich to adequately model the problem at hand. One spe-
cific advantage of the presented approach is the ability
to naturally handle a closed sequence, i.e. a sequence in
which the same 3D features appear on several occasions in
the sequence. Another advantage over factorisation algo-
rithms is robustness towards outliers, since the algorithm
is based on fundamental matrix calculations, which can
be done robustly.

The paper is organised as follows: The notation and
the elementary background is given in Section 2. In Sec-
tion 3 theFA constraint is introduced together with details
on how to use it. Different types of regularisation of the
problem are described in Section 4. The autocalibration is
described in Section 5 and the appendix. Experiments on
real and synthetic data are presented in Section 6, the error
analysed in Section 7 and conclusions given in Section 8.

2 Notation and Background

2.1 Generalities

We denote 2D homogeneous image points by a sub-
scriptedx, 3D homogeneous points byX = [X̄ 1]⊤ and
3× 4 camera matrices byP. These entities are related by
the followingprojection:

λijxij = PiXj i = 1 . . .m, j = 1 . . . n, (1)

wherem andn denote the number of views and 3D object
points respectively, andλ is the projective depthof the
given point.

The fundamental matrixF21 encapsulates the geomet-
rical relationship between two views (for simplicity of no-
tation we consider views 1 and 2). It constrains the posi-
tion of corresponding image pointsx1j andx2j through
the relation

x
⊤
1jF21x2j = 0, j = 1 . . . n. (2)

The line defined byF21x2j is the epipolar line ofx2j in
image 1, i.e. the line joining the epipolee12 andx1j .

We now introduce the perspective camera matrix,
which models a classical pinhole camera. It may be de-

composed as

P =





γxf sf xc

0 γyf yc

0 0 1





︸ ︷︷ ︸

K





r
⊤
1

r
⊤
2

r
⊤
3

t1
t2
t3





︸ ︷︷ ︸

[R⊤ t]

(3)

(4)

= KR
⊤[I3×3 − c], (5)

wheref denotes the focal length,γx andγy the scaling
along the images’x- andy-axes i.e.a =

γy

γx
is the as-

pect ratio.s is the skew and(xc, yc) the principal point.
The ri are the three columns of a rotation matrixR and
c = −R

⊤(t1, t2, t3)
⊤ is the camera centre. In general,xc

andyc are highly correlated to the camera rotation, highly
ambiguous and only of interest if the rotation needs to be
determined precisely. They are thus often, and will be
in the sequel be, assumed to be zero.γx andγy are in
general not written out explicitly, since they algebraically
yield an overparameterisation of the intrinsic calibration,
i.e. in the literatureγx ≡ 1 and (3) becomes

P =





f sf xc

0 af yc

0 0 1









r
⊤
1 t1

r
⊤
2 t2

r
⊤
3 t3



 . (6)

Formulation (3) will be needed to understand the relation-
ship between the perspective and affine image formation
processes. The affine camera matrix has the form

P
′ =

[
P̄ t

0
⊤
3 1

]

, (7)

where the uncalibrated state is expressed by the prime (′).
When calibrated it may be decomposed as

PA =





γ̂x s 0
0 γ̂y 0
0 0 1









r
⊤
1 t1

r
⊤
2 t2

0
⊤
3 1



 , (8)

whereγ̂x = γx andγ̂y = γy are the scaling factors from
(3). The calibrated affine camera model is an approxi-
mation to the calibrated perspective model where the fo-
cal length is considered infinite and the camera centre has
been retracted to infinity, i.e.

PA = lim
ν→∞

[
νγxf νsf xc

0 νγyf yc

0 0 1

] [
r
⊤

1
t1

r
⊤

2
t2

r
⊤

3
t3+(ν−1)f

]

1

νf
. (9)
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where ν indicates how much the camera has retracted
from the scene, measured in multiples of the focal length.
In Figure 1 the process is illustrated. Forν = 1, the cam-
era matrix is the one from (3). Asν increases, the camera
centre retracts in the negative direction of thez-axis and
the focal length, i.e. the distance between the camera cen-
tre and the image plane, increases accordingly.

The disappearance ofr⊤3 in (8) implies that the projec-
tions onto the image plane are parallel. Also, in the affine
case, the projective depthsλij = 1.

The affine fundamental matrix has five non-zero entries
defined up to scale, i.e. four degrees of freedom:

F21 =





0 0 a

0 0 b

c d e



 . (10)

Computing the affine fundamental matrix thus requires
at least four point correspondences. However as many
points as possible should be included to minimise the ef-
fect of noise. A closed-form solution for the Maximum
Likelihood Estimate of the affine fundamental matrix ex-
ists [12].

3 A Simple Formulation of the
Affine Closure Constraints

In [25], Triggs introduces the so-calledF − e closure
constraint, namelyF21P2 + [e21]×P1 = 0 and the
e− G − e closure. In [15] closure constraints for the
affine camera model are derived. We will here give a sim-
ple derivation of an alternative closure constraint which
is specific to the affine case, theFA-closure. Letx1 and
x2 denote the projections ofX ∈ P

3 onto two images.
Combining equations (2) and (1) we obtain:

X
T

P
T
1 F21P2

︸ ︷︷ ︸

S

X = 0, ∀X ∈ P
3, (11)

which is a quadratic form. ConsequentlyS is skew sym-
metric, i.e.ST = −S as noted in [6].

In the affine case, the structure ofS becomes particu-
larly simple, which stems from the structure of the camera
matrices (7) and the affine fundamental matrix (10):

S = P
T
2 F21P1 =

[
03×3 a

−a
T 0

]

. (12)

The upper left03×3 matrix is the result of the correspond-
ing bilinear term containing either a zero-coefficient ei-
ther from the fundamental matrix or one of the camera
matrices. The rest of the structure ofS is a consequence
of the skew-symmetry, andconcerns only linear termsin
the entries of the camera matrices since these terms in-
clude the lower right 1 of eitherP1 orP2. By rearranging
the equations in (12) these turn into four linear constraints
on the coefficients ofP1 andP2:

[a b c d]

[
P̄1 t1

P̄2 t2

]

= [ 03 − e ]
︸ ︷︷ ︸

r12

, (13)

where a, b, c, d and e are entries ofF21 in (10). The
above formulation was originally developed in [26].
The constraints of (13) apply for each pair of views
{Pi1 ,Pi2}, i1 6= i2, providedFi1i2 is defined. Affine
trifocal or quadrifocal tensors could be used as well by ex-
tracting fundamental matrices, or along the lines of [15].
We construct a linear system of equations using (13) as
the building block, with the formSP = R:








s12

s1i1

...
sikim





















P̄1 t1

P̄2 t2

...
...

...
...

...
...

P̄m tm














=








r12

r1i1

...
rikim








,

(14)
whereri1i2 is the right hand side in equation (13) andsi1i2

are1 × 2m row vectors

si1i2 = [. . . a b
︸︷︷︸

First block

. . . c d
︸︷︷︸

Second block

. . . ] , (15)

dots indicating an adequate number of zeros. One pos-
sible structure forS is shown in Figure 2. Since the
global 12-parameter affine coordinate system has not been
specified prior to solving the system, the solution is a
12-dimensional subspace which may be recovered by
SVD. However, this is rather inefficient compared to us-
ing sparse linear solvers, which require the system to be
of full rank. Full rank is obtained by choosing an overall
affine coordinate system arbitrarily. This can be done e.g.
by fixing all the coefficients of a cameraPa and 4 coeffi-
cients of some arbitrary second cameraPb and modifying
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F2

F3

F1

Figure 1:From perspective to affine projection.As the camera centre away retracts from the image plane, the focal
length increases and the projection becomes more and more parallel. The figure shows the situation for three different
focal lengthesf1, f2 = 2f1 andf3 = 3f1.

Figure 2: Structure of the central design matrix con-
straining the camera matrices. The structure shown is for
a minimal configuration, i.e.2m−3 block-row entries for
m views, before fixing the 12-parameter gauge freedom
(see text for further details).

the design matrix accordingly. The choice of affine refer-
ence frame is important. An example of an a priori valid
but bad choice would be the matrices

Pa =

[
0 0 0 0
0 0 0 0

]

and Pb =

[
0 0 0 0
∗ ∗ ∗ ∗

]

,

since this would force all the other cameras to be of the
form [

0 0 0 ∗
0 0 0 ∗

]

.

A choice of frame that seems to work well (the one used
in the experimental section) is given by the pair

Pa =

[
1 0 0 0
0 1 0 0

]

and Pb =

[
0 1 1 0
∗ ∗ ∗ ∗

]

.

The design matrix will often have a diagonal structure,
since this amounts to each 3D point being visible in a
limited number of consecutive frames. Thus the advised
solver would be based on band or profile Cholesky fac-
torisation with back-substitution. The execution time of
the band Cholesky being linear in the height of the matrix,
the presented algorithm becomes linear in the number of
recovered camera matrices.

Alternatively, a supernodal approach could be used in
case the sparseness structure is moread hoc. For a more
in-depth description of the suggested solvers, see [9] and
e.g. [3] for implementational details.

5



4 Regularising Camera Motion

One well-known and common problem in structure from
motion is ill-conditioning, and the ability to regularise the
problem using prior knowledge thus becomes particularly
important.

Within this framework, different types of prior knowl-
edge of the motion parameters may be formulated as lin-
ear constraints among the parameters, which may be nat-
urally incorporated into the design matrixS in (14). The
two types of constraints we consider are smoothness con-
straints on the trajectory and equality of some cameras.

4.1 Smoothness of the Trajectory

The system (14) is in general over-determined unless a
minimal case is being dealt with. Thus, we will in gen-
eral consider solving (14) in a minimal least squares sense
through the normal equations:

S
⊤
SP = S

⊤R. (16)

One straightforward way of imposing soft constraints
would thus be to augmentS with the desired linear con-
straints. For instance, smoothness of the camera trajec-
tory and orientation could be obtained by softly imposing
equality between adjacent cameras in the sequence. The
linear equality constraints would beSsP = 0 with

Ss =










1 0 −1 . . .

0 1 0 −1 . . .

. . .
. . .

. . . 1 0 −1 0
. . . 1 0 −1










(17)

and may be included in (16) as

(S⊤
S + αS

⊤
s Ss)P = S

⊤R, (18)

whereα expresses the desired strength of the constraint.
Note that imposing the constraints is likely not to affect
the execution time of an implementation based on sparse
diagonal solvers. If we letk denote the number of views
in which a minimum number of common features ap-
pears, i.e. the number of consecutive views "sharing" a
fundamental matrix, the structure ofS

⊤
S is essentially

(2k − 1)-diagonal.k being of an order of magnitude10,
the structure won’t be affected by the pentadiagonal struc-
ture ofS⊤

s Ss.

4.2 Equality of Cameras and Fixed Cam-
eras

As described in (15) each camera corresponds to a pair of
columns in the design matrix. Enforcing equality among
two cameras simply amounts to adding the corresponding
columns. In contrast to the smoothness constraints, the
camera equality constraint is not imposed as an additional
term appearing in the minimal least squares solution to
(14), but as a hard constraint that is inherently satisfied.

If a given camera has a known position, this is easily
imposed by multiplying the corresponding columns inS

by the camera matrix and substracting the result on the
right hand side of (14).

5 Recovery of Euclidian Motion and
Structure

Recovery of the Euclidian perspective equivalents to the
affine camera matrices is done in two steps, a separation
of the affine intrinsic and extrinsic parameters, i.e. a cal-
ibration step, followed by a an upgrading from affine to
full perspective cameras.

5.1 Euclidian Calibration

Autocalibration for affine cameras is classically done as
described in the method in [22], i.e. by assuming skew
s = 0 and aspect ratioγ̂x

γ̂y
= 1 and determining an up-

grading affine transformationH that maps (7) to (8), i.e.
P = PH.

We here propose an alternative iterative scheme which
in practice guarantees convergence to a unique Least
Squares Estimate of the three parameters up to an over-
all scaling.

The basic idea of the algorithm is to iteratively find an
affine transformationHc that will transform the uncali-
brated affine cameras so as to get them as close to the
calibrated form (8) as possible. The idea is very simple,
although the formal presentation within the framework of
the contraction mapping theorem tends to make it some-
what opaque. The detailed presentation has been included
in an appendix in order to strengthen the understanding of
the algorithm.
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We begin by considering that the information needed
for the calibration of an affine camera is contained in 1)
the upper triangular form of the intrinsic calibration ma-
trix K, and 2) in the orthonormality of the two vectors
r1 andr2 defining the rotation of the camera. In order to
recover the form (8) we start out by aligning our existing
estimate of the form (8) with a plausible candidate, the
plausible candidate being the currentr1 andr2 of each
camera. These currentr1 and r2 are obtained via QR-
factorisation of each of the current matrices and subse-
quently stacked in a large matrix. In this alignment, the
aligned estimate will hopefully inherit some of the struc-
ture of the target. Furthermore, repeating the alignment
brings the camera matrices as close as possible to the de-
sired form (see appendix). The algorithm proceeds as fol-
lows:

1. Stack the2 × 3 camera matrices in a2m × 3 matrix
P ;

2. Perform a QR factorisation of each of the camera
matrices;

3. Stack the resulting rotation matrices in a2m×3 ma-
trix R.

4. Align P to R, i.e. minimise/reduce the Frobenius
norm‖PH−R‖F .

5. Go to 1. unless the algorithm has converged.

Even though the algorithm is iterative, it converges very
fast, 1-3 iterattions tend to suffice to obtain valid parame-
ters, and each iteration takes a few milliseconds (m > 100
cameras).

In the appendix, it is shown that given that the algo-
rithm converges, the point of convergence is the Least
Squares Estimate of the calibration parameters. However,
convergence can presently not be guaranteed formally,
only experimentally (see Figure 16).

5.2 Affine-to-Perspective Upgrading

Once the form (8) has been recovered, the perspective
equivalents (3) are obtained by taking advantage of the
f ↔ γx ambiguity: Since (3) is overparameterised with
respect tof andγx, we are free to initially assumeγxf =
γ̂x and subsequentlyγx = 1.

Although r3 has disappeared in the limit (9), it may
be easily recovered sinceR is a rotation matrix with
det(R) = +1. To summarise, the Euclidian matrices in
the form (6) are recovered by







r3 = r1 × r2

f = γ̂x

a =
γ̂y

γ̂x

. (19)

6 Experiments

6.1 Synthetic Data

Two experiments on synthetic data are presented. The first
concerns the reconstruction of a large cubic point cloud
from circular motion and the second the reconstruction
of a room seen from within, also from a circular camera
trajectory.

Object Centered Trajectory

The first dataset, the cubic point cloud, is shown in Fig-
ure 3 (Top). It consists of 300 3D points evenly distributed
in the cube[0, 5] × [0, 5] × [0, 5] and of 30 cameras with
focal lengthf = 100 distance units equidistantly placed
on a circular path centered at(0, 0, 0). Each frame con-
tains features which are visible in the 9 following frames.
Gaussian noise withσ = 1 is present in the images. Fig-
ure 3 (Center) shows the initial reconstruction of the cam-
era trajectory with the method from Section 3 and 5 and
in Figure 3 (Bottom) an alternative reconstruction where
equality has been assumed between the first and the last
camera (closed the sequence). Clearly, the initial recon-
structions capture the overall structure of the scene and
the motion, thus allowing for the subsequent bundle ad-
justment to converge to the global minimum. One point
of special interest (see the discussion in Section 5.2) is the
fact that within this framework, the affine camera model
approximates the perspecitive camera sufficiently well,
even though the depth of the object is approximately the
same as the distance to the object, i.e. a lot more than the
10% that are usually considered the upper limit.

In this experiment (Figure 3,Bottom) equality was as-
sumed between the first and the last camera. It should be
noted that in general, known relative positions between
any of the cameras can be imposed. This would be done
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Figure 3: Reconstruction, object centered configura-
tion (closed sequence)Top: original configuration. Cen-
ter: initial reconstruction using affine approximation.
Bottom: same as (b) but assuming equality between the
first and last camera.
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Figure 4:Reconstruction of a structure observed from
within: experimental setup. The camera describes a cir-
cular trajectory and has an angular aperture ofπ

3 < α <
π
2 .

by eliminating the parameters of all but one of the cam-
eras of such a set of mutually fixed cameras from the left
hand side of (14), as discussed in Section 4.

Interior of a Room

The second experiment on synthetic data describes a
scene configuration that is known to be quite difficult, i.e.
the case of a camera taking views of the interior of a room
in order to reconstruct the walls and ceiling, see Figure
4: Each feature is present only in a little subset of the
frames, planar structures dominate the scene thus leading
to focal length↔ translation ambiguities and finally if the
sequence is reconstructed sequentially, the accumulated
error will be likely to be irrepairable. The experimental
setup is shown in Figure 4.

It consists of a square ‘room’ with 600 points evenly
distributed on each of the four walls and the roof, the
2D image points being subject to Gaussian noise with
σ = 1. The camera describes an almost circular path
within the room, pointing inwards. The initial reconstruc-
tion shown in Figure 5 (Top) and Figure 6 (a) clearly cap-
tures the overall closed structure of the scene and a sub-
sequent bundle adjustment converges to the global min-
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Figure 6:Post-processing with bundle adjustment.After a few bundle adjustment steps (respectively 0, 2, 4,and 6)
the initial reconstruction has gotten very close to the desired result.

imum. However, better results can be obtained by im-
posing equality of the first and the last camera (Figure
5, Center) and smoothness of the camera centres trajec-
tory (Figure 5, Bottom).

Note that some of the cameras have been reconstructed
outside the room. This is however only a problem if the
3D points they see were to be reconstructed behind the
camera, which can be avoided by retracting the camera /
assigning a higher focal length.

6.2 Real Data

Two experiments were performed on real data, on the Di-
nosaur sequence and the Palazzo Pitti sequence.

The Dinosaur Sequence

The Dinosaur sequence consists of 37 images, of which
the first and the last are known to coincide. A total of
1888 3D points were tracked across the sequence using
the KLT-tracker [23]. Figure 7 shows a sample image
from the sequence (Left) and the structure of the cam-
era configuration (Right), i.e. whether a given pair of
frames has sufficient overlap to allow for a fundamental
matrix among them. Note that the first and the last im-
ages haven’t been registered to each other, although they
are practically identical. The reconstruction is done with-
out imposing the constraint that the first and the last cam-
era positions are equal, and the result is shown in Figure 8
(Top). The reprojection error after the initial affine re-
construction is 5.4 pixels, and the system (13) is solved

in 2.1 milliseconds (Pentium IV@1.8Ghz). After Euclid-
ian bundle adjustment, the final reprojection error is 0.62
pixels and the scene looks like Figure 8 (Bottom).

The dinosaur sequence is known to have been taken
with a high focal length, implying that the data set would
be particularly well adapted for an algorithm based on the
affine camera model. In the next experiment, this is not
the case.

Palazzo Pitti sequence

The second experiment has a sequence of 41 images as
input data, of the type shown in Figure 9 (a). The images
were taken within a room in the Palazzo Pitti in Florence
with a wide angle camera. This type of sequence is par-
ticularly difficult to reconstruct, which is probably best
illustrated by the absence of such reconstructed scenes
using structure from motion in the literature. The diffi-
culty lies in the fact that the measurement matrix is sparse,
which makes the problem impracticable for factorisation
schemes. Also, no feature appears in all the images,
which is a problem for sequential approaches since the ab-
sence of a common reference allows the camera positions
to drift, and the error accumulation becomes exception-
ally severe. As it can be seen from Figure 9b, fundamen-
tal matrices exist between the first and the last images in
the sequence. It has been ‘stitched’ together, which was
done semiautomatically, i.e. a few points were selected in
the first and the last frame and the rest of the matching
was guided by the induced homography between the im-
ages. A total of 2564 point matches were reconstructed,
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camera and with smoothening of the trajectory.
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Figure 7: The Dinosaur sequenceLeft: sample image
from the sequence. Right: matrix showing the availability
of a fundamental matrix between two views.

as shown in Figure 10.
The experiment illustrates an important point, namely

that imposing equality of reconstructed 3D points is done
inherently. When applying a sequential approach, the
constraints contained in this equality have to be imposed
in a post-processing step, e.g. as described in [10]. Here,
the 3D points never get reconstructed as different in-
stances and the problem thus never occurs.

Note that for both experiments, Euclidian structure and
motion were obtained directly, i.e. without an intermedi-
ate projective reconstruction. Autocalibration was done
by applying a few (2-3) iterations.

7 Error Analysis

In order to assess the error on the reconstruction algo-
rithm, the setup shown in Figure 11 is used as a test
bench. m cameras are laid out on a circular path, all
pointing inwards. The observed object consists ofn 3D
points uniformly distributed within a cube.

7.1 Comparison to Existing Methods

Recovery of Motion Parameters

The proposed algorithm is compared to two methods: The
first is the classical factorisation from [24]. The second is
the classical sequential schemes from [2] where 6 cameras
and all the 3D points are computed from the first frames in

10
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Figure 8:Reconstruction from the Dinosaur sequence
Top: initial reconstruction (assuming proximity between
the first and last camera positions) Bottom: final recon-
struction after Euclidian bundle adjustment.

Figure 9:The Palazzo Pitti in Florence(a) sample image
from the sequence (b) matrix showing the availability of
a fundamental matrix between two views (a black entry
signifies presence)

the sequence, followed by a series of resections and inter-
sections in order to recover the remainder of the motion
and structure [2]. In the experiment,m = 12 cameras
andn = 100 3D points were used, with Gaussian noise
added to thex- and y-coordinates of the image points,
all 3D points being visible in all views. As it can be
seen from Figure 12, the presented batch algorithm lies
between the resection/intersection-approach and classical
factorisation. The error is the mean Euclidean distance
between the measured and the reprojected points.

Autocalibration

In the traditional approach to affine autocalibration de-
scribed by Quan in [22] the problem is formulated as
that of solving a set of homogeneous quadratic equations
in a least squares sense which is done using Levenberg-
Marquardt minimisation. Such an approach is generally
prone to stranding in local minima.

In the following experiment, a varying number
(2,4,8,16 and 32) of random cameras were generated and
transformed by a random3 × 3 transformationHr.

The success rates of Quan’s and the proposed algo-
rithm were compared together with their execution times.
Quan’s algorithm reached the global minimum approxi-
mately 90% of the time form > 2, compared to 100% for
the contraction mapping scheme we propose. Also, the
execution times were significantly lower for the contrac-
tion mapping scheme.

The results, success rates and execution times, are
shown in Figure 13 (implementation on a standard PC).

11
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β

Figure 11:The experimental setup for the error analy-
sis: m affine cameras pointed inwards on a circular path,
observing a cubic cloud ofn uniformly distributed points.
β indicates the angle between the focal axis of two neigh-
bouring cameras and is used as a measure of the baseline
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tion, see [22]Top: Success rate (%). The existing state-
of-the-art algorithm reaches the global minimum≈ 90%
of the time. The proposed algorithm shows a 100% suc-
cess rate. Bottom: Execution times. Even though the pro-
posed algorithm is iterative, every iteration is very fast,
only few iterations are needed and the execution time
scales linearly with the number of cameras.

7.2 The Influence of Various Parameters

Width of the camera baseline

In order to assess the importance of the width of the
baseline, the experiment shown in Figure 14a was per-
formed. Again,m = 12 cameras were used, positioned
on the arc of the circle of Figure 11 and the angle of
incidence of their focal axisβ varied from2◦ to 30◦, i.e.
the overall baseline varied from24◦ to 360◦. The noise
in the image is Gaussian noiseσ = 1 pixel. Fundamental
matrices were computed between each view and 10 of
its neighbours. The reprojection error is seen to peak for
β ≈ 7◦. For lower values ofβ, the constraints imposed
on the structure by the cameras are so loose that they are
easily satisfied. For higher values, the computation of the
fundamental matrices is getting well-conditioned, thus
yielding lower reprojection errors.

Sensitivity to degenerate matching tensors

In this experiment (m = 12, n = 20, andβ = 18◦, image
noiseσ = 1 pixel) the sensitivity of the algorithm with
respect to the number of deficient fundamental matrices
is investigated. This is done by successively setting the
images2 . . .m − 1 equal to them’th, thus ensuring de-
generate fundamental matrices among them. The result is
shown in Figure 14b, where the reprojection error is plot-
ted against the percentage of equal views in the sequence.
As the number of equal views increase, i.e. the degenera-
cies become more numerous, the reprojection error is ac-
tually seen to decrease. When all the views are the same,
the configuration is globally degenerated and the repro-
jection error is meaningless. Again, the more equal views
in the sequence, the looser the constraints on the structure,
eventually leading to a lower reprojection error. It is how-
ever noteworthy that degenerate fundamental matrices are
not invalidating the system.

8 Conclusions

A batch algorithm for recovering the Euclidian camera
motion from sparse data was presented. A new formula-
tion of the closure constraint for the affine camera allowed
for a formulation of the camera matrix coefficients which
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Figure 14: The influence of various parameters: (a)
The effect of enlarging the baseline. The figure shows the
decrease in error as the baseline gets larger (fromβ = 2◦

to β = 30◦). m = 12 views were used andn = 150
points, each camera was related to 10 neighbours using
fundamental matrices. Image noiseσ = 1 pixel. (b)
The effect of degenerate camera matrices in the sequence.
The graph shows the reprojection error as a function of
the percentage of views which are equal in the sequence
(m = 12, n = 150, β = 18◦, σ = 1 pixel).

is linear in the fundamental matrix coefficients. Using the
affine camera matrix as a model for the perspective cam-
era, this allows approximated Euclidian camera matrices
to be recovered via the solution of a single linear system
followed by an affine-Euclidian calibration step. Several
types of constraints are naturally included, e.g. proximity
of given cameras or equality of 3D points.

A highly robust autocalibration scheme applied to
affine-Euclidian calibration was introduced, a scheme that
is generalisable to projective-Euclidian calibration.

Experiments on synthetic and real data showed that the
algorithm performs well, i.e. succeeded in reconstructing
even unprecedented difficult scenes.

As it is often the case for computer vision algorithms, a
successful outcome is highly dependent on various imple-
mentational details. Hence a suggested implementation
including a tracker, the presented algorithm and bundle
adjustment is freely available for download at [8].

A On Euclidian Autocalibration

A.1 The Contraction Mapping Theorem

Before addressing the central problem, we define acon-
traction and introduce a common tool from functional
analysis, the so-calledContraction Mapping Theorem
here reproduced from [7]:

Definition A.1. Contraction: A mappingT : X 7→ X
whereX is a subset of a normed spaceN is called acon-
traction mapping, or simply acontraction, if there is a
positive numbera < 1 such that

‖Tk1 − Tk2‖ ≤ a‖k1 − k2‖, ∀k1k2 ∈ X . (20)

The definition is central to

Theorem A.1. Contraction Mapping Theorem: If
T : X 7→ X is a contraction mapping a closed subset
X of a Banach space, then there is exactly onex ∈ X
such thatTx = x. For anyx0 ∈ X , the sequence(xn)
defined byxn+1 = Txn converges tox.

The challenge is thus to determine a contractionT with
a suitable fixed point, i.e. a fixed point solution which

14
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Figure 15:Geometrical interpretation: R represents the
manifold of calibrated cameras assuming no error on the
intrinsic parameters. L represents the linear subspace cov-
ered by H. E is the error on the intrinsic parameters with
‖E‖ being the Euclidian distance between corresponding
representatives R and KR on the respective manifolds.
The dashed line represents the iterations performed (3 it-
erations shown).

minimises the sum of squared errors between the3m es-
timated intrinsic parameters and the wanted parameters
from (8).

A geometrical interpretation is given in Figure 15,
where the manifolds to whichR andKR belong are de-
noted R and L respectively. L is simply the linear sub-
space covered byH whereas R is clearly non-linear and
would intuitively appear as related to a sphere. In the fig-
ure, three iterations are shown, beginning at some starting
point on L. It is of particular interest to note that the error
E is simply the Euclidian distance between the two cor-
responding representatives R and KR on R and L. Min-
imising the error thus amounts to find the point on the
manifolds where this distance is minimised, proceeding
iteratively as shown on the figure.

A.1.1 Constructing a ContractionT

Essentially, we constructT as a mapping that takes all
the involved forms (7) closer to their forms (8). The char-
acteristic that will be central to constructingT is thatr1

andr2 are orthonormal in (8). We will thus only consider
the upper left2 × 3 blocks of the affine camera matrices.
Also, it will be practical to visualiser1 andr2 as orthog-
onal points onS2. We will then consider a transformation
T that gradually enforces pairwise orthonormality on all

these2m 3D points corresponding to them affine cam-
eras and conjecture that it is a contraction.

We consider the mapping

T : S
3m−1(

√
2m) 7→ S

3m−1(
√

2m), (21)

whereS
3m−1(

√
2m) denotes the(3m − 1)-dimensional

hypersphere inR3m with radius
√

2m (the choice ofX =
S

3m−1(
√

2m) will become clear shortly). For complete-
ness we point out thatS3m−1(

√
2m) is a closed subset

of a Banach space: the embedding vector spaceR
3m is

normed and complete and the sphere is indeed closed.
Let k ∈ S

3m−1(
√

2m) be the vector containing the
three affine intrinsic calibration parametersγ̂x, γ̂y ands,
normalised to‖k‖2 =

√
2m. k has the form

k =














γ̂x1

γ̂y1

s1

...
γ̂xm

γ̂ym

sm














1

s√2m

. (22)

wheres√2m is a scale factor ensuringk ∈ S
3m−1(

√
2m)

We introduceP as the2m × 3 stack of all the2 × 3
matricesP̄ from (7), i.e.

P =






P̄1

...
P̄m




 =






K̄1R̄1

...
K̄mR̄m




 ,

where the right-hand side is aRQ-factorisationof each
of theP̄’s, i.e. K̄i is 2 × 2 upper triangular containing 3
entries formk andRi has two orthonormal rows. Fur-
thermore, we define the block-diagonal2m × 2m matrix
K and the2m × 3 matrixR such that

K =






K̄1

. . .
K̄m




 , R =






R̄1

...
R̄m




 ,

i.e.
P = KR.

Note that the pairs of rows ofR are orthonormal and
that the structure of each of the point pairs inP is en-
coded inK. Also note that the representation ofR on
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S
3m−1(

√
2m) would be

ρ =














1
1
0
...
1
1
0




















m repetitions of[1 1 0]⊤, (23)

i.e. ρ is a3m × 1 vector with norm
√

2m containing the
ideal calibration parameter values.ρ would thus be a per-
fect fixed point, however, it is in the general case not
attainable since that would require complete absence of
noise.

Let H denote the affine transformation that minimises
the distance betweenP andR i.e.

min
H

‖PH−R‖F ,

where‖A‖F denotes the Frobenius-norm, i.e. the square
root of the sum of the squares of all the elements of the
matrix A. Note thatH may be considered as the affine
transformation that optimally aligns the point clouds de-
scribed by the rows of the two2m × 3 matricesP andR
and let

P̂ = PH = K̂R̂ (24)

denote the optimally aligned point cloud. By extracting
the new estimate of the intrinsic parameters fromK̂, de-
notedk̂, the output ofT is obtained.

A.1.2 Some Constraints onH

For the sake of the present demonstration, i.e. in order
to obtain a unique fixed point, we need to eliminate the
3-parameter ambiguity stemming from the undetermined
global rotation. This may be done by fixing the three pa-
rameters of the first camera’s rotation, for instance

R̄1 =

[
1 0 0
0 1 0

]

. (25)

We thus consider the 5-dimensional subsetV of the6m−
3 − 1 dimensional vector space of all the possibleP with
fixed first camera (6m for the coefficients of all the2 × 3
blocks,−3 for fixing the first camera and−1 for fixing

overall scale). It is simple to see by inspection thatH

should have the form

H =





∗ ∗ 0
0 ∗ 0
∗ ∗ ∗




1

s′√
2m

(26)

in order to preserve (25),s′√
2m

ensuring the right overall
scale.∗ indicates a possibly non-zero entry.

We now conjecture that aligning two point clouds
K1R1 ∈ V andK2R2 ∈ V to the point cloudsR1 and
R2 which have the local structure (orthogonal point pairs)
brings each of the local structures closer to each other
from an overall least squares point of view, i.e.

‖Tk1 − Tk2‖2 ≤ α‖k1 − k2‖2, (27)

with α < 1. As formulated in (27), the conjecture seems
to be somewhat false and overly general. However, the
precise delimitation is not very clear, and it experimen-
tally appears to be sufficiently true within the domain re-
quired by our application. In the experiment, a set of
m = 10 cameras where generated randomly with intrin-
sic parameters normalised tôγx = γ̂y = 1 ands = 0.
Additive Gaussian noise with standard deviationσ was
applied to the parameters, and two instancesK1R̄1 and
K1R̄1 and their correspondingk1 andk2 were created
by applying two random transformationsH1 andH2 of
the form (26). They were subsequently transformed by
T and it was verified if they fulfilled (27). The results
are shown in the lower curve in Figure 16 for a varying
noise level. It was experimentally found (Section 6) that a
typical autocalibration application will have a noise level
σ ≈ 0.25 corresponding to a probability of≈ .97 to fulfill
the conjecture. Note also that lying within the conjecture
as we will see guarantees an optimal estimate, however
the optimal estimate might very well be reached without
the conjecture being satisfied. This is illustrated by the
upper curve, which is the percentage of tries where the
algorithm converged to the desired minimum. The curve
lies steadily at a 100% success rate.

A.1.3 Validity of the Fixed Point

Equation (27) implies thatT is a contraction. It follows
from the Contraction Mapping Theorem that the equation
k = Tk has a unique solutionk0. It now remains to be
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Figure 16:Validity of the conjecture in equation (27)
and convergence to a fixed point.Graph showing the
validity of the conjecture (lower curve) and the percent-
age of succesful convergence of the algorithm to a fixed
point (upper curve), when applied to the autocalibration
problem with varying noise level. Thex-axis indicates the
standard deviation of the noise applied to the normalised
intrinsic parameters(γ̂x, γ̂y, s) = (1, 1, 0). The y-axis
indicates the percentage of times the conjecture is true
(lower curve) and convergence to the desired fixed point
(upper curve). The typical autocalibration application has
σ ≈ 0.25. The upper curve indicates a 100% success rate
(convergence to the desired minimum) of the algorithm.

proven that the fixed pointk0 is a Least Squares Estimate
of the affine intrinsic parameters (up to an undefined scale
factor).

Sincek0 is a fixed pointk0 = Tk0 and accordingly
H = I3×3 (according to (24) ) and the point cloudsK0R0

andR0 are thus optimally aligned, i.e.

‖K0R0 −R0‖F = min
KR∈V

‖KR−R‖F . (28)

Also, considering each pair of points separately and de-
composing eachRi into

R̄i =

[
u1 u2 u3

v1 v2 v3

]

and each̄Ki − I into

K̄i − I =

[
k1 k3

0 k2

]

−
[

1 0
0 1

]

=

[
ǫ1 ǫ3
0 ǫ2

]

,

we see that

‖K̄iR̄i − R̄i‖2
F = ‖(K̄i − I)R̄i‖2

F

= ǫ21(u
2
1 + u2

2 + u2
3)

+ ǫ22(v
2
1 + v2

2 + v2
3)

+ ǫ23(v
2
1 + v2

2 + v2
3)

+ 2ǫ1ǫ3(u1v1 + u2v2 + u3v3)
= ǫ21 + ǫ22 + ǫ23,

(29)
which is valid for every of them point pairs. Thus the
minimisation in (28) which is the one that is performed,
is equivalent to the minimisng (29) for all thei = 1..m

cameras, which affirms the estimate as a Least Squares
Estimate.

Finally, if the estimatedH at each iteration is denoted
Hj , j = 1.., mi, j denoting the iteration number andmi

the number of iterations, the upgrading (calibrating) trans-
formationHc is obtained as

Hc =

mi∏

j=1

Hj

and is applied to each cameraP
′
i according to

PAi = P
′
iHc . (30)
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