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Abstract. So far the Non-Rigid Structure-from-Motion problem has
been tackled using a batch approach. All the frames are processed at
once after the video acquisition takes place. In this paper we propose
an incremental approach to the estimation of deformable models. Im-
age frames are processed online in a sequential fashion. The shape is
initialised to a rigid model from the first few frames. Subsequently, the
problem is formulated as a model based camera tracking problem, where
the pose of the camera and the mixing coefficients are updated every
frame. New modes are added incrementally when the current model can-
not model the current frame well enough. We define a criterion based
on image reprojection error to decide whether or not the model must be
updated after the arrival of a new frame. The new mode is estimated
performing bundle adjustment on a window of frames. To represent the
shape, we depart from the traditional explicit low-rank shape model and
propose a variant that we call the 3D-implicit low-rank shape model. This
alternative model results in a simpler formulation of the motion matrix
and provides the ability to represent degenerate deformation modes. We
illustrate our approach with experiments on motion capture sequences
with ground truth 3D data and with real video sequences.

1 Introduction

The reconstruction of 3D scenes from monocular video sequences is one of the
fundamental problems in computer vision. Following the success on rigid struc-
ture recovery in recent years there has been a wealth of research on modelling
deformable structures. Most Non-Rigid Structure-from-Motion (NR SfM) algo-
rithms to date rely on the foundational model proposed by Bregler et al. [4] which
describes the time varying structure of a deforming object as a linear combina-
tion of basis shapes. The pose, the basis and the time varying coefficients are
then estimated using a batch approach – all the frames in the sequence are
processed at once after the acquisition.

While batch and real-time sequential rigid SfM are mature fields that have
now consolidated into commercial applications, NR SfM is still at its infancy.
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ing Grant agreement 204871-HUMANIS. Adrien Bartoli was funded by ANR through
the HFIBMR Project.
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Some batch algorithms exist [3, 13, 10] but there is still a need to define de-
formable shape models and estimation algorithms that will allow to push NR
SfM forward to a scenario where it might emulate the successes of its rigid coun-
terpart, in terms of robust performance and application to real world cases. In
this paper we advance the state of the art in NR SfM in two main directions,
both proposing a new sequential estimation paradigm and an alternative low-
rank shape model.

Our first contribution is the definition of a new estimation paradigm that
extends NR SfM to the sequential domain. We propose a rank-growing engine
which will determine when the rank of the model should be increased and if
necessary will estimate the new mode.

We divide the sequential non-rigid shape estimation into two processes: model-
based tracking of the camera pose and shape coefficients and model update. The
first process assumes that a current up-to-date model, of a certain rank, of the
3D shape observed so far exists and performs model based camera tracking: when
a new frame arrives this module estimates the current camera pose and the shape
parameters using as input the 2D coordinates of image features matched in the
last W frames, where W is the width of a sliding window. The second process
is a model update module which decides, based on the image reprojection error
given by the camera tracking module, whether or not the current model is able
to explain the deformations viewed in the new frame. If the current model does
not have enough descriptive power to capture the deformations observed in the
new frame, the model update module will add a new mode and estimate its
parameters using bundle adjustment on a sliding window. The entire system is
bootstrapped from a rigid reconstruction obtained from a small number of initial
frames.

Our second contribution is an alternative low-rank shape model that provides
the ability to represent modes of deformation of dimensionality lower than 3 (for
instance deformations on a plane or along a line).

We call it the 3D implicit low-rank shape model since it does not use an
explicitly defined 3D shape basis. This has two main advantages. First, the
motion matrix in our model has a simpler structure than in the classical model,
which allows for a linear estimation of camera pose and shape coefficients from a
single frame, and can be used to initialise the bundle adjustment in the sequential
framework. Second, our model handles deformations whose rank is not a multiple
of 3 and thus avoids one to explicitly compute the rank of a particular shape
basis. When the deformations are processed one frame at a time, having the
flexibility to update the model with 1-dimensional modes fits the sequential
estimation paradigm more naturally, since there is a much higher chance of
observing lower dimensional deformations.

It is important to note that in this paper we do not try to solve the matching
problem. Instead, we rely on point correspondences between frames being avail-
able. The integration of the feature tracking problem with the camera tracking
and model update processes (which are the focus of this paper) is beyond the
scope of this work although we certainly intend to address it in our future work.
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2 Related Work

The ability to reconstruct a deformable 3D surface from a monocular sequence
when the only input information is a set of point correspondences between images
is an ill posed problem unless more constraints than just the reprojection error
are used. The seminal work of Bregler et al. [4] was the first to propose a solution
to the NR SfM problem for the orthographic camera case. This model not only
provided an elegant extension of the rigid factorisation framework [12] but has
also opened up new computational and theoretical challenges in the field.

Current solutions to NR SfM focus on the definition of optimization crite-
ria to guarantee the convergence to a well behaved solution. This is often only
achieved through the addition of temporal and spatial smoothness priors. Bundle
adjustment has become a popular optimization tool to refine an initial rigid so-
lution while incorporating temporal and spatial smoothness priors on the motion
and the deformations.

Aanaes et al. [1] were the first to formulate the problem using bundle adjust-
ment using smoothness priors. Later, Del Bue et al. [5] incorporated the con-
straint that some of the points on the object were rigid while Bartoli et al. [3]
used a coarse to fine shape model where new deformation modes are added iter-
atively to capture as much of the variance left unexplained by previous modes
as possible. Torresani et al. [13] formulate the problem using Probabilistic Prin-
cipal Components Analysis introducing priors as a Gaussian distribution on the
deformation weights. More recently, Paladini et al.’s [10] work focuses on en-
suring that the solution lies on the correct motion manifold where the metric
constraints are exactly satisfied. All these approaches are initialised from a rigid
solution and they use temporal and spatial smoothness priors on the motion and
shape parameters. Olsen et al. [9] proposed the surface shape prior and an im-
plicit model that simplifies the estimation process but leads to a non-Euclidean
3D reconstruction.

The linear subspace model has also allowed closed-form solutions to be pro-
posed for the cases of both affine [14] and perspective [16, 6] cameras. Recently,
a set of new approaches has departed from the low-rank linear shape model.
Rabaud and Belongie [11] adopt a manifold learning framework assuming that
only small neighbourhoods of shapes are well modelled with a linear subspace.

Akhter et al. [2] described the structure of a non-rigid body in trajectory
space as a linear combination of DCT basis trajectories with the obvious advan-
tage that the basis is object independent.

The common attribute to all NR SfM algorithms proposed so far is that
they are batch methods. Our new sequential approach is motivated by recent
developments in the area of sequential real-time SfM methods for rigid scenes [7,
8]. In particular, our approach is inspired by the work of Klein and Murray [7] in
which they develop a real time system based on two parallel threads – the camera
tracking thread which performs real time model based pose estimation and the
mapping thread which runs in a constant loop performing bundle adjustment
on a small set of key-frames. To the best of our knowledge our work is the first
in NR SfM to depart from the batch formulation and reformulate the shape
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estimation sequentially. First we introduce a new variant to the low-rank linear
basis shape model that we believe is better suited to a sequential formulation.

3 New Deformation Model

3.1 Classical Explicit Low-Rank Shape Model

In the case of deformable objects the observed 3D points change as a function
of time. In the low-rank shape model defined by Bregler et al. [4] the 3D points
deform as a linear combination of a fixed set of K rigid shape bases according
to time varying coefficients. In this way, Sf =

∑K

k=1
lfkBk where the matrix

Sf = [Xf1, · · ·XfP ] contains the 3D coordinates of the P points at frame f , the
3 × P matrices Bk are the shape bases and lfk are the coefficient weights. If the
3D shape is known, this model can be obtained from the PCA decomposition of
the S

∗ that contains the 3D shape in all the frames.

S
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A PCA decomposition of rank K of S∗ would give LB∗, where L is the F ×K

matrix of deformation weights lik, and the K × 3P matrix B
∗ can be rearranged

to give the basis shapes Bk. If we assume an orthographic projection model the
coordinates of the 2D image points observed at each frame i are then given by:

Wi = Ri

(

K
∑

k=1

likBk

)

+ Ti (2)

where Ri is a 2 × 3 Stiefel matrix and Ti aligns the image coordinates to the
image centroid. The aligning matrix Ti is such that Ti = ti1

T
P where the 2-vector

ti is the 2D image centroid and 1P a vector of ones.
When the image coordinates are registered to the centroid of the object and

we consider all the frames in the sequence, we may write the measurement matrix
as:
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





l11R1 . . . l1KR1

...
. . .

...
lF1RF . . . lFKRF













B1

...
BK






= MS (3)

Since M is a 2F × 3K matrix and S is a 3K ×P matrix in the case of deformable
structure the rank of W is constrained to be at most 3K. The motion matrices
now have a complicated repetitive structure Mi = [Mi1 . . . MiK ] = [li1Ri . . . liKRi]
that makes the model estimation difficult.

Olsen et al. [9] proposed to consider an implicit model where the repetitive
structure of the motion matrix is not used. While this simplifies the estima-
tion problem, the recovered model does not directly provide usable motion and
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shape parameters, unless a mixing matrix is computed [4, 14]. The mixing matrix
computation problem has not received a simple solution so far.

3.2 Proposed 3D-Implicit Low-Rank Shape Model

In this paper we propose to depart from the traditional basis shapes model, and
embrace a different formulation that will fit the problem of sequential structure
recovery more naturally since it allows for the rank of the shape model to grow
one by one with the arrival of a new frame, instead of multiples of three.

The data in the shape matrix may be re-arranged in a different form, stacking
the shape matrices vertically for all frames F . Each matrix Sf ∈ R

3×P contains
the 3D coordinates of P points in frame f .
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(4)

If we assume that the shape matrix S is low-rank we can perform Principal
Components Analysis to obtain a PCA basis as S = UdVd, where d is the rank of
the decomposition, Ud ∈ R

3F×d and Vd ∈ R
d×P . We can also explicitly include an

average rigid (mean) shape in the model, therefore the shape at frame f would
be given by:

Sf = S̄ +
[

Uf1 · · · Ufr

]


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(5)

where S̄ is the mean shape, d = 3+r, Ufr is the 3-vector [U(x)frU(y)frU(z)fr]
T

and Vr are the rows of matrix V.
Therefore we can consider V to be a PCA basis of the shape (row) space of S

and U to contain the time varying coefficients. Note that in this case the shape
matrix V has dimensions r × P where r is the rank of the decomposition and P
is the number of points in the shape. For each frame 3r coefficients are needed
to express the configuration of the shape.

We assume that the shape at instant f is then projected onto an image
following an orthographic camera model. The 2D coordinates of the points can
then be expressed as:

Wf =

[

uf1 · · · ufP

vf1 · · · vfP

]

= RfSf + Tf = Rf (S̄ + UfV) + Tf (6)

where Rf is a [2× 3] orthographic camera projection matrix, it encodes the first
two rows of the camera rotation matrix and Tf the translation for frame f . If we
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now register all the measurements to their centroid in each frame the projection
of the shape in all frames can be written as:
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In our model, the basis shapes are not explicitly used as in the classical
model, while the camera projection is explicitly modeled. We thus call our model
the 3D-implicit low-rank shape model. Our model combines Bregler et al. [4]’s
explicit model and Olsen et al. [9]’s implicit model. It has the following two main
advantages:

1. Simplicity. The motion matrix is block diagonal and only contains the
rotation matrices instead of a mixture of the coefficients and the rotations.
The fact that the 3D basis is not explicitly available in our model is not a
problem since one is generally more interested in recovering the 3D shape of
the observed scene than the basis shapes – the basis shapes can be estimated
a posteriori by forming and factorizing the matrix S

∗ in equation (1). As we
explain below, it also is an advantage not to have explicit 3D basis shapes.

2. Any-rank deformations. Our formulation allows us to define shape models
where the rank is not a multiple of 3. In other words, in the explicit model,
a basis shape always has to be of rank 3, whereas in the real world not all
deformations are of rank 3. Xiao and Kanade [15] propose to explicitly find
the rank of a particular deformation mode (which can be one of 1, 2 or 3).
Our model circumvents this difficult problem.

4 A Sequential Approach to NR SfM

In this paper we depart from the batch formulation of NR SfM and we propose
a sequential approach based on the alternative low-rank shape model outlined
in the previous section. Our approach can be seen as a two process formulation.
The system holds a current up-to-date model, of a certain rank, encapsulated in
matrix V. The first process is a model based camera tracking module. Given the
current estimate of V, when a new frame arrives, the camera tracking module es-
timates the new pose Rf and the new deformation coefficients Uf for the current
frame. If the current model explains well the measurements the image reprojec-
tion error will be low. However, if the error goes above some defined threshold
the rank of the model must be increased and the model updated. I that case, a
model update module will update the current model adding a new row to ma-
trix V. As the sequence is processed the model will become more complicated,
until all the possible object deformations have been observed. Our sequential
approach to NR SfM is summarised in Algorithm 1. We now describe in detail
the two main modules of our sequential system: the camera tracking module and
the model update module.
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Algorithm 1 Sequential Non-Rigid Structure-from-Motion (NR SfM)

Input: 2D point correspondences
Output: 3D coordinates of the deforming surface for each frame.
1: Initialise model to mean rigid shape S̄ estimated via rigid factorization on the first

few frames.
2: loop

3: new frame f arrives
4: run camera tracking process: estimate camera pose Ri and coefficients Ui

5: while (image reprojection error is above threshold) do

6: run model update process:
7: increase rank r ← r + 1
8: estimate new row of V and new column of Uf

9: end while

10: go to process next frame; f ← f + 1
11: end loop

5 Camera Tracking Given a Known Model V

If the matrix V is known in advance, the NR SfM problem is reduced to the
estimation of the camera pose Rf and the mixing coefficients Uf for each frame. In
that case, the pose of the camera and the coefficients can be updated sequentially
for each frame using a model based approach.

We adopt a sliding window approach where we perform bundle adjustment
on the last W frames where W is the width of a pre-defined window. The cost
to be minimised is the image reprojection error over all frames in the window:

min
Ri,Ui

f
∑

i=f−W

‖Wi − Ri(S̄ + UiV)‖
2

F (8)

To this cost function we add a temporal smoothness prior to penalise strong
variations in the camera matrices of the form ‖Ri − Ri−1‖

2

F , and a shape smooth-
ness prior (similar to the one used in [3]) that ensures that points that lie close
to each other in space should stay close. The shape smoothness is defined as
∑f

i=f−W Di,i−1, whereDi,i−1 is the change in the euclidean distance between 3D

points over two frames:Di,i−1 =
∑P

a,b=1
φa,b|d

2(Xi,a,Xi,b)−d
2(Xi−1,a,Xi−1,b)|.

The weight φa,b is a measure of the closeness of points a and b, defined as a P×P
affinity matrix φa,b = ρ(d2(Xa,Xb)) where ρ is a truncated Gaussian kernel. The
final cost function can now be written as:

min
Ri,Ui

f
∑

i=f−W

‖Wi − Ri(S̄ + UiV)‖
2

F + λ

f
∑

i=f−W

‖Ri − Ri−1‖
2

F + ψ

f
∑

i=f−W

Di,i−1 (9)

The mean shape S̄ and the shape model V are assumed to be known. This
nonlinear minimization requires an initial estimate for the camera pose Rf and
the shape coefficients Uf in the current frame f . Algorithms to obtain linear
estimates for Rf and Uf are described in Section 5.1.
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The steps of the complete algorithm to track the current pose of the camera
and the shape coefficients given the shape model can be summarised as follows.
Each time a new frame f of feature tracks is available:

– Obtain initial estimates for the current pose Rf and mixing coefficients Uf

using the linear estimation plus prior described in Section 5.1.
– Minimize the cost function (9) with smoothness priors using bundle adjust-

ment to obtain optimized values for the rotations Ri and shape coefficients
Ui in all the frames in the sliding window.

– If the reprojection error of the window becomes higher than a threshold,
signal the modelling process to increase the rank of the V matrix.

5.1 Initialization: Linear Estimation of Uf and Rf

Consider new image measurements become available for a new frame. These can
be arranged in a 2 × P matrix for that single frame called Wf . The projection
model gives us the relation Wf = Rf (S̄ + UfV) + Tf .

Linear estimation of Rf . For every new frame the camera pose Rf must
be initialised before Bundle Adjustment. For this purpose, we approximate the
shape with the rigid mode to obtain an initial estimate of the camera rotation.
This means we need to find the camera pose Rf that satisfies Wf = RfS, while
respecting the smoothness prior λI vec(Rf ) = λ vec(Rf−1). Using the relation
vec(AXB) = [BT ⊗ A] vec(X), where ⊗ is the Kronecker product and vec(.) is the
column-major vectorisation of a matrix, and using Wf = I2RfS we can write:

vec(Wf ) = [ST ⊗ I2] vec(Rf ) (10)
[

[ST ⊗ I2]
λI

]

vec(Rf ) =

[

vec(Wf )
λ vec(Rf−1)

]

(11)

The resulting Rf will not be orthonormal (i.e. not a truncated rotation ma-
trix), so we find the closest orthonormal rigid projection using SVD.

Linear estimation of Uf . First we take away the contribution to the im-
age measurements given by the known translation and mean shape component
to give ~Wf = Wf − Tf − Rf S̄ = RfUfV, which can be rewritten as vec(~Wf ) =
[VT ⊗ Rf ] vec(Uf ). This provides a linear equation on the unknown vector Uf .
However, this is not sufficient to produce an acceptable solution, because Uf

is a 3 × r matrix where each column Ufr is a 3-vector [U(x)frU(y)frU(z)fr]
T

that contains the PCA coefficients of all 3D coordinates, while ~Wf contains 2D
projections. However, this problem can be overcome by including a temporal
smoothness prior term that penalises solutions that are far from the value for the
previous frame Uf−1. Thus the prior term is of the form λI vec(Uf ) = λ vec(Uf−1).
We can join both linear equations and solve the linear system:

[

[VT ⊗ Rf ]
λI

]

vec(Uf ) =

[

vec(~Wf )
λ vec(Uf−1)

]

(12)
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6 Sequential Update of the Shape Model

In NR SfM the 3D object the camera observes varies over time. The current
model will encode the modes of deformation that the object has exhibited so far
in the sequence. However, if the object deforms in different ways that are not
encoded in the model the camera tracking will fail. Therefore, a mechanism is
needed to update the model when new modes of deformation appear. In that
case, the rank of the model should grow and the parameters of the model should
be fit to the new data.

The difficulty of updating the model in an sequential way is doublefold.
Firstly, when each new frame arrives, we need a mechanism to decide whether
or not the current model continues to fit the data well enough. While the shape
model can still describe the data, we can continue to do model based camera
tracking. We decide this based on the image reprojection error. Secondly, if the
model can no longer explain the data, the rank of the model needs to grow to
incorporate the new mode of deformation and the parameters of the new row of
V and the new column of U must be estimated.

6.1 Rank Increase Criterion

The rank selection criterion will decide to increase the rank only if the current
data does not fit the model well enough, i.e. if the existing modes do not model
the current frame well. Therefore we use the image reprojection error as the
criterion – if the error increases above a certain threshold we increase the rank
of the shape model. This results in a new row being added to the PCA basis V and
a new column to the PCA components U. However, the new mode is recovered
from the current frame only, so it has no influence over past frames. Therefore
for all past frames we can set the 3(f − 1) components of the new column of U
to 0.

6.2 Model Update: Estimating New Row of V and New Column of U

When the camera tracking module processes a new frame that it cannot model
well enough (the reprojection error is above the defined threshold), the model
is updated by increasing the rank. Ideally once all the different modes of defor-
mation that an object can exercise are incorporated in the PCA basis, the rank
will remain stable and the camera tracking process will be able to reconstruct
the incoming frames.

Given new image correspondences for frame f , the rank of U,V must be in-
creased. From the current estimate of Uf,1:r−1 and V1:r−1 we can rewrite the
model for the new frame as

W̃f = Rf (S̄ + Uf,1:r−1V1:r−1 + Uf,rVr). (13)

Both the residual of the current model A = W̃f − Rf (S̄ + Uf,1:r−1V1:r−1) and the
current camera rotation Rf are known. We need to estimate Z = Uf,rVr, the
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contribution of the new rank, subject to the following constraints:

A = RfZ rank(Z) = 1 (14)

This problem is difficult to solve in closed form, therefore we approximate it using
a linear solution as follows. We define C as the closest rank-1 approximation of
A obtained using SVD, then compute Z as Z = R

†
fC. Finally, we can decompose

Z using a rank-1 SVD decomposition to obtain a new row for V.

Non-linear refinement Once initial estimates are available for the new row of
V and the new column of U, they can be refined minimising image reprojection
error over a sliding window of W frames

min
Vr ,Uir

f
∑

i=f−W

‖Wi − Ri(S̄ + UiV)‖
2

F (15)

incorporating the smoothness priors described in section 5. Once the model is
updated, the camera tracking module can resume model based tracking with the
new model V with rank r + 1.

6.3 Bootstrapping

One of the known challenges in sequential approaches to rigid SfM is the initial-
ization [7]. It is common to run the system in batch mode for a few frames to
obtain a first model of the scene before starting the sequential operation. In the
current experiments we run a rigid factorization algorithm on a few initial frames
to obtain the rigid mean shape S̄. Once this is available the camera tracking and
model update loop can start. An alternative approach that does not require man-
ual intervention is the following. Start performing rigid factorization in batch.
When a new frame arrives, if the reprojection error of rigid factorization over
the frames observed so far is below the threshold then we keep performing rigid
factorization. However, if the error becomes higher than our threshold, the mean
shape of the non-rigid model is set to the rigid model obtained so far and we
start our sequential NR SfM algorithm.

7 Experiments

7.1 Motion capture sequence CMU-face

First we tested our sequential method based on the 3D-implicit low-rank shape
model on a motion capture sequence with ground truth data3. This sequence
from the CMU Motion Capture Database4 contains 316 frames of motion cap-
ture data of the face of a subject wearing 40 markers performing deformations

3 Videos of the experimental results can be found on the project website http://www.

eecs.qmul.ac.uk/~lourdes/SequentialNRSFM
4 Available from http://mocap.cs.cmu.edu
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Fig. 1. Results of sequential NR SfM on the CMU-face sequence. Left: Value of the
rank of the model for each frame, increasing as more frames are processed. Middle:
2D Reprojection error given by the camera tracking process. Right: 3D error of the
reconstruction for each frame.

while rotating. This sequence was also used by Torresani et al. [13] to perform
quantitative tests with ground truth data. We projected the 3D data syntheti-
cally using an orthographic camera model.

Prior to the start of our sequential algorithm and with the purpose of boot-
strapping the camera tracking module, we ran a batch rigid SfM algorithm [12]
on the first 60 frames of the sequence to estimate the mean shape S̄. The PCA
basis matrix V was initialised to 0. We then ran our new sequential algorithm
based on the camera tracking and the model update modules, together with the
rank detection engine. The average 3D error is 2.9%, with a 0.7 pixels 2D re-
projection error on the 600 × 600pixels images. The reprojection threshold was
fixed to 1.2pixels.

Frame 61 Frame 188 Frame 252 Frame 316

Fig. 2. 3D Reconstruction results obtained on the CMU-face sequence using camera
tracking and model updating. First row: 2D image points (green circles) and reprojec-
tions (blue crosses). Second row: Views of the 3D reconstruction (crosses) compared
with ground truth MOCAP data (squares)
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In Figure 1 we show results of the rank estimation, the 2D image reprojec-
tion error and the 3D error for each frame in the sequence using our sequential
estimation formulation. The average image reprojection error over the whole se-
quence is less than a pixel. In Figure 3 (left) we compare results of the 3D error
obtained with our method (Sequential), with Torresani et al.’s state of the art
batch NR SfM algorithm (EM-LDS) [13].We show the histogram of 3D error val-
ues taking into account all the frames in the sequence. The results show that our
new sequential algorithm provides results comparable to Torresani et al.’s [13]
batch state of the art algorithm. We show smooth estimates of the rotation an-
gles for all the frames in the sequence in Figure 3 (right). In Figure 2 we show
the 2D image reprojection error and the 3D reconstructions (blue crosses) we
obtained for some frames in the sequence comparing them with ground truth
values (green squares).

7.2 Real Data

We used the actress sequence, also used by Bartoli et al. [3], which consists of 102
frames of a video showing an actress talking and moving her head. In Figure 5
we show results of the 3D reconstructions obtained for some of the frames in the
sequence. The camera tracking was bootstrapped with a rigid model obtained
using Tomasi and Kanade’s rigid factorization algorithm [12] on the first 30
frames. The threshold for increasing the rank was a reprojection error of 0.9
pixels. From figure 4 we can see that the rank is increased, and the estimation
of new frame parameters keeps the reprojection error low.

8 Conclusions

We have undergone a re-thinking of the NR SfM problem for monocular se-
quences providing a sequential solution. Our new sequential algorithm is able
to automatically detect and increase the complexity of the model. Current state
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Fig. 3. (Left) Histogram of 3D error values built from all the frames, comparing results
of our method (Sequential) with Torresani et al.’s state of the art batch (EM-LDS) [13].
The 3D errors obtained with our Sequential approach are comparable to the results
from the batch method EM-LDS. (Right) Rotation angles estimated with the camera
tracking module.
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Fig. 4. Results on the actress sequence. Left: Reprojection error of the frame-by-frame
reconstruction obtained with our method. Middle: The value of the rank, increased as
more frames are processed. Right: Rotation angles estimated with the camera tracking
module.

of the art methods for NR SfM are batch and rely on prior knowledge of the
model complexity (usually the number of basis shapes, K). Our 3D-implicit
low-rank shape model simplifies the projection model and allows the rank to
grow one-by-one making it well suited to frame-by-frame operation. We have
shown quantitative results on a motion capture sequence and shown our system
in operation on a real sequence. Future work will pursue the goal of merging
the feature tracking and modelling of image data into a single process. Concern-
ing real time capability, our current MATLAB implementation is not real time.
However, the sliding window approach ensures that the computation time per
frame is bounded i.e. it does not grow with the number of frames. Therefore
we foresee that with appropriate code optimisation we would be able to achieve
real-time performance.
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