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Abstract. We present a way to register the uterus in monocular
laparoscopy in realtime using a novel two-phase approach. This differs
significantly to SLAM, which is currently the main approach for regis-
tration in MIS when scenes are approximately rigid. In the first phase
we construct a 3D model of the uterus using dense SfM. This involves
a method for semi-automatically masking the uterus from background
structures in a set of reference frames, which we call Mask Bootstrapping
from Motion (MBM). In the second phase the 3D model is registered to
the live laparoscopic video using a novel wide-baseline approach that
uses many texturemaps to capture the real changes in appearance of
the uterus. Capturing these changes means that registration can be
performed reliably without needing temporal priors, which are needed
in SLAM. This simplifies registration and leads to far fewer tuning
parameters. We show that our approach significantly outperforms SLAM
on an in vivo dataset comprising three human uteri.

1 Introduction

One of the main current goals of computer assisted intervention in Minimal
Invasive Surgery (MIS) is to enrich the surgeon’s video data using Augmented
Reality (AR). Examples of this include being able to visualise sub-surface
structures [16], enlarge the surgical field of view [18] and overlay information from
other imaging modalities [14]. AR in MIS involves solving a fundamental open
problem, namely registration. Depending on the application this may involve
registering optical images to one another, or to register them to another modality.
A challenging problem is how to achieve registration accurately, reliably and
in realtime. In this paper we focus on the problem of registering laparoscopic
images of the uterus. Solving this problem would open up several important
clinical applications, including AR-assisted resection of lesions such as uterine
fibroids and endometriosis.

The uterus is a flexible organ that can exhibit strong deformation when
manipulated with laparoscopic tools [12]. However when observing the uterus
during intervention prior to resection it remains quite rigid and does not
deform significantly due to respiration. Optical registration in laparoscopy has
been studied previously for other organs using the assumption of rigid, or
approximately rigid motion. This has been developed with monocular [4, 6, 7] and
stereo [13, 18] laparoscopes. These solve the problem using a general paradigm
called visual Simultaneous Localisation and Mapping (SLAM). Visual SLAM



relies only on raw optical data, and does not need other hardware such as
magnetic [14] or optical [16] tracking devices. SLAM involves building a 3D
representation of the environment, known as the map, and determining the rigid
transform which positions the map in the camera’s coordinate frame. The core
challenge in SLAM is how to achieve data association. SLAM requires data
association in two respects. The first is for map building. The second is for
localisation, which is to determine where the map’s points are located in a
new input image. SLAM offers a fast solution to these problems and has found
considerable success in man-made environments. However SLAM in MIS is still
proving challenging. This is due to the repeated nature of tissue texture, rapid
camera motion and photo-constancy violations caused by blood or mucous.

SLAM may also have difficulty when the scene is not globally rigid. When
the scene is made up of independently moving structures SLAM can make
errors by merging features from different structures into one map. This can
occur if there are sections of video where the image motion is induced only
by movement of the camera, at which point SLAM will merge features from
the entire scene. This may then lead to localisation errors in later frames. For
laparoscopic procedures involving the uterus a typical scene will comprise the
uterus, ovaries, peritoneum, small intestine and bladder. In most procedures a
cannula is inserted into the uterus through the vagina and is operated externally
by an assistant. The assistant’s hand movement may cause the uterus to move
independently of the surrounding structures. As we will show, one cannot apply
off-the-shelf monocular SLAM in these conditions because we have a registration
and segmentation problem to solve. This amounts to computing binary masks
which label pixels as either being on the uterus body or not. However achieving
this automatically is difficult and has not been studied in the literature.

The focus of this work is to solve registration using a minimal amount of
manual segmentation. A naive way to proceed would be to mask the uterus
manually in one or more frames and enforce that SLAM uses features found only
within the masks. However, there is no guarantee that SLAM will not eventually
use features from surrounding organs, thus leading to mapping and localisation
errors. By contrast it is infeasible to mask frames manually for every frame.

Proposed Approach and Registration Pipeline. Our solution is to step away
from the SLAM paradigm and solve the mapping problem with dense multi-
view Structure-from-Motion (SfM) [8]. We use SfM to explicitly decouple the
map building process from localisation. Using SfM has the advantage that
data association is done without requiring input images come from a video.
Rather, it works using a collection of unorganised images, and unlike SLAM
assumes nothing about temporal continuity. We propose a SfM-based method
for registering the uterus in two distinct phases. We illustrate this in Figure
1. Phase 1 involves estimating a dense 3D model of the uterus from a set of
reference frames. These are recorded whilst the surgeon views the uterus from
a range of different viewpoints. This involves a novel process that we call Mask
Bootstrapping from Motion (MBM). The idea behind MBM is to use a small
number of manually-segmented masks to bootstrap computing the masks in all
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Fig. 1: Proposed approach pipeline divided into two phases. Phase 1 uses a
reference video to construct a dense 3D surface model of the uterus. Phase 2
registers the model to new video frames in realtime.

reference frames. First a small number of reference frames are selected, called
keyframes, which are masked manually. An initial dense 3D uterus model is
computed using SfM with only these masked keyframes. The model is then
registered to all other reference frames, and their masks are predicted using
the model’s projected silhouette. We then can use all reference frames and
masks to compute a more accurate 3D model. Importantly, the masks do not
need to be particularly accurate, because modern SfM algorithms are inherently
robust. Rather the mask’s job is to prevent confusion during SfM by background
structures transforming according to different motion models.

Phase 2 involves using the 3D model from Phase 1 to register the uterus in
realtime. In contrast to SLAM, we present a way to achieve this that does not
rely on a prediction using the registration in previous frames. Rather each frame
can be registered independently. This is achievable due to the rich appearance
data provided by the model’s many reference frames. We call this Wide-Baseline
Multi-Texturemap Registration (WBMTR).

Materials. Data has been acquired with a standard Karl Stortz 10mm zero-
degree HD laparoscope, capturing videos at 25fps at 1920 × 1080 pixels. The
laparoscope was calibrated using standard methods immediately before inter-
vention using OpenCV’s calibration library. Algorithms have been implemented
in a combination of C++ and CUDA, and run on a standard Intel i7 desktop
PC with an NVidia GTX 660 CUDA-enabled graphics card.

2 Phase 1: Dense 3D Reconstruction using MBM

2.1 Creating the Exploratory Video and Frame Pre-processing

The exploratory video begins at the point during intervention after abdominal
inflation, instrument and camera insertion and once the uterus has been localised



by the surgeon. The goal of this video is two-fold. The first is to provide sufficient
data so that the uterus body can be reconstructed with SfM. The second is to
provide sufficiently different views of the uterus in order to capture how its
appearance changes as it is viewed from different viewpoints. This second point
is crucial for achieving reliable registration in Phase 2. To achieve these goals we
capture the exploratory video in somewhat controlled conditions with a simple
protocol. By contrast in Phase 2 the surgeon can view the uterus as they wish.

The protocol is as follows. The uterus is centred in the video so that the uterus
fundus is fully visible to the camera (Figure 1, top keyframe). At this point video
capture begins. The uterus is then tilted by manipulating the cannula to reveal
the posterior side of its body (Figure 1, bottom keyframe). It is then moved
in a rotary fashion to reveal lateral and anterior views. Once completed video
capture stops. We denote the length in seconds of the exploratory video with T .
In practice T ' 30 seconds. From the capture we select a subset of 60 reference
frames. We do this automatically by partitioning the video into 60 even time
intervals: {t1, t2, ...t60}. At each time tk we create a local window comprising the
frames at tk ± T

60×2 . From this window we select the sharpest frame. We do this
by computing the response of a 5 × 5 smooth Laplacian filter and measuring a
robust maximum (specifically at the 90th percentile). The frame with the highest
robust maximum in the kth interval is chosen to be the kth reference frame.
From the reference frames we select a subset of 8 uniformly-spaced keyframes.
For each keyframe we create a mask by manually outlining the uterus body with
an interactive polygon. This process is quick because the masks do not need to
be particularly accurate, and takes approximately 1-2 minutes to perform.
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Fig. 2: Mask Bootstrapping from Motion (MBM) applied to the uterus

2.2 Mask Bootstrapping from Motion (MBM)

In Fig. 2 we have expanded out the MBM component in Fig. 1. MBM takes
as inputs the set of keyframes and their respective masks. The first step of
MBM is to perform dense SfM using the masked keyframes. Modern dense SfM
works in two stages. The first stage is to perform sparse SfM using local features
extracted from the images. The well established method for this is to estimate the



camera poses from feature correspondences, and then refine them with bundle
adjustment [8]. The second stage involves reconstructing a dense surface using
multi-view stereo [17]. The masks come into play in both stages. In the first
stage features are only used that lie within the masks. In the second stage only
pixel information within the masks is used to constrain dense reconstruction.
There exist several mature libraries for performing dense SfM. We have found
good success for both the sparse and dense stages using Agisoft’s Photoscan
[1]. For reconstructing the uterus we did not need to change Photoscan’s default
parameters for mesh smoothness and resolution. With a set of 8 keyframes Sparse
SfM takes about 15 seconds on our hardware and Dense SfM takes about 1
minute, returning a 3D model in the order of 20,000 vertices.

The next stage of MBM is to take this 3D model and perform registration
using WBMTR for the remaining reference frames. We postpone details of
WBMTR to §3, as it is the same algorithm used for live registration. For each
reference frame WBMTR either gives us the model’s 3D pose, or it returns a
failure to register. For all frames with 3D pose estimates, we render the model
with OpenGL and compute the model’s silhouette. We then morphologically
dilate the silhouette to grow its area to allow the next run of SfM to be able
to discover more of the uterus surface. Empirically we have found a dilation of
about 15% area to be effective. There is a compromise here, as we do not want
significant background regions being included in the masks. We then pass the
reference images and their masks back to dense SfM, which returns a second
3D surface model, and the 3D poses of the model with respect to the reference
frames. Sometimes it may fail to estimate pose. The reasons for this are the same
as the reason why WBMTR may fail, chiefly if there is excessive motion blur.
We call the set of reference images for which pose was estimated the texturemap
images. We use this term because these images allow us to texturemap the model.
However unlike traditional texturemapping where the images are combined to
form a single aggregated texturemap, we keep all texturemap images. By doing
so we capture the real changes of appearance of the uterus as it is viewed
from different viewpoints. This is important because state-of-the-art feature
detectors and descriptors can still have difficulty in handling viewpoint changes
due to the complex interaction between tissue reflectance, illumination angle and
surface orientation. When we use many texturemap images, we are reducing the
requirement for features to be invariant to these changes.

3 Phase 2: Wide-Baseline Multi-Texturemap Registration

In this section we describe WBMTR for registering the 3D model in realtime.
WBMTR is a feature-based method. That is, registration is achieved by
determining feature correspondences between the 3D model’s texturemaps and
a given input image. Unlike SLAM, WBMTR requires no initial pose estimate.



3.1 Preparing the Model for Registration

For each texturemap image, we render the 3D model with OpenGL and store
the corresponding 3D position of all pixels that lie within the model’s silhouette.
Using this we can immediately determine the 3D positions of any 2D image
features located within the model’s silhouette. Note that without computing a
dense 3D model this is not possible in general. For each texturemap image we
extract a large set of image features. Specifically we use GPU-SURF features
[2] because they can be computed very quickly and, as shown in the evaluation
section, work well for the uterus. Similar or better accuracy would be expected
with SIFT [11], however these are far slower to compute. We use OpenCV’s GPU-
SURF implementation with default settings, giving descriptors of length d = 128
bytes. For a typical 1920 × 1080 images of the uterus, between 70-500 features
are usually found, taking less than 10ms with our hardware. We use the average
of the green and blue channels to compute features, rather than the standard
approach of using average intensity. The reason is that green and blue light
penetrates human tissue superficially and do not exhibit as much sub-surface
scattering as with red light. The difference is very prominent with the uterus
[3]. To mitigate tracking specularities we detect saturated pixels as those with
intensity greater than 250, and any feature that lies within 5 pixels to a saturated
pixel is discarded. We concatenate the features from all texturemap images into
a single list, represented by F = {(xm, Im,dm)}, where xm denotes the mth

feature’s 3D position in the model coordinate frame, Im denotes the index of the
texturemap from which it was detected and dm denotes its descriptor.

3.2 Registration

For a given input image we compute its GPU-SURF features using the average
of its green and blue channels. We denote this with the set G = {(yi, d̃i)}. yi

denotes the ith feature’s image position and d̃i denotes its descriptor. WBMTR
follows a RANSAC-based hypothesis and test framework [5]. Specifically this
splits registration into three components. The first involves computing a set of
candidate matches between F and G. The second involves searching for a pose
hypothesis that can best explain these matches. The third involves taking the
best hypothesis and refining with efficient gradient-based optimisation [10].

Computing candidate matches. Candidate matches are found between F and G
as those pairs with (i) strong descriptor agreement and (ii) have a low likelihood
of being false. (ii) can be achieved with Lowe’s Ratio Test (LRT) [11]. For
each member of F we compute the member in G with the nearest descriptor. If
this descriptor distance is less than τ times the distance to the second nearest
descriptor in G, it is deemed a candidate match. The LRT is very standard in
feature-based pose estimation and we use a default value of τ = 0.8. A novelty of
using multiple texturemaps is that we can also exploit match coherence. What
we mean by coherence is that correct matches are likely to be those which come
from similar texturemap images. Enforcing coherence can reduce false matches



because it prevents matches occurring from wildly different texturemaps. We
enforce coherence with a winner-takes-all strategy. We first find the index I∗

of the texturemap with the most amount of candidate matches after applying
LRT. This indicates the texturemap image which is ‘closest’ to the input image.
Because SURF is invariant to scale changes and image rotation, close means
a texturemap image which views the uterus from a similar viewpoint, up to a
change in depth and a rotation of the laparoscope about its optical axis. We
then recompute the candidate matches with LRT, but using only features from
I∗. Performing these processes is very quick. This is because F is completely
pre-computed, and evaluating descriptor distances can be distributed trivially
on the GPU.

Computing 3D pose. Given the set of candidate matches, we perform RANSAC
to find the most compatible rigid 3D pose. This involves sampling many match
subsets of size 4, and for each sample creating a pose hypothesis using PnP
[10]. Each hypothesis is tested for support by measuring how many of the other
matches are predicted well by the hypothesis. Sampling and hypotheses testing is
very parallelisable, and we use OpenCV’s existing implementation for this. There
are two free parameters which govern performance. The first is the deviation τr
(in pixels) below which a match is considered to support a hypothesis. The
second is the minimum number of matches nc which must support a hypothesis.
We have found good default values to be τr = 12 pixels and nc = 15, and
terminate RANSAC if more than 500 hypotheses have been sampled. If no pose
has been found with more than nc supported matches, then we say the uterus’
pose cannot be estimated for that image.

4 Experimental Results

In this section we evaluate WBMTR using real in vivo data from three different
human uteri captured before hysterectomy. We name these U1, U2 and U3. The
video data for each uterus is divided into two sections. The first is the exploratory
section. The second is a free-hand section, where the surgical team observed the
uterus but were free to move the laparoscope and cannula as they wished. The
free section lasted approximately one minute and started immediately after the
exploratory section.

Marker-based ground truth evaluation. Before starting the exploratory section,
artificial markers were introduced on the uterus to give us accurate pose
estimates that could be used for Ground-Truth (GT) evaluation. The surgeon
marked the uterus with a coagulation instrument at 12-15 locations spread over
the uterus body. This gave a set of small regions approximately 3mm in diameter
which could be tracked. We show snapshots of these markers in Figure 3, middle-
left column. We performed marker tracking using correlation-based tracking.
The markers were tracked using a small patch surrounding each marker, and
fitted using a 2D affine transform that was optimised with gradient descent.
We manually verified the tracks, and manually initialised if the tracks became



lost. We then ran bundle adjustment [8] to compute the markers’ positions in
3D, and the 3D poses of the uterus in each frame. If fewer than four markers
were visible in a frame we said GT pose could not be estimated for that frame.
Care was taken to avoid WBMTR exploiting the additional texture introduced
by the markers. This was done by masking out the markers in each frame, thus
preventing SURF from finding features on the markers.

Method comparison. We compared our method against the most recent SLAM
system applied to laparoscopic images [7], which is based on EKF. The public
code accompanying [7] uses FAST features [15]. We have found FAST to perform
very poorly with the uterus because it comprises few corner-like features, and [7]
could perform better using SURF features. We use this as the baseline method
which we refer to as SLAM+SURF. We also tested the performance of PTAM
[9]. However PTAM also uses FAST, and to work requires a good initialisation.
This is done by tracking points in the first ten or so frames and performing SfM.
For each uterus very few PTAM tracks could be found, despite the motion being
smooth, and were insufficient to successfully initialise the maps.

We summarise the results of WBMTR against SLAM+SURF in Figure 4.
The three rows correspond to results for the three uteri. We plot error with
respect to position (in mm) in the first column, and error with respect to
rotation (in degrees) in the second column. The vertical black line corresponds
to the point in time when the exploratory section stopped, and the free-hand
section started. WBMTR and SLAM+SURF give translation up to a global
scale factor. This is a property of all visual SLAM and SfM methods. To give
translation estimates in mm, it must be rescaled by a scale factor given by
GT. For both methods, this was done by computing the least-squares scale
factor which minimised the translation error with respect to GT. We can see
from Figure 4 that WBMTR significantly outperformed SLAM+SURF, with
respect to rotation and translation, and across both the exploratory and free-
hand sections. As time increases the translation error of SLAM+SURF steadily
increases, indicating that it suffers significant pose estimation drift. By contrast
WBMTR suffers no such drift, and the translation error is usually below 2mm.
There are some error spikes in WBMTR, particularly in the free-hand sections.
This occurs when the uterus is only partially visible to the camera. In these
cases only features on a fraction of the surface can be estimated, and hence we
have fewer features with which to constrain pose. There are some gaps in the
graphs for which error could not be computed. These occur when fewer than
four markers were visible in a frame. In the third column of Figure 4 we show
the 3D trajectories of the camera estimated by WBMTR and SLAM+SURF.
GT is shown as blue dots. Here the performance improvement of WBMTR over
SLAM+SURF is very clear. In the third and fourth columns of Figure 3 we
show snapshots of the registered 3D model overlaid in two frames. One can
see WBMTR handles cases when the surface is partially visible and occluded
by tools. Note that the boundary of the reconstructed 3D model should not
necessarily align to the occluding contour of the uterus in the image. This is
because the 3D models are only partially reconstructed by SfM. The boundary



does not correspond to anything physical, but rather the region on the uterus
for which SfM could reconstruct shape.

U
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U

Fig. 3: Column 1: the dense 3D models built in Phase 1. Column 2: the
coagulation markers. Columns 3&4: the registered models using WBMTR.

5 Conclusion and Future Work

We have presented a reliable and fast way to register the uterus in monocular
laparoscopy using a novel two-phase approach. The approach differs to SLAM
by decoupling 3D mapping and segmentation (done in Phase 1) from live
registration (done in Phase 2). Phase 2 is achieved in realtime at approximately
26fps using standard hardware, and does not depend on successful registration
in previous frames. It is thus simpler than EKF-SLAM and PTAM because it
does not require switching between tracking and re-localisation. We have shown
that our approach significantly outperforms EKF-SLAM for this problem. In
the future we aim to enlarge our evaluation dataset and to explore the new
opportunities that our method opens up for AR-assisted resection planning in
uterine laparosurgery.
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