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ABSTRACT
Mini-invasive partial nephrectomy (MIPN) has many advantages. However, it is chal-
lenging for the surgeon to localise the hidden anatomical structures to be spared or
resected during surgery. Augmented reality (AR) is a promising localisation assis-
tance approach. Existing AR-MIPN methods augment the endoscopic view with 3D
models from preoperative CT registered by means of manual interactions. However,
they do not track the kidney in real-time, which considerably reduces usability, as
AR is only temporarily available on isolated images. We propose an approach to
achieve continuous live AR-MIPN. It uses classical camera calibration and manual
initial registration. Its key novelty is a keypoint-based automatic kidney tracking
module, with three main technical contributions. First, it performs stereo tracking-
by-detection from stereo keyframes, exploiting left-right consistency to maximise ro-
bustness. Second, it only considers keypoints within the parenchyma, as segmented
by a specifically trained neural network. Third, it improves keypoint detection and
matching by a new process that we call stereo perspective correction (SPC). It uses
the stereo depth-map and surface flattening to generate an image warp that can-
cels the perspective effect, improving the performance of keypoint detection and
matching. We carried out experiments on semi-synthetic and real surgical datasets
to compare several tracking methods, showing that our method outperforms.
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1. Introduction

Partial nephrectomy (PN) is the surgical resection of part of the kidney, usually to
remove tumours. PN is nowadays largely performed mini-invasively (MIPN) by la-
paroscopy or robot-assistance (RAPN) instead of open surgery. MIPN reduces hospital
stay, intraoperative blood loss, and operative time. Modern MIPN facilities provide
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enhanced 3D vision via a stereo endoscope. However, they challenge the surgeon in the
localisation of the kidney’s internal anatomical structures, including the endophytic
tumours, which are hidden in the parenchyma, and other important internal elements
including the arteries, veins and urinary excretory tracts. Consequently, discerning the
boundary between tumorous and healthy parenchyma, hence finding the optimal re-
section plane, can be extremely difficult. The use of intraoperative ultrasound (IOUS)
partially mitigates these challenges but remains highly operator-dependent. This owes
to the IOUS image being 2D and difficult to mentally re-position in the real surgical
field. In other words, defining a resection path in the IOUS image does not directly
translate to gesture guidance. A high level of expertise is thus required to achieve op-
timal endophytic tumour resection while maintaining sufficient tumour margins and
sparring as much healthy tissue as possible.

Computer-aided surgery (CAS) has recently emerged as an approach to alleviate
the surgical localisation challenges. Such systems make extensive use of augmented
reality (AR) to overlay the internal anatomical structures on the live surgical video.
The required information is available as a preoperative 3D model reconstructed from
the CT scan. AR thus relies on the ability to register the preoperative 3D model on the
surgical view and to track the kidney and camera motion to provide the surgeon with
accurate and real-time visual augmentations. AR methods have reached impressive
results on organs including the uterus [Collins et al. (2021)] and the liver [Espinel et al.
(2021)] but still lag behind for the kidney. This is due to three main reasons. First,
the kidney visibility is poor, compared to most other organs, owing to the perirenal
fat. In practice, only a very small part of the kidney is visible. Second, the kidney
is deformable in a global manner. Even if local deformations are limited, the global
kidney shape changes during surgery. Third, the kidney undergoes large motion when
mobilised by the surgeon.

Existing AR methods for MIPN are essentially limited to the manual overlay of the
preoperative 3D model on selected surgical images by an operator [Su et al. (2009);
Nakamura et al. (2010); Pratt et al. (2012); Chen et al. (2013); Wang et al. (2015);
Porpiglia et al. (2018, 2019); Schiavina et al. (2020); Amparore et al. (2022b)]. While
this already benefits surgery, this is far from the potential impact that an automatic
real-time AR system would bring. We thus identify automatic, reliable and real-time
kidney tracking as the main current technical limitation and challenge towards allowing
AR to express its full potential in MIPN.

We propose a kidney stereo tracking approach for live AR in MIPN. Our system
combines initial manual registration of the preoperative 3D model to stereo keyframes
and a new online keypoint-based automatic kidney tracking module using segmented
flattened images. It is the first system to achieve real-time reliable AR on the kid-
ney. We achieve this with three technical contributions. First, we perform tracking-
by-detection from stereo keyframes, exploiting left-right consistency and the stereo
depth-map to maximise robustness. Tracking-by-detection consists in detecting the
organ in each video frame independently, by detecting and matching keypoints to
the stereo keyframes. Contrarily to frame-to-frame tracking, which relies on temporal
consistency and requires regular manual re-initialisation, this achieves far greater ro-
bustness. Second, we only track keypoints within the parenchyma, as segmented by
a specifically trained neural network. This reduces the search space, improving per-
formance and reducing computation time. Third, we improve keypoint detection and
matching by a process we call stereo perspective correction (SPC). Indeed, keypoint
detectors and descriptors such as SIFT degrade performance with viewpoint changes.
Our method exploits the stereo depth-map and surface flattening to generate an image
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warp that cancels the perspective effect in the stereo images. We evaluate our kidney
stereo tracking method on semi-synthetic images and on postoperative surgical patient
images. It successfully tracks the kidney despite strong perspective distortions caused
by camera motion for which existing tracking methods fail. For view angles between
keyframe and current image between 20° and 45°, using SPC increases the number of
correct keypoint matches by 10%. Overall, the proposed stereo method increases by
209.8% the number of tracked frames over the best performing monocular method.

2. Related Work

We first focus on surgical AR and then on a technical point related to SPC.

2.1. AR in Surgery

AR systems in surgery are expanding quickly and now address a wide range of surgical
specialties. The existing systems are either marker-based or markerless. Using markers
may greatly simplify the difficult registration and tracking problems. In orthopaedics
and neurosurgery, the existing commercial systems are all marker-based. They enhance
the surgical view with CT, MRI or location data. However, markers cannot always
be used in mini-invasive surgery (MIS), in particular they cannot in MIPN. Recent
work has thus attempted to achieve markerless registration and tracking, which is
tremendously more difficult, especially for moving and deforming organs.

2.2. AR in Mini-invasive Abdominal Procedures

The development of AR systems in abdomino-pelvic MIS is an active research field
where preoperative 3D models obtained from MRI or CT are used. A real-time system
was proposed for the uterus, assuming that its intraoperative motion is rigid [Collins
et al. (2021)]. Static systems were proposed for the liver, which extensively deforms [Es-
pinel et al. (2021); Haouchine et al. (2016); Robu et al. (2018); Modrzejewski et al.
(2019)]. Navigation systems exploiting marker-based optical endoscopic tracking were
proposed for the pancreas [Ieiri et al. (2011); Okamoto et al. (2015); Tang et al. (2021)].
The uterus system [Collins et al. (2021)] was tried on the kidney with limited perfor-
mance [TeluobGuillaume et al. (2019)], because its registration module depends on
the organ silhouette, which is not visible for the kidney in general, and because its
tracking module breaks down in the presence of global kidney deformation caused by
mobilisation.

2.3. AR in Mini-invasive Partial Nephrectomy

There exists a significant body of research on the development of AR systems for
MIPN [Khaddad et al. (2022)]. This research mostly focuses on the registration step,
which deforms the preoperative 3D model to match a surgical view. These systems thus
can perform AR on isolated surgical images to visualise tumour margins [Amir-Khalili
et al. (2013)]. However, they require substantial surgeon interactions. Specifically, the
kidney non-fiducial registration techniques are manual rigid [Su et al. (2009); Naka-
mura et al. (2010); Pratt et al. (2012); Chen et al. (2013); Wang et al. (2015); Porpiglia
et al. (2018); Schiavina et al. (2020); Amparore et al. (2022b)], manual non-rigid [Por-
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piglia et al. (2019)], surface-based [Altamar et al. (2011); Amparore et al. (2022a)] or
point-cloud based [Zhang et al. (2019)]. The research in kidney tracking, required to
facilitate real-time continuous AR in spite of organ or camera motion, lags behind.
Tracking was attempted in [Su et al. (2009)] with a stereo surface-based technique
combined with iterative closest point (ICP). Owing to its dependence on the previ-
ous images, this method requires regular manual re-initialisation, strongly harming
usability. Tracking was attempted in [Amparore et al. (2022a)] using monocular fluo-
rescence imaging, a technique which is not widely available and requires indocyanine
green injection.

2.4. Correction of Perspective Distortions

Several works proposed to remove the perspective distortions prior to feature extrac-
tion [Köser and Koch (2007); Cao and McDonald (2009); Zeisl et al. (2013)]. The recent
method [Toft et al. (2020)] uses a depth-map generated by the mono-depth network
to back-project the pixels to 3D and cluster the surface normals into three dominant
directions, identifying planar regions. A homography is eventually computed for each
cluster to rectify each planar region and keypoints are detected from the rectified im-
age. A similar solution was proposed in [Zeisl et al. (2012)] to correct the perspective
distortion in objects with developable surfaces. After detection and parameterisation
of developable surfaces in the depth-map, the selected surfaces are unrolled into planes
and texture-mapped. The keypoints are eventually detected in the unrolled images.
The current state of art on perspective distortion removal is not readily applicable
to complex surfaces, in particular to anatomical structures such as the kidney, that
contain curved, non-developable and non-smooth shapes.

2.5. Contributions

We propose the first stereo tracking method applicable to the kidney in MIPN. Tech-
nically, our contribution is three-fold. First, our method goes further than [Su et al.
(2009)] by using tracking-by-detection as in [Collins et al. (2021)], whilst improving
keypoint detection using the epipolar geometry and dual matching. Second, in contrast
to [TeluobGuillaume et al. (2019)] and [Amparore et al. (2022a)], our method uses se-
mantic segmentation images to localise the kidney parenchyma, improving tracking
performance by specifically focusing on the kidney’s motion. Third, contrarily to [Toft
et al. (2020); Zeisl et al. (2012)], our SPC method works on general surfaces, including
complex anatomical surfaces, improving tracking efficiency.

3. Methodology

3.1. System Overview

Our stereo system pipeline, shown in figure 1, is inspired from the monocular sys-
tem [Collins et al. (2021)]. The preoperative 3D model is reconstructed from the
segmented preoperative CT scan with contrast. First, the early artery and urinary
phases are non-rigidly registered. Second, the six anatomical structures (kidney, kid-
ney cortex, urinary tract, renal artery, renal vein and tumour) are extracted using a
commercial software (Synapse 3D, Fujifilm) and exported in obj format.
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Figure 1. Proposed AR system pipeline, extending [Collins et al. (2021)] to stereo endoscopes in MIPN. The

core proposed technical novelties lie in the stereo tracking module.

When surgery starts, the stereo endoscope is intrinsically and extrinsically calibrated
automatically using OpenCV and a ChArUco external reference pattern. We then
select N stereo images where the kidney is well visible to serve as stereo keyframes,
which we manually register to the preoperative 3D model using a simple interactive
system, as in [Su et al. (2009); Nakamura et al. (2010); Pratt et al. (2012); Chen
et al. (2013); Wang et al. (2015)]. These stereo keyframes are crucial in the tracking
process, which works by matching keypoints from the current stereo image to the
stereo keyframes in real-time, selecting an optimally matching stereo keyframe. These
keypoint matches allow one to estimate the endoscope motion relative to the kidney
between the selected stereo keyframe and the current stereo image. Recall that the
location of the preoperative 3D model with respect to the stereo keyframes has been
established by registration once and for all. Composing this endoscope motion with
the selected stereo keyframe registration to the preoperative 3D model finally allows
one to transfer any anatomical structure reconstructed in the preoperative 3D model
to the current stereo image and realise AR visualisation. We typically use N ∈ [5, 10]
stereo keyframes.

3.2. Tracking Overview

Our stereo tracking system exploits the set of stereo keyframes, called the stereo
keyframe database, to implement tracking-by-detection. Given the current stereo image
from the endoscope, our tracking system works by estimating the organ pose between
the coordinate frames of the current stereo image and of one of the stereo keyframes, in
real-time. Composing the known transformation between the preoperative 3D model
to the stereo keyframe and the computed pose from the stereo keyframe to the cur-
rent stereo image allows the system to transfer any pre-segmented anatomical element
and overlay it during surgery. In this approach, the stereo keyframes form a reference,
from which an absolute pose is computed. This avoids the drift which typically occurs
through error accumulation in incremental methods based on relative camera pose.
The robustness of our system is also stronger than these methods, as it processes each
stereo frame independently of the past frames, without requiring a prior initialisation,
and does not require any manual re-initialisation in case of temporary failure to track
a frame. Specifically, we achieve this principle in two main phases, shown in figure 2,
which rely on six components given in section 3.3. A crucial proposed component
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Figure 2. Proposed stereo tracking-by-detection system. In the middle column, KF means keyframe.

is SPC, which warps a given stereo image to a new stereo image. SPC standardises
the images in a way that largely cancels the effects of camera projection, including
perspective distortion.

3.2.1. Phase 1: Preparation

The N stereo keyframes are stereo images registered to the preoperative 3D model.
This means that 3D transformations are available that map any point from the preop-
erative 3D model to the stereo keyframe coordinates. We prepare each stereo keyframe
to subsequent tracking-by-detection by following three steps for left-right images: 1)
we automatically segment the kidney parenchyma, 2) we apply SPC and 3) we de-
tect SIFT keypoints in the parenchyma region and store them in the stereo keyframe
database.

3.2.2. Phase 2: Tracking

In tracking-by-detection, each stereo image, which is composed of its left and right
images, is processed independently. We start by applying the same three steps as in
the stereo keyframe preparation phase. We follow them by three extra steps: 4) we
match the left and right image SIFT keypoints from the current stereo image to each of
the stereo keyframes, under stereo epipolar consistency, and select the best matching
stereo keyframe, 5) we compute camera absolute pose from the keypoint matches and
compose it with the stereo keyframe registration to the preoperative 3D model and 6)
we update the stereo keyframe database with the current stereo frame, if required.
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3.3. Preparation and Tracking Components

3.3.1. Deep Semantic Segmentation of the Kidney Parenchyma

This component aims at providing the probability of each pixel to belong to the kidney
parenchyma in the stereo keyframe database and the current stereo frames. Segmen-
tation defines the search area for precise tracking but is not sufficient on its own to
achieve AR. Indeed, segmenting only cannot be used to relate the surgical images to
the preoperative information at the pixel level; hence, it does not convey the precise lo-
cation where the virtual information must be augmented and does not make AR from
preoperative images possible. To perform automatic kidney parenchyma segmentation,
we collected and annotated 5091 images from 5 RAPN surgeries in two hospitals to
create our dataset. The annotation rules defined in collaboration with clinical experts
take into account the accessibility problem of the renal parenchyma during MIPN. The
renal surface is enclosed by the renal fascia and under perirenal fat. Importantly, the
segmentation should only contain the clean surface of the renal parenchyma, without
including fascia, bleeding or any separable tissue, to guarantee reliable kidney track-
ing. In particular, the fascia is a transparent membrane whose motion may be different
of the kidney’s. We applied data augmentation with standard image transformations,
namely rotation with a random angle chosen between -25° and 25°, white Gaussian
noise with standard deviation 0.4 (about 0.16% of the maximal image intensity), uni-
form random Gaussian blur with a kernel standard deviation within [1; 1.5] px and
horizontal flipping. The parameters are chosen to match realistic occurrences. The to-
tal number of images available for training is 25456. We trained a UNet [Ronneberger
et al. (2015)] using a cross-validation strategy with 5 folds to reduce evaluation bias
and a DICE loss. To take into account the temporal ordering of the stereo stream, we
additionally use a pre-trained space-time memory network (STM) [Oh et al. (2019)] to
propagate the segmentation mask over 100 frame windows. A morphological dilation
operation with a 3x3 rectangular kernel is finally applied to the predicted masks.

3.3.2. Stereo Perspective Correction

This component aims at warping the stereo keyframes in the database and the cur-
rent stereo images in a way that correct the effect of perspective. This is done by the
proposed Stereo Perspective Correction (SPC) method, shown in figure 3. The goal of
SPC is to improve keypoint matching. We take advantage of stereo vision to recover
the 3D shapes. As input, our method uses the stereo image’s depth-map to recon-
struct the 3D point cloud (figure 3.C) based on the stereo camera parameters. The
point cloud is obtained by computing a filtered disparity map (figure 3.B) using semi-
global block matching (SGBM) [Hirschmüller (2008)] and fast global image smoothing
based on weighted least-squares filtering (WLS) [Min et al. (2014)]. In parallel, the
kidney is segmented in the images (figure 3.G). Then, an intraoperative 3D model is
obtained by triangulating (triangular meshing) the points in the 3D point cloud within
the organ mask (figure 3.D). The triangulated intraoperative 3D model approximates
a differentiable surface. We can thus use Riemann’s mapping theorem, which guar-
antees that conformal maps always exist, and map the model to R2 with minimal
angular distortion [Hormann et al. (2007)]. We use least-squares conformal mapping
(LSCM) [Lévy et al. (2002); Mullen et al. (2008)] implemented in the libigl C++ li-
brary (figure 3.E), which was originally developed to find a 2D parameterisation of a
given 3D mesh. It flattens the 3D model whilst approximately preserving the angles.
Concretely, it solves an optimisation problem searching for the transformation that
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Figure 3. Pipeline of the proposed SPC method applied to the left image; the same pipeline is also run on

the right image to obtain two flattened images. A) Rectified current stereo images. B) Filtered disparity map
computed with SGBM and WLS. C) Point cloud generated from the disparity map converted into a depth-map.

D) Intraoperative 3D model obtained by triangular meshing. E) Flattened 2D model produced by LSCM. F)

Flattened 2D model texture-mapped with piecewise affine image warping. G) Kidney segmentation mask from
the UNet and STM networks.

maps triangles from R3 to R2 while minimising conformal distortion and preserving
triangle connectivity. Eventually, the flattened model is texture-mapped by warping
the original images (figure 3.F) using a piecewise affine transformation defined by the
vertex correspondences. As the surface typically has low curvature relative to the mesh
resolution, the texture transformation between the scene plane and the image is locally
well approximated by an affine transformation. Therefore, we can use local barycentric
coordinates to find the corresponding pixel positions between the flattened triangles
and the source image to texture-map the flat model. We warp both the left and right
images and thus obtain two flattened images.

3.3.3. Stereo Keypoint Detection

This component aims at detecting keypoints in the stereo keyframe database and cur-
rent stereo images. The perspective corrected images are pre-processed before keypoint
detection to enhance detection performance, as follow: only the green channel of the
stereo RGB images is kept and a Gaussian blur with a kernel size of 15 × 15 and a
standard deviation of 2.6 px is applied. These pre-processing steps were chosen em-
pirically. Then, we run a GPU implementation of SIFT [Griwodz et al. (2018)] on
each on the two images. In the context of laparoscopic surgery, SIFT provides a more
stable estimate than other non-deep learning based detectors [Collins et al. (2021)]
and allows one to process full high definition images (1920× 1080 px) in less than 10
milliseconds. In order to select optimal matchable keypoints, which can lead to good
stereo matches and tracks, we perform brute force matching (BFM) from OpenCV be-
tween the left and right images and keep only those keypoints that fulfil the epipolar
geometry constraint (EGC), with a tolerance in terms of distance to epipolar lines of
0.07% of the image diagonal, equivalent to 1.5 px for 1920× 1080 px images.

3.3.4. Matching and Closest Keyframe Selection

This component aims at matching the keypoints between the current stereo image and
the stereo keyframes in the database. Correct stereo matches must comply with two
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conditions: 1) the keypoints must meet the EGC between the left and right images,
which is checked during stereo keypoint detection, and 2) the descriptors must be in
strong agreement, as measured by Lowe’s ratio test (LRT). The selected keypoints on
the left and right of the current stereo image are matched with the stereo keyframe
database. This is done independently for the left and the right images, using BFM and
LRT. The above matching step is run N times, to match the current stereo image with
each of the N stereo keyframes from the database, and the closest stereo keyframe is
finally selected as the keyframe with the highest number of matched keypoints.

3.3.5. Pose Estimation

This component aims at estimating the rigid body motion that relates the selected
database stereo keyframe and the current stereo images. From the set of correct
stereo matches, we find the best camera pose that explains these matches using PnP
RANSAC from OpenCV. This hypothetical pose is refined by computing a PnP only
on the inliers matches. For the cases where the organ visibility is low, for instance
when the organ is out of the field of view, the camera pose cannot be estimated. We
detect these cases from the number of inliers found by RANSAC: the pose is rejected
and the organ declared invisible if the number of inliers is lower than a threshold of
8 points. Finally, the estimated pose is fed into an extended Kalman filter to cancel
jitter.

3.3.6. Updating the Stereo Keyframe Database

This component aims at updating the keyframe database to cope with dynamical organ
shape and appearance changes. During surgery, these changes may result in tracking
failures due to a lack of relevant information in the stereo keyframe database. Adding
stereo keyframes to the database copes with changes occuring between the stereo
keyframe database and the current stereo image in terms of organ appearance and 3D
orientation. We re-implemented the keyframe database system described in [Collins
et al. (2021); Chandelon and Bartoli (2022)] and extended it to stereo images.

4. Experimental Results

4.1. Deep Semantic Segmentation of the Kidney Parenchyma

We trained the UNet for 20 epochs with a batch size of 4 and a learning rate of
0.001. We use stochastic gradient descent (SGD) and a stepwise reduced learning rate
scheduler. We evaluated the effectiveness of UNet and STM in segmenting the renal
parenchyma on respectively a test dataset of 25 images and 5 sequences of 100 frames
from a new RAPN surgery not included in the training images, as shown in figure 4.
The evaluation data were randomly selected at the surgical phase when AR may be
used, specifically during fat removal, tumour exposure and resection.

We obtained for the UNet an average DICE score of 0.8911 and an average IoU
score of 0.8101 and for the STM an average DICE score of 0.9647 and an average
IoU score of 0.9431. Our results show that intraoperative segmentation of the kidney
parenchyma is a very difficult task. First, the inter-patient appearance variability is
large. Second, the intra-patient appearance variability during surgery is large too,
owing to manipulation and dissection. Third, precisely localising the boundaries of
the kidney parenchyma is difficult even for the experts, due to fuzzy edges, occlusions
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Figure 4. Two test images for semantic kidney segmentation. (left to right) original image, ground truth,

UNet prediction, difference between ground truth and prediction (green: addition / red: deletion). Specific
anatomical elements: 1- kidney parenchyma, 2- perirenal fat, 3- adhesion.

Figure 5. Evaluation of the impact of segmentation accuracy on keypoint detection and matching.

and bleeding.
We evaluated the impact of segmentation accuracy on keypoint detection and

matching performance by artificially degrading the segmentation quality. We com-
pared the raw segmentation results and over-segmentation, which is obtained by a
mere dilation with a 5x5 rectangular kernel of the raw segmentation. As shown in
figure 5, the accuracy of over-segmentation does not have a significant impact on the
detection and matching process. This is because segmentation is only used to define a
search area.

4.2. Stereo Perspective Correction

We evaluated our SPC method by detecting and describing the SIFT keypoints in the
warp images and comparing them with the keypoints extracted from the original im-
ages. Matches are computed between a single keyframe considered at position 0° and
several endoscope images taken during camera motion. To make the comparison fair,
we considered only the keypoints that within the kidney segmentation for both meth-

10



SfM 3D modelRAPN images Blender simulation and rendering

Semi-synthetic data generated

A

Stereo images Kidney masks Depth-maps

Figure 6. Proposed semi-synthetic data generation from real RAPN images. A- Blender addon specifically

designed for stereo images and ground truth MIPN data generation.

ods. We ran two experiments, one on semi-synthetic images and one on real kidney
surgery images. The semi-synthetic images are generated from a 3D model recon-
structed by structure-from-motion (SfM) using Meshroom from a real RAPN surgery
as shown in 6. The stereo endoscope movements are simulated in the computer graph-
ics software Blender, to create different camera viewpoint angles. This 3D scenario
allows us to use ground truth data, including stereo camera parameters, endoscope
pose, depth-maps and semantic segmentation masks.

The results on semi-synthetic images are shown in the upper part of figure 7. As
camera angle increases, perspective distortion becomes noticeable and matching per-
formance significantly decreases. Both the ratio and number of correct matches demon-
strate an increasing matching performance with SPC for relative camera angles larger
than 20°, figure 7.A and 7.B. The original stereo images matched better for relative
camera angles lower than 20°. This is because image warping slightly modifies the
image signal, which perturbs SIFT, although the invariance of this detector remains
effective for small viewpoint changes. However, as the camera angle increases, the
perspective distortion gradually dominates. We have evaluated our framework with
SuperGlue [Sarlin et al. (2020)]. The matching performance is on par with SIFT, but
the runtime is on average 6 times slower, with a framerate lower than 15 FPS, which
is incompatible with real-time processing in surgery.

The use of SPC is fundamental and represents a major gain in complex matching
cases with an angle greater than 20°. For low-angle cases, whether SPC is used or
not does not impact the success of matching as the number of keypoints is already
high. In addition, as shown in figure 7.C, describing features in the flattened domain
decreases the descriptor distance between corresponding keypoints. It shows that SPC
improves the invariance of feature matching to perspective distortion, as the warped
images are more similar than the original images. In other words, on average, SPC
improves the discrimination and robustness of SIFT descriptors. The same experiments
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Figure 7. Evaluation of SPC on semi-synthetic and real images. Statistics on semi-synthetic images: A)

number of correct matches with respect to relative camera angle, B) ratio of correct matches with respect

to relative camera angle, C) average SIFT descriptor distance with respect to relative camera angle. Semi-
synthetic example with a relative camera angle of 43.7°: D) correct 7 matches (out of 10 matches) obtained

without SPC, E) correct 31 matches (out of 31 matches) in the flat domain with SPC and F) same as E) on

the original images. Results on real images: G) correct 3 matches (out of 4 matches) without SPC, H) correct
10 matches (out of 10 matches) in the flat domain with SPC and I) same as H) on the original images.

are performed on real images, the results are shown in the bottom part of figure 7.
For large camera angles between the keyframe and the current image, SPC increases
the number of correct matches by more than three times. Overall, we observe in both
semi-synthetic and real images that SPC slightly decreases matching performance in
the easy cases but substantially boosts matching performance in the difficult cases.

4.3. Registration and Tracking

We evaluated our stereo tracking method using an ablation study of the two proposed
steps of kidney segmentation and constrained left-right (LR) matching, and a com-
parison of stereoscopic and monocular tracking. We used three clinical RAPN cases
from the Da Vinci (Intuitive Surgical, Sunnyvale, California, United-States) surgical
robotic system equipped with a 30° 3D endoscope. We performed stereo calibration
based on a pinhole model and rectified the stereo frames. We performed these studies
on an Ubuntu PC with Intel Core™ i7-10870H CPU and Nvidia RTX 2060 GPU. The
results shown in table 1 are averages for the three clinical cases. We observe that using
stereo increases the number of tracked frames by 62.94 percentage points compared to
monocular tracking, which is an increase of 209.8%. Using kidney segmentation im-
proves robustness, scaling the standard deviation of the number of matches by a factor
of about 7. Without segmentation, keypoint detection is done on the whole image. The
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Table 1. Ablation and comparative study statistics.

Baseline Kidney segmentation LR matching Avg. nb. matches Tracked frames (%) FPS

Stereo ✗ ✗ 91± 100.62 62.16 84.61
Stereo ✗ ✓ 47± 25.90 92.94 86.29
Stereo ✓ ✗ 16± 13.41 59.35 27.35
Stereo ✓ ✓ 27± 14.91 66.57 28.16

Mono ✗ ✗ 45± 51.10 30.00 150.62
Mono ✓ ✗ 9± 6.93 18.65 36.10

number of keypoints and inliers is higher, the frame is considered to be tracked but
this does not mean that the frame is ”well” tracked because it is strongly influenced
by structures outside the kidney surface, mainly the abdominal cavity. It however does
not increase the ratio between the total number of frames and the number of frames
tracked.

Using LR matching greatly increases the number of tracked frames, especially when
kidney segmentation is not used. Lastly, we observe that, while the monitored run
time is compatible with a real usage for all options, kidney segmentation is by far the
most expensive component.

5. Conclusion

We have proposed a comprehensive pipeline to realise live AR in MIPN. Our pipeline
takes full advantage of stereoscopy to establish robust matches without interference
from the surgical field, including the surrounding tissue and instruments. In future
work, we will focus on (i) extending and diversifying our segmented kidney parenchyma
dataset to improve segmentation accuracy, (ii) fully integrating our SPC method and
stereo to reduce warping artefacts by combining the left and right images, (iii) ex-
ploiting the keypoints detected with and without SPC in a hybrid method, taking
advantage of their complementarity, (iv) including non-rigid registration to recover
kidney deformations and (v) evaluating the impact of our tracking method in terms
of usability.
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Köser K, Koch R. 2007. Perspectively invariant normal features. 2007 IEEE 11th International
Conference on Computer Vision:1–8.
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