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Abstract

Purpose. To detect specularities as elliptical blobs in endoscopy. The
rationale is that in the endoscopic setting, specularities are generally
small and that knowing the ellipse coefficients allows one to recon-
struct the surface normal. In contrast, previous works detect specular
masks as free-form shapes and consider the specular pixels as nuisance.
Methods. A pipeline combining deep learning with handcrafted steps
for specularity detection. This pipeline is general and accurate in the
context of endoscopic applications involving multiple organs and moist
tissues. A fully convolutional network produces an initial mask which
specifically finds specular pixels, being mainly composed of sparsely
distributed blobs. Standard ellipse fitting follows for local segmenta-
tion refinement in order to only keep the blobs fulfilling the conditions
for successful normal reconstruction. Results. Convincing results in
detection and reconstruction on synthetic and real images, showing
that the elliptical shape prior improves the detection itself in both
colonoscopy and kidney laparoscopy. The pipeline achieved a mean Dice
of 84% and 87% respectively in test data for these two use cases, and
allows one to exploit the specularities as useful information for infer-
ring sparse surface geometry. The reconstructed normals are in good
quantitative agreement with external learning-based depth reconstruc-
tion methods manifested, as shown by an average angular discrepancy
of 12.11◦± 9.86◦ in colonoscopy. Conclusion. First fully automatic
method to exploit specularities in endoscopic 3D reconstruction. Because
the design of current reconstruction methods can vary considerably for
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different applications, our elliptical specularity detection could be of
potential interest in clinical practice thanks to its simplicity and gen-
eralisability. In particular, the obtained results are promising towards
future integration with learning-based depth inference and SfM methods.
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1 Introduction

Specularities are generally considered as nuisance [1], even in conditions where
they are numerous [2]. For instance, they have been detected and removed
before running the Shape-from-Shading method for colonoscopic surface recon-
struction in [3]. However, they have recently been shown to bring useful
information in endoscopy, with as main assumptions that the light source is
to some extent an isotropic point collocated with the camera’s centre of pro-
jection. These assumptions were also used in Shape-from-Shading [4, 5] and
recently led to the following results [6]: in the endoscopic setting, 1) specular-
ities are near-elliptical blobs and 2) the surface normal can be reconstructed
from the ellipse coefficients. The ability to reconstruct surface normals from a
single image is a potential boost for learning-based depth inference [7], which
suffers high uncertainty in specularities, and multi-image 3D reconstruction
methods such as Structure-from-Motion [8]. The state of the art lacks an effec-
tive method to fully exploit the information contained in specularities. The
main reason is the lack of a reliable method to detect elliptical specularities.
The problem involves four main challenges: C1) the local intensity strongly
varies; C2) the overlap of neighbouring blobs; C3) the small size of many
blobs, which make ellipse fitting unstable; C4) the unwanted blobs off the tis-
sues, for instance on the interventional instruments. We propose a method
which addresses these challenges by leveraging deep learning to reach a global
understanding of the image and ellipse fitting to achieve high accuracy. Exper-
imental results show that our method produces stable normal estimates in a
fully automatic manner from a single endoscopic image.

2 Methods

2.1 Pipeline

Our method follows the pipeline of figure 1, which combines a neural network
and handcrafted steps, taking the best of both. The neural network finds rel-
evant blobs but has limited precision whilst the handcrafted steps, exploiting
the elliptical prior, bring high precision.
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Fig. 1: Proposed pipeline for specularity detection and normal reconstruction,
combining deep learning with handcrafted steps exploiting the elliptical prior.

2.2 Neural Network

We achieve Step 1) with a fully convolutional network to produce an initial
neural mask M which specifically finds specular pixels on the colon tissue,
dealing with challenges C1) and C4).

Architecture

Our network architecture is shown in figure 2. It has 18 convolution layers
with 64 filters, a kernel size of (3, 3), strides of (1, 1) and an orthogonal kernel
initialiser. It uses ReLU activations and batch normalisation with a momentum
of 0.1 and a minimal value of 0.0001, and sigmoid activation in the last layer.
Overall, the network has 594 240 trainable and 2 048 non-trainable parameters.

Training

We created a dataset of 2 240 images extracted from 13 colonoscopy procedures
from the Endomapper dataset, which we manually annotated using adaptive
thresholding. We split the dataset in 2 000 training, 200 validation and 40 test
images. We used data augmentation with standard image transformations,
namely horizontal and vertical flipping and realistic brightness adjustment
within range [−0.3, 0.3]. We trained with Adam optimiser for 20 epochs with
a batch size of 32, a learning rate of 0.001 and a binary cross-entropy loss
function. We obtained a segmentation Dice score of 80.05% with standard
deviation 23.06% on the test set.

2.3 Handcrafted Steps

The three handcrafted Steps 2) to 5) start from the neural mask M and recon-
struct the normals. Step 2) blob labelling. The blobs are isolated, dealing with
challenge C2), by giving a unique id to the connected components in M , with
background pixels labelled as 0. We only keep those components whose area
lies between 7× 10−4 and 3× 10−3% of the image area. For our 1248× 1080
images, the range is [10, 40] px2. This was found empirically to discard overly



Springer Nature 2021 LATEX template

4 Elliptical Specularity Detection in Endoscopy

…

Input Layer 1 Layer 18 Output

Fig. 2: Architecture of the proposed fully convolutional neural network used
in Step 1 of the pipeline.

small blobs (unstable ellipses) and large blobs (breaking the local planarity
assumption or consisting of overlapping specularities). Step 3) contour detec-
tion and smoothing. The isophote contours are extracted and smoothed. We
use marching squares to detect the zero level set for the labelled blobs, leading
to a labelled set of closed contours. We fit a smoothing cubic B-spline, which
reduces the effect of noise, and resample the countours with 1000 points. Step
4) ellipse fitting. We use [9], which is a stable version of the direct least squares
fitting method [10], dealing with challenge C3). Step 5) normal reconstruction.
We use the pose from circle method [11], which takes the ellipse coefficients
and the camera’s intrinsic parameters as inputs.

3 Experimental Results

3.1 Simulated Data

We modified the synthetic image renderer of [6] to use a sphere instead of a
plane, hence creating curvature. We use the same parameters but increase the
roughness parameter to n = 120 for a better trade-off between specularity size
and surface curvature. The average angular error on the estimated normals over
300 trials is shown in figure 3. First, we observe that the normal error remains
in a reasonable range lower than 14 degrees. Second, we observe that the larger
the sphere radius R, the smaller the normal error. This was expected as a
larger radius flattens the surface, hence conforms it to the planar hypothesis
made in normal reconstruction. Note that we took care of keeping the distance
from the camera to the brightest point of the specularity unchanged. Third, we
observe that the large the camera tilt θ with respect to the sphere’s normal at
the brightest point of the specularity, the larger the error. This was expected
because a larger tilt creates more perspective, carrying the effects of curvature
more strongly.
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Fig. 3: Synthetic data. (left) Example image, showing a detected specular
isophote (in red) and the two normal candidates estimated using the pose from
circle method (in magenta and cyan). (right) Normal error vs camera tilt angle.

3.2 Real Data

Evaluation of specular blob segmentation

We selected 5 representative colonoscopic images from the Endomapper
dataset and 6 laparoscopic kidney images from a partner hospital via the
UroCCR #122 ancillary study, with various viewing conditions and in the
presence of interventional tools, as shown in figure 4. First, we evaluated the
accuracy of our neural network model relative to the accuracy of a classical
specularity detector from endoscopic video frames [12] using several standard
evaluation metrics. As illustrated in the first part of table 1, the segmentation
accuracy is significantly improved for the two observed organs. For instance,
the mean Dice is improved from 41% to 60%, and from 10% to 74% for the
colon and kidney respectively. Note that at this level, specular masks are still
considered as free-form shapes. In the following, we consider specular masks
as sparsely distributed elliptical blobs and our evaluation is be based on this
condition. For the colon and the kidney, an average of 86% and 78% of rel-
evant elliptical blobs are respectively detected by the neural network. From
these blobs, 68% and 72% respectively meet the normal reconstruction condi-
tion, which is that they have an elliptical shape, as tested by ellipse fitting.
This eventually gives a total amount of about 250 and 1620 pairs of blobs and
normals per image.

We perform an ablation study with highly controlled ground truth data,
as follows. We manually segmented the images with ITK-SNAP to only con-
sider the relevant elliptical blobs, creating 1252 specular blobs for the colon
and 9724 blobs for the kidney, which we ensured are isolated, on the observed
organ surface, and in the range of size leading to stable normal reconstruc-
tion. An example of a relevant, though incomplete for the sake of visualisation,
set of exploitable elliptical blobs is shown in figure 5.a. We used this carefully
labelled dataset to evaluate performance and perform an ablation study. First,
we ran our pipeline without the neural network, which we replaced by mere
intensity thresholding, obtaining a mean Dice of 43% and 59% for the colon
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and the kidney respectively. Second, we ran our pipeline without the hand-
crafted steps, directly using the neural mask as final result, obtaining a mean
Dice of 68% and 81% for the colon and the kidney respectively. Finally, we ran
our full pipeline, obtaining a mean Dice of 84% and 87% for the colon and kid-
ney respectively. Part 2 of table 1 reports segmentation accuracy using several
evaluation metrics, showing for instance an increase in sensitivity from 51%
(for the neural mask) to 71% (for the combined method) while the specificity
remained almost unchanged for the colon. An illustration for a set of spec-
ularities in colonoscopy is provided in figure 5. This shows that 1) both the
learning-based and the handcrafted steps contribute significant to the com-
plete system and 2) the complete pipeline segmentation has a high coverage
of the exploitable specular blob and is accurate.

Fig. 4: Neural network capacity in dealing with challenge C4). The first
two columns show successful detection of specularity on the colon and kidney
surfaces. The third column shows two failure cases for the kidney and colon,
with specular blobs detected on the instruments. In our evaluation dataset,
failure cases are rare but hardly avoidable due to the wide variety of surgical
scenes.

Evaluation of normal reconstruction

We compared the normals reconstructed by our method to the external depth
reconstruction method [13]. This allowed us to perform a test on real colono-
scopic images in challenging conditions, where ground truth is not available.
Concretely, we used the 7 images and depthmaps showcased in [13], from
which we extracted normal maps. Our method reconstructed 67 normals and
we obtained an average angular discrepancy of 12.11◦ with standard devia-
tion 9.86◦. This discrepancy indicates a satisfying agreement between the two
methods. The low image resolution of 256× 256 required by [13] explains the
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Fig. 5: Segmentation evaluation by ablation: a. shows a close-up on a surface
patch example with a set of manually segmented elliptical blobs forming the
ground truth in green. b. shows the specular mask obtained using mere thresh-
olding in white vs the ground truth mask, with a Dice of 0.55 for the selected
surface patch. c. shows the neural mask in red vs the ground truth mask, with
a Dice of 0.61. d. shows the final mask obtained using both the neural mask
and ellipse fitting for local refinement in blue vs the ground truth, with a Dice
of 0.83.

lower number of normals detected by our method and possibly the angular
discrepancy.

4 Conclusion

We have proposed a method that combines learning-based and handcrafted
steps to achieve elliptical specularity detection, from which robust and accurate
normal reconstruction follows. We plan to improve the detection capacity and
accuracy of our neural network in order to extract more small size exploitable
ellipses even in very challenging conditions. We also plan to combine our
method with Structure-from-Motion and run advanced tests in colonoscopic
navigation.
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Table 1: Top: Evaluation of the proposed network and comparison to [12]
in terms of segmentation performance. Bottom: evaluation of the proposed
pipeline with ablation of the neural and handcrafted steps in terms of detec-
tion performance. We use the following metrics: TPR = TP/(TP + FN),
also known as sensitivity, TNR = TN/(TN + FP ), also known as speci-
ficity, PPV = TP/(TP + FP ) also known as precision and ACC = (TP +
TN)/(TP + TN +FP +FN). In segmentation, the measured quantity is the
number of pixels; in detection, it is the number of blobs. All statistics are given
as averages over the test datasets with standard deviation.

Part 1: segmentation accuracy
Metric DICE (%) FP FN TP TN TPR (%) TNR (%) PPV (%) ACC (%)
Kidney
Method [12] 10.63± 3.99 161905± 39919 1187± 659 9282± 3760 1138346± 39691 89.14± 3.35 87.55± 3.06 5.71± 2.23 87.56± 3.04
Neural mask 74.71± 7.61 1430± 999 3161± 1155 7309± 3246 1298821± 4230 69.20± 3.32 99.89± 0.08 82.30± 13.84 99.65± 0.11
Colon
Method [12] 41.20± 36.24 70149± 121367 5359± 2010 8509± 6928 1346768± 186063 52.37± 25.02 94.77± 9.07 41.20± 40.41 94.42± 9.02
Neural mask 23.73± 6.76 2145± 1737 11763± 6319 2105± 778 1414772± 97368 17.57± 7.48 99.84± 0.13 61.25± 31.08 99.04± 0.26

Part 2: elliptical detection accuracy
Metric DICE (%) FP FN TP TN TPR (%) TNR (%) PPV (%) ACC (%)
Kidney
Handcrafted 59.40± 4.12 11211± 3642 1187± 659 9282± 3761 1289040± 7712 89.13± 3.35 99.13± 0.28 44.79± 4.83 99.05± 0.32
Neural mask 81.66± 2.34 16± 9 3161± 1155 7309± 3246 1300235± 4330 69.20± 3.31 100± 0.00 99.71± 0.25 99.76± 0.09
Full pipeline 87.34± 2.34 22± 4 2960± 1185 7450± 2256 1281574± 4330 71.31± 3.31 100± 0.00 99.72± 0.22 99.74± 0.07
Colon
Handcrafted 42.73± 6.10 260± 71 6918± 421 2717± 541 1337945± 191 28.13± 5.26 99.98± 0.00 91.39± 0.62 99.47± 0.03
Neural mask 68.07± 0.75 19± 24 4403± 238 4705± 322 1338713± 728 51.73± 0.98 100± 0.00 99.56± 0.56 99.67± 0.03
Full pipeline 84.19± 4.32 581± 14 2273± 34 5373± 34 13450900± 890 71.22± 5.45 99.3± 0.68 90.16± 3.26 99.8± 0.01

network of research on kidney cancer, NCT03293563). This article does not
contain any studies with animals performed by any of the authors.
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