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A B S T R A C T

Augmented Reality (AR) from preoperative data is a promising approach to improve in-
traoperative tumour localisation in Laparoscopic Liver Resection (LLR). Existing sys-
tems register the preoperative tumour model with the laparoscopic images and render
it by direct camera projection, as if the organ were transparent. However, a simple
geometric reasoning shows that this may induce serious surgeon misguidance. This is
because the tools enter in a different keyhole than the laparoscope. As AR is particu-
larly important for deep tumours, this problem potentially hinders the whole interest of
AR guidance. A remedy to this issue is to project the tumour from its internal position
to the liver surface towards the tool keyhole, and only then to the camera. This raises
the problem of estimating the tool keyhole position in laparoscope coordinates. We pro-
pose a keyhole-aware pipeline which resolves the problem by using the observed tool to
probe the keyhole position and by showing a keyhole-aware visualisation of the tumour.
We assess the benefits of our pipeline quantitatively on a geometric in silico model and
on a liver phantom model, as well as qualitatively on three patient data.

© 2024 Elsevier B. V. All rights reserved.

1. Introduction

Laparoscopic Liver Resection (LLR) has strong benefits
compared to open hepatectomy Cheung et al. (2013). It is
however not yet widely applicable Buell et al. (2009), covering
about 20% of the procedures only. A major cause is the lack
of reliable means of locating and visualising the intraparenchy-
mal tumours and their oncologic resection boundaries. Laparo-
scopic Ultrasound (LUS) is the current gold standard but has
limited depth range and is hindered by artefacts. Further, once
the resection mark is done and the LUS probe removed, it may
be difficult for the surgeon to mentally map the resection path
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from the US image to the laparoscopic image. Augmented Re-
ality (AR) is a recent promising way to overcome these prob-
lems Plantefeve et al. (2015); Le Roy et al. (2019). The first
step in AR is registration, which solves the non-rigid transfor-
mation that exists between the preoperative imagery, typically
a CT volume, and the intraoperative laparoscopic images. Ef-
fective techniques have been recently proposed Plantefeve et al.
(2015); Le Roy et al. (2019), based on anatomical landmarks,
biomechanics and the Iterative Closest Point algorithm. The
last step in AR is visualisation, which displays the registered
data directly into the laparoscopic images.

The visualisation step is critical, for it must convey the infor-
mation of internal structure location to enable gesture guidance.
Surprisingly, the literature dealing with the visualisation step is
relatively sparse. Some methods create visual effects to convey
information such as oncologic tumour boundaries Espinel et al.
(2020) and a depth scale Özgür et al. (2017) but most methods
just blend the projected structures with the image Thompson
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Fig. 1: Camera projection vs keyhole projection. (a) The existing direct camera projection methods do not allow the surgeon to aim at the tumour. (b) The proposed
keyhole-aware projection method takes the tool keyhole into account, allowing the surgeon to directly aim following the AR indication.

et al. (2015); Bernhardt et al. (2015); Haouchine et al. (2014,
2016); Plantefeve et al. (2015); Clements et al. (2017); Chen
et al. (2018); Robu et al. (2018); Koo et al. (2017); Adagolodjo
et al. (2017). A complementary way to improve visualisation
would be by adding a semi-transparent overlay of the liver sur-
face on top of the tumour. This could help the surgeon perceive
the virtual tumour inside the liver parenchyma, but does not
bring additional information regarding its true location. The
key common point of all these methods is to directly project the
internal structures towards the laparoscope. This raises a critical
problem when aiming at the tumour with the tools. This prob-
lem, shown in figure 1, comes from the fact that the tools are
inserted through other keyholes different from the laparoscopic
one, as identified in Collins et al. (2017). Quoting Collins et al.
(2017): “In our user study we found this is a significant prob-
lem with smaller and/or deeper tumours, and can cause them to
be missed.” A simple and sensible solution named Tool Access
Visualisation was proposed, which is to project the tumour to
the anterior organ boundary towards the tool keyhole and only
then to the laparoscope. The impact of this correction was not
quantified, but is very important: a simple geometric reasoning
shows that the typical aiming error could be of the order of 30
mm for deep tumours. This solution was tested in Collins et al.
(2017) in an experimental setup involving an ex-vivo porcine

kidney and a pelvitrainer box. The organ was static and the
tool keyhole position was physically measured prior to running
the experiment. Tool Access Visualisation was never applied to
a real clinical case, because it was not possible to estimate the
tool keyhole position with respect to the organ. In summary, the
limited field of view of LUS and the traditional camera-based
projection used in AR make these methods unsuited to accu-
rately localise deep tumours.

We propose a complete framework enabling the use of Tool
Access Visualisation in the clinical setting in order to realise
keyhole-aware AR. Our main objective is to improve the surgi-
cal gesture by means of an improved perception of the tumour’s
location. Specifically, we bring two key contributions. Our first
contribution is a random sampling based algorithm that takes a
set of unordered 3D tool poses and clusters them in keyholes
while concurrently estimating the number of keyholes and their
positions on the abdominal wall. Our second contribution is
an algorithmic pipeline that enables the usage of keyhole-aware
AR in laparoscopy. This pipeline estimates the 3D tool poses
from the visible tools in the images, computes the keyhole lo-
cations using the proposed clustering algorithm, and projects
the tumour’s shape towards any of the estimated keyholes. This
gives the surgeon a more accurate indication on how to reach
the tumour using a tool inserted in a particular keyhole, com-
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pared to a traditional camera-based projection which can mis-
guide the surgical gesture, as shown in figure 1. This is a chal-
lenging problem, as the keyhole is never directly seen by the
laparoscope, hence it must be localised by indirect means. Our
method avoids the usage of third-party devices that would be
necessary to estimate the keyhole locations, which are difficult
to use in practice due to sanitary regulations. Our pipeline is
fully automated and can be especially useful in three scenarios.
First, when the tumour is not visible in the US image owing to
its small size or important depth. Second, to have a view of
the tumour’s location directly on the laparoscopic image, rather
than to mentally map it from the LUS image to the laparoscopic
image. Third, for cirrhotic livers, which generally have many
benign tumours and only a few malignant ones to be resected,
which cannot be told apart using LUS, but can from the CT, and
which can thus be properly indicated by AR. Although we fo-
cus on the tumour resection problem, our method can be used
to display any internal structure such as blood vessels and bile
ducts. We evaluate our method quantitatively on a geometric
in silico model and a liver phantom model, where we assess
both the tool clustering success and the keyhole estimation er-
rors. From the estimated keyholes, we measure the pointing
errors towards an intra-parenchymal tumour by using the tradi-
tional camera-based AR and the proposed keyhole-based AR.
We also evaluate our method qualitatively on three patient data.

2. Methodology

2.1. General pipeline

Our system follows 6 steps, illustrated by figure 2. We as-
sume the camera is static, which is done in practice using a Mar-
tin’s arm holder. We calibrate the camera by filming a checker-
board and using OpenCV. In Step #1, the surgeon moves the
tools around for a short time (under a minute) and the video
stream is recorded. In Step #2, we detect geometric tool prim-
itives (tool edgelines, midlines and shaft-tip) automatically in
the recorded video images using ART-Net Hasan et al. (2021).
In Step #3, we compute the tool 3D pose from the primitives
using algebraic geometry Hasan et al. (2021). We save the tool
axis L in camera coordinates for each image, which is repre-
sented by a point q ∈ R3 and an orientation vector U ∈ R3,
∥U∥ = 1. We thus obtain a set of tool 3D axes L = {L1, ..., Ln}.
In Step #4, described in section 2.2, we find the keyhole loca-
tions X = {x1, ..., xv} by clustering the 3D axes. In Step #5, we
register the preoperative 3D model to the images using Hep-
ataug Koo et al. (2017). In Step #6, described in section 2.3,
we visualise the tumours and projection cylinders with keyhole-
aware projection based on the surgeon’s keyhole choice.

2.2. Keyholes estimation and axes clustering

The process of estimating the keyhole locations works by
clustering the tool 3D axes. Our clustering method itera-
tively finds the dominant cluster within the set of 3D axes
L. It proceeds by random sampling and has similarities with
RANSAC Fischler and Bolles (1981). There are key differences
however. First, RANSAC works for one cluster only. Second,

we give an improved sampling scheme, which preemptively dis-
cards erroneous axes from the axis set. Our approach is given
in algorithm 1. Concretely, KeyholesEstimationByAxesClus-
tering has a main loop to find the dominant cluster and key-
hole position. It stores the keyhole position if the current dom-
inant cluster is larger than a minimun cluster size s. The dom-
inant cluster S is found by subroutine FindDominantCluster.
This finds the cluster with maximum support from the axes and
works by sampling keyhole positions and computing their sup-
port with subroutine FindSupportingAxes. An axis supports
the keyhole hypothesis if their distance is lower than a constant
f . Everytime a larger cluster is found, the number of required it-
erations u is updated, as in modern RANSAC implementations,
from subroutine MaxTrials. The parameter u is computed ac-
cording to equation (4.18) from Hartley and Zisserman (2004),
as follows:

u =
log(1 − p)

log(1 − (1 − ϵ)s)
, (1)

where p = 0.99 is the probability of success and ϵ = 1 −
size(S)/size(L) is the probability that any selected axis is an
outlier. FindDominantCluster terminates by removing the
clustered axes from the axis set. Finally, subroutine Sam-
pleKeyholePosition creates random keyhole hypotheses. It
works by sampling pairs of axes and finding their mid-point,
defined as their least-squares closest point. More specifically,
our optimised sampling exploits the fact that if the mid-point
is too far from the axes, then it is necessarily a false hypoth-
esis, which does not require further consideration from the al-
gorithm. For that, we first sample an initial axis using sub-
routine SampleOneAxisRandomly. We then randomly search
for an axis which intersects up to a mid-point distance residual
f , with subroutine FindIntersectingAxisRandomly. If such
an intersecting axis is not found, it means that the initial axis
can never be clustered, hence is an erroneous measurement not
pertaining to any keyhole, and is thus removed from the axis
set. The two global variables, namely the minimum number of
axes s required to support a valid keyhole and the maximum
clustering axis to keyhole distance f , are selected according to
the inter-keyhole distance and the minimum number of recon-
structed tool axes.

2.3. Keyhole-aware tumour and projection cylinder visualisa-
tion

Keyhole-aware visualisation is a sequence of two projections,
as shown in figure 3: first, an orthographic projection of the in-
ternal structure to the liver surface; second, a perspective pro-
jection to the camera. Concretely, we implemented two visu-
alisation modes: a simple mode where only the tumour is vi-
sualised, and an advanced mode where a projection cylinder is
visualised. This projection cylinder is designed to help the sur-
geon to locate the tumour, to aim at it from the selected keyhole
and to improve their depth perception. This cylinder is con-
structed in 3D from a line joining the keyhole to the tumour
centroid and clipped to the parenchyma, hence corresponding
to the first projection. We represent it graphically by a gener-
alised cylinder whose axis is the projection line, following five
steps. First, we generate a clipping plane C oriented towards
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Fig. 2: Pipeline of the proposed keyhole-aware AR method on a patient case with three tool keyholes, shown as the three rows. In Step #2, the red lines correspond
to the tool’s edge lines, the green line correspond to the tool’s middle line, and the blue point correspond to the tool’s head tip. Once the keyhole positions are
estimated (Step #1 to Step #4) and preoperative registration solved (Step #5) the surgeon can choose a keyhole from which to aim at the tumour (Step #6).

the keyhole and with origin at the tumour centroid. Second, we
construct the tumour boundary contour as the intersection be-
tween the tumour, as obtained from the registered mesh, and
the clipping plane. Third, we expand this contour by 1 cm
within plane C to add the resection margin advised for Hepa-
tocellular Carcinoma (HCC) interventions Zhong et al. (2017).
The size of this margin can also be specified by the surgeon.
Fourth, we project the margin curve orthographically towards
the keyhole, creating the generalised cylinder. The intersection
between the cylinder and the liver surface is used to draw the
margin projection on the liver surface. Fifth, we sample the
cylinder in planes parallel to plane C and 1 cm apart, provid-
ing depth visualisation. Finally, we use perspective projection
to render the generated elements on the camera, forming the
augmented laparoscopic image with the keyhole-aware tumour
and the projection cylinder. Both the proposed simple and ad-
vanced keyhole-aware visualisation modes can be used with any
projection direction chosen by the surgeon. However, project-
ing the tumour towards the tool keyhole allows the surgeon to
directly aim at the tumour.

3. Experimental Setup

3.1. Geometric in silico model

We use the geometric 3D model shown in figure 4 to simulate
a laparoscopic setup and measure the clustering, keyhole and
pointing errors. Our model uses a cylinder to represent a hu-
man abdomen, with a radius r = 16.5 cm, which is a common
size for an insufflated abdominal cavity Malbrain et al. (2014).
We position a liver 3D model at a distance g = 5 cm from the
abdominal wall and a virtual tumour represented by its centre

point t located 3 cm away from the liver surface. We use 4 key-
holes distributed in a rectangular fashion with an inter-keyhole
distance k = 15 cm and a laparoscope keyhole located beneath
the tool keyholes.
Assessment of the clustering success and keyhole error. We
use our geometric 3D model to randomly generate multiple tool
axes passing through each of the keyholes. Because the real es-
timated tool axes are affected by detection errors, calibration
errors and deformations of the abdominal wall, we add random
noise to the generated axes. The tool axes are thus simulated
as follows: for a given keyhole x, we sample a line L = (x′,W)
where x′ is obtained by perturbing x with random noise and W
is a random unit vector. The perturbed keyhole is defined as
x′ = x + dV , where V is a unit vector perpendicular to W and
d is the noise magnitude. This process is repeated for every
generated tool axis. We create both valid and erroneous axes by
changing the noise distribution. For valid axes, we use a normal
distribution d ∼ N(µ0, σ

2
0), with µ0 = 0 mm and σ0 = 5 mm.

The value of σ0 corresponds to the median tool pose estimation
error reported in Hasan et al. (2021). For erroneous axes, we
use a uniform distribution d ∼ U(a, b), with a = 1.965σ0 and
b = 150 mm. The value of a corresponds to the 97.5th per-
centile point of the normal distribution N . We generate a total
of n = 1000 tool axes, from which e = 10% correspond to erro-
neous axes. These axes are drawn at 40% for keyhole x1, 30%
for keyhole x2, 20% for keyhole x3 and 10% for keyhole x4. We
measure the clustering success and keyhole error against vary-
ing values of noise magnitude σ0, number of observed tools
n, and rate of erroneous tools e. The clustering success corre-
sponds to the percentage of correctly detected tool axes for a
given cluster Si belonging to a groundtruth keyhole xi. An axis
is clustered to an estimated keyhole x′ if it lies closer to it than
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Fig. 3: Generation of keyhole-aware projection cylinder. (top) In keyhole-aware projection, an orthographic projection of the tumour boundary and the resection
margin on the liver surface is first performed towards the keyhole. Then, a perspective projection of the generated projection cylinder is done towards the camera.
(bottom) Projection cylinders for direct camera projection (left) and keyhole-aware projection (right). The projection cylinder joins the tumour occluding contour
inside the parenchyma to the liver surface, following the direction of the camera (left) or of the keyhole (right). The green curve represents the 1 cm resection margin
advised for HCC interventions. Each yellow curve represents a 1 cm distance through the parenchyma.

the maximum keyhole-to-axis distance f . A cluster is consid-
ered to be found if it is supported by at least the minimum num-
ber of tool axes s. Each cluster containing the largest number of
tool axes corresponding to a groundtruth keyhole xi among all
the detected clusters is considered successful. We then proceed
to measure the error between each cluster’s estimated keyhole
x′ and the assigned groundtruth keyhole xi. Therefore, the key-
hole error is only estimated for successful clusters. The keyhole
error is the euclidean distance between an estimated keyhole x′i
and the corresponding groundtruth keyhole xi. We varyσ0 from
0 to 20 mm in steps of 2 mm, n from 100 to 2000 in steps of
100, and e from 0% to 50% in steps of 5 mm. For every value
of n and e, we use the same tool distribution of 40% for key-
hole x1, 30% for keyhole x2, 20% for keyhole x3 and 10% for
keyhole x4. At every step, we run the clustering algorithm 100
times with s = 5 and f = 20 mm. For each of the varying pa-
rameters, we keep the other two parameters fixed at the default
values defined previously. We measure the error mean and stan-
dard deviation across all runs. The results of these experiments
are shown in section 4.1.

Assessment of the pointing errors. We use our geometric 3D
model to measure the influence of keyhole-aware visualisation,
compared to direct camera projection, on tumour aiming with a

surgical tool, as illustrated in figure 5. To achieve this, we first
generate a keyhole x’ = x+dW from one of the true keyholes x,
where W is a random unit vector and d ∼ N(µ0, σ0

2) is the noise
magnitude. From the results obtained in section 4.1 and the
typical settings of laparoscopy, we set µ0 = 1.9 mm and σ0 =

0.45 mm. We use keyhole x1 in our experiments to measure
the pointing errors. We define the pointing error as the distance
between the tool axis and the tumour while pointing towards the
direct-camera or the keyhole-aware projection of the tumour.
The direct-camera pointing error, or type-A error, occurs when
the surgeon follows the existing direct camera projection. We
measure it by first projecting the tumour t to the liver surface S
towards the camera centre c, giving point wc = (t, c) ∩ S and
then finding the distance between line (x,wc) and tumour t. The
keyhole-aware pointing error, or type-B error, occurs when the
surgeon follows the proposed keyhole-aware visualisation. We
measure it by first projecting the tumour t to the liver surface S
towards the keyhole x’, giving point wx = (t, x’) ∩ S and then
finding the distance between line (x,wx) and the tumour t. We
measure the pointing errors against tumour depth between 0 and
100 mm in steps of 5 mm, inter-keyhole distance between 100
and 200 mm in steps of 5 mm, and keyhole precision between
1.84 and 4.2 mm in steps of 0.1 mm. We define the tumour
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Function KeyholesEstimationByAxesClustering
Input: L = {L1, ..., Ln}, f , s // Set of 3D axes, maximum distance for valid

supporting axis, minimum cluster size
Output: X = {x1, ..., xv} // Set of 3D keyholes
converged← false, X ← ∅
while not converged do

if size(L) <s then
converged← true // Too few axes for a new cluster

[S, x,L]← FindDominantCluster(L, f , s)
if size(S) <s then

converged← true // Dominant cluster too small for a new
keyhole

else
X ← X ∪ {x} // Dominant cluster forms a new keyhole

end
end

Function FindDominantCluster
Input: L = {L1, ..., Lm}, f , s // Set of 3D axes, maximum distance for valid

supporting axis, minimum cluster size
Output: S = {L′1, ..., L

′
h}, x,L // Set of 3D axes in the dominant cluster, 3D

keyhole location, set of remaining 3D axes
u← ∞ //Maximum number of trials
k ← 0 // Trial count
S ← ∅

repeat
[L, x]← SampleKeyholePosition(L, f , s)
S′ ← FindSupportingAxes(L, x, s) // Find supporting axes for
keyhole

if size(S′) > size(S) // If new support is greater than current best
then

S ← S′ // Set the new cluster as the current best
u← MaxTrials(size(L), size(S),s) // Update the required

number of trials
k ← k + 1

until k > u or size(L) ≤ s
L ← L\S // Remove the dominant cluster from the set of axes

Function SampleKeyholePosition
Input: L = {L1, ..., Lm}, f , s // Set of 3D axes, maximum distance for valid

supporting axis, minimum cluster size
Output: L, x // Set of remaining 3D axes, 3D keyhole location
found← false
//Main sampling loop
while not found and size(L) ≥ s do

A← SampleOneAxisRandomly(L) // Random sample the initial axis
[found, x]← FindIntersectingAxisRandomly(L, A, f ) // Attempt to

find an axis that intersects the initial one
if not found then

L ← L \ A // If no intersecting axis is found, remove the initial
axis from the set of axes

end
Algorithm 1: Estimation of 3D keyhole locations through
clustering of tool 3D axes.

depth as the distance between the tumour’s centre and the liver’s
anterior face. We vary this depth by moving the tumour along
the anterior-posterior liver axis. At every step, we estimate a
keyhole position x’ and measure the pointing errors 100 times.
The results for these pointing errors are presented in section 4.1.

3.2. Phantom setup
We design a realistic experimental pipeline that uses one

of the 3D-printed liver phantoms generated in Espinel et al.
(2021), along with a STORZ monocular endoscopy system. A
complete view of the setup is shown in figure 6. As for the sim-
ulated environment case, the goal of this setup is to measure the
keyhole estimation errors and the pointing errors by using the
estimated keyholes. A desktop PC with the AR software Hep-
ataug Koo et al. (2017); Espinel et al. (2020) is connected to the
video output port of the endoscopy system. The liver phantom
is positioned inside a pelvitrainer and the laparoscope is fixed
using a Martin’s arm holder, in a way that gives a global view of
the phantom. We use three keyholes, as shown in figure 7(a). To
compute the keyhole errors, the groundtruth keyhole locations

Tool keyhole x

Laparoscope 
keyhole

Tumour t

Liver model

Inter-keyhole 
distance k

x1

x4

x2

x3

Fig. 4: Geometric in silico 3D model of the laparoscopic settings used to gen-
erate semi-synthetic data.
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Fig. 5: Procedure for measuring pointing errors. The Type-A error is the dis-
tance between the tumour t and the tool axis pointing to the projection wc of t
on the liver surface towards the camera centre c. Type-B error is the distance
between the tumour t and the tool axis pointing to the projection wc of t on the
liver surface towards the estimated keyhole x′.

are found from the pose of a special ChArUco board in the la-
paroscopic image, as shown in figure 7(b), where the marker
is glued to a house-shaped piece with known size, whose tip
is positioned at the keyhole. To measure the pointing errors,
an external camera is mounted on a tripod, looking towards the
pelvitrainer and the liver phantom. A ChArUco board is also
attached to a surgical tool, in order to find the tool poses dur-
ing the pointing experiments, as shown in figure 7(c). Both the
laparoscope and the external camera were properly calibrated
using a checkerboard pattern. Concretely, the checkerboard pat-
tern was filmed using each camera. Then, selected images from
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each video sequence were imported in the Metashape software
developed by Agisoft LLC (2023), which then estimated the
intrinsic camera parameters.
Assessment of the clustering success and keyhole error.
Three surgical tools were inserted simultaneously through the
aforementioned keyholes, and a video stream was captured with
the tools making circular movements. From the captured video,
30 frames were selected and the tool primitives were manually
annotated for each frame. An example of the extracted frames is
shown in figure 8(a), with the corresponding primitives shown
in figure 8(b). Then, the 3D tool poses were estimated from the
annotated primitives using the method from Hasan et al. (2021),
resulting in a set of 30 unordered tool poses as shown in figure
8(c). The results for the clustering success and the keyhole es-
timation errors on this set of tool poses are shown in section
4.2.
Assessment of pointing errors. After estimating the keyholes
from the previous set of tool poses, we perform keyhole-aware
AR on the liver phantom and measure the pointing errors on
virtual tumours. A preoperative 3D model of the liver phantom
containing 8 virtual tumours is registered to the laparoscopic
image using the method from Koo et al. (2017). In order for
the user to visually assess the registration quality, the registered
liver surface mesh model is overlaid onto the surgical image.
Then, we ask 13 volunteers to point with the surgical tool from
every keyhole towards each of the tumours using direct cam-
era projection and keyhole aware projections. This means that,
if the instrument is inserted through keyhole x1, they pointed
to the camera projection of a tumour, and to the projection of
that tumour towards the estimated location of x1. An example
of such pointings is shown in figure 9. For every pointing ex-
periment, we take a photo of the tool and the phantom with the
external camera. This gives a total of 624 pointings, where each
volunteer made 24 pointings using the camera-based AR and 24
pointings using the keyhole-based AR. To measure the pointing
errors, we rigidly register the 3D model used to print the liver
phantom, which also contains the groundtruth locations of the
deformed tumours, to the corresponding external camera image
using PnP. We also find the pose of the surgical tool in every
image from the attached ChArUco board. The number of suc-
cessfully reconstructed tool poses and the pointing errors are
presented in section 4.2.

3.3. Clinical cases

We tested our method qualitatively on three patients, for
which the surgeon fixed the laparoscope using a Martin’s arm
holder. We followed an IRB approved protocol HERAP2 from
CPP Sud-Est VI, 2022/CE23. In the first patient, the surgeon
opened 5 keyholes in the abdominal cavity: 4 for the surgical
tools and 1 for the laparoscope. In the second patient, the sur-
geon opened 3 keyholes: 2 for the surgical tools and 1 for the
laparoscope. In the third patient, the surgeon opened 4 key-
holes: 3 for the surgical tools and 1 for the laparoscope. The
keyhole placements are shown in figure 10. For each patient,
the surgeon performed camera calibration and started moving
the tools while the video stream was being recorded. We esti-
mated the tool primitives, the tool poses, and the keyholes for

each patient in a retrospective manner. We report these results
in section 4.3.

4. Results and Discussion

4.1. Geometric in silico model

Clustering success and keyhole estimation error. For each
variation of the evaluation parameters, we generated boxplots
for the clustering success and the keyhole error from the 400
experiments ran on the four keyholes {x1, x2, x3, x4}. These box-
plots are shown in figures 11 for the clustering success and in
figure 12 for the keyhole error. In all the boxplots, the whisker
length is set as β = γ3 + 1.5(γ3 − γ1), where {γ1, γ3} are the
25th and 75th percentiles of the data respectively. We observe
that increasing the tool axis noise decreases clustering success.
Starting at a nearly perfect median of 98.5%, with a maximum
of 100% and a minimum of 90% without noise, it decreases to
a median of 62.6%, with a maximum of 71.1% and a minimum
of 52.2% at 20 mm noise. In spite of this decrease in clustering
success, we observe that the keyhole error, starting at a median
of 1.9 mm, with a maximum of 5.5 mm and a minimum of 0.3
mm, increases to a median of 3.9 mm only, with a maximum of
15.2 mm and a minimum of 0.6 mm. As expected, increasing
the noise magnitude also increases the spread of both the clus-
tering success and the keyhole errors. Increasing the number
of observed tools does not affect the average clustering success
but dramatically reduces its spread, from a maximum of 100%
and a minimum of 83.3% for 100 tools to a maximum of 99.2%
and a minimum of 89.4% for 2000 tools, while substantially
decreasing the keyhole error from a median of 3.7 mm, with
a maximum of 16.9 mm and a minimum of 0.4 mm, to a me-
dian of 1.5 mm, with a maximum of 3.9 mm and a minimum
of 0.1 mm, stabilising beyond 1500 observed tool axes, repre-
senting a minute of video at 25 fps. Varying the percentage of
erroneous tools from 0% to 50% does not affect the clustering
accuracy significantly either, remaining at a satisfying rate of
96.5%, with a maximum of 100% and a minimum of 83.3% for
a rate of erroneous tools of 40%. On the other hand, the key-
hole error increases from a median of 1.5 mm, with a maximum
of 5.8 mm and a minimum of 0.2 mm, to a median of 3.5 mm,
with a maximum of 14.5 mm and a minimum of 0.1 mm. It
is worth noting that most of the maximum and minimum val-
ues, represented as red crosses in the boxplots, correspond to
isolated cases that are far from the rest of the data.
Assessment of the pointing errors. From the pointing errors
reported in figure 13, we observe that the type-A error is al-
ways larger than the type-B error. The type-A error is strongly
affected by the tumour depth, with a critical error beyond 35
mm. The variations are due to the location of keyhole x1, the
liver’s irregular shape, and its position inside the cylinder mod-
elling the patient’s abdomen. We illustrate this in figure 14. At a
depth of 5 mm, the tumour is close to the liver’s anterior surface
and the intersection points {wc,wx} are close to each other, mak-
ing the camera-based and keyhole-based pointings to be both
close to the tumour. At a depth of 50 mm, the tumour is located
in the middle of the liver and the intersection points {wc,wx}

are far from each other, making the camera-based pointing to



8 Yamid Espinel et al. /Medical Image Analysis (2024)

External
camera

Pelvitrainer with
liver phantom

Laparoscope

Endoscopic
system

Computer with
AR software

Fig. 6: Setup for keyhole estimation experiments using phantom data. Left: the external camera used to measure the pointing errors. Centre: the pelvitrainer with
the liver phantom and the laparoscope fixed with a mechanical arm. Right: the PC with the AR software connected to the endoscopy system.

x1
x2 x3

(a) (b)

(c)

Fig. 7: Details of the phantom experimental setup. (a) The 3 keyholes used in
the experiments; (b) Laparoscopic image showing a ChArUco board to estimate
a groundtruth keyhole location; (c) View from the external camera showing a
tool with the attached ChArUco board pointing towards the liver phantom.

be far from the tumour, yet keeping the keyhole-based point-
ing accurate. At a depth of 100 mm, the tumour is close to the
liver’s lower-posterior surface and, because this region is visi-
ble to both the laparoscope and the tool keyholes, the intersec-
tion points {wc,wx} are close to each other again, making both

(a) (b)

(c)

Fig. 8: Tools used to estimate the keyhole positions. (a) Laparoscopic image
of the tools being inserted in the 3 keyholes; (b) Annotated tool primitives cor-
responding to the edge lines, middle line, and tool tip; (c) Reconstructed tool
poses in laparoscope’s reference frame
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(a)

(b)

Fig. 9: Example of tumour pointing using AR on a liver phantom: (a) Pointing
to the camera-based projection of the tumour; (b) Pointing to the keyhole-based
projection of the tumour.

x3
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x4

L

x1
x2L

(a) (b)

x1

x2x3

L

(c)

Fig. 10: Placement of keyholes and laparoscope for first patient (a), second
patient (b), and third patient (c).
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Fig. 11: Clustering success against (a) tool axis noise, (b) number of observed
tool axes, and (c) percentage of erroneous tool axes.

pointings accurate. This is however an example of configura-
tion. In practice, other configurations also occur, in particular
with a posterior surface invisible from the camera, causing the
camera-based pointing error to strictly increase with depth. In
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Fig. 12: Keyhole error against (a) tool axis noise, (b) number of observed tool
axes, and (c) percentage of erroneous tool axes.

contrast the type-B error is not significantly affected by tumour
depth, being always lower than 1 mm. The type-A error linearly
increases with inter-keyhole distance, from 21.16 mm to 37.74

mm. This was expected, as closer tool and camera keyholes
reduce the direct visualisation bias. The type-B error is unaf-
fected, remaining at 0.48 mm. The type-A error is obviously
unaffected by keyhole uncertainty, as it does not depend on the
keyhole position, while the type-B error linearly increases from
0.36 mm to 0.79 mm, remaining largely lower than the type-A
error.

4.2. Phantom setup

Clustering success and keyhole estimation error. We use our
method to cluster the set of tool poses from section 3.2 and
estimate the keyhole locations. By setting the global param-
eters s = 10 and f = 10 mm, we were able to cluster the 3
keyholes and estimate their locations in the laparoscope’s co-
ordinate frame, as shown in figure 15(b). The number of clus-
tered tools per keyhole and the errors on the estimated keyhole
locations are shown in table 1. The average keyhole position
error was 19.7 mm. Importantly, the keyhole is affected by two
types of errors: modelling errors and estimation errors. Mod-
elling errors stem from the mathematical model of a keyhole as
a static point; in reality however, a keyhole is neither static, as
the abdominal wall has an extent of flexibility, nor a point, as a
keyhole has a spatial extent. An intuition that may arise is that
the keyhole can move due to the surgeon pushing the tool inside
the cavity, making the abdomen to deform along the tool’s axis,
or due to moving the tool in different directions, making the ab-
domen to deform perpendicularly to the tool’s axis. To confirm
in which direction the keyhole moves the most, we have per-
formed an experimental analysis in order to provide numerical
evidence regarding this intuition. We computed a dominant tool
axis Ld for each of the estimated keyholes {x′1, x

′
2, x
′
3} as the di-

rectional average of the axes in cluster S′i . We then projected
the keyhole error vector E = xi − x′i onto Ld, obtaining vector
EL, and onto the plane tangent to Ld and passing by the keyhole
x′i , obtaining vector EP. Finally, we measured the magnitudes
of both EL and EP, obtaining respectively the in-axis and the
tangent errors, which provide estimates to the in-depth and lat-
eral errors of the keyhole estimates. For keyhole x′1 we obtained
∥EL∥ = 1.94 mm and ∥EP∥ = 21.77 mm; for keyhole x′2 we ob-
tained ∥EL∥ = 11.81 mm and ∥EP∥ = 8.56 mm; for keyhole x′3
we obtained ∥EL∥ = 2.55 mm and ∥EP∥ = 22.55 mm. We do not
observe a clear trend. Quantitatively however, the lateral error
is larger than the in-depth error, and fails to confirm the above
discussed intuition. On the other hand, estimation errors stem
from the estimation pipeline. They can be strong, as the key-
hole is never observed directly by the camera and can thus only
be estimated indirectly from observations of the tool axes. The
error in estimating the tool axes depends on two main factors,
the errors from camera calibration and the errors from image-
based tool primitive detection by ART-Net. The final estimate
for the keyhole position critically depends on the number of
tool axes being involved. In practice, only the estimation error
sources can be acted upon, without incurring profound model
and methodological changes. In our experiments, we have care-
fully calibrated the camera from 117 images selected where the
checkerboard was sharp and covered the whole image. This al-
lowed us to obtain a sufficiently accurate estimate of the camera
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Fig. 13: Type A-and type-B pointing errors against tumour depth (a), inter-
keyhole distance (b), and keyhole precision (c).

parameters. According to the results presented by Hasan et al.
(2021), the estimated tool poses may have angular errors up to
9° and positional errors up to 6 mm. In these phantom exper-
iments, we could not use ART-Net’s automatic tool primitive
detection, as it was never trained to cope with phantom images.

Table 1: Clustering results and keyhole estimation errors.

Keyhole # of detected tools
Keyhole estimation

error (mm)
x1 27 21.9
x2 25 14.6
x3 18 22.7

Average 22 19.7

We thus annotated the tool primitives manually, which limited
the number of images that we could use to estimate the tool
poses to 30 images per keyhole. However, as shown in sec-
tion 4.1, a lower bound on the number of tool poses required
to accurately estimate a keyhole is in the order of 1000. While
this can be reasonably reached for clinical data, for which ART-
Net automatically processes the images, this is not feasible for
manually annotated phantom images. To sum up, the phantom
model has a lower model error than the patient model as it un-
dergoes more restricted keyhole motion but has a higher estima-
tion error as it can only be estimated with a restricted number
of tool poses. All in all, it is thus a challenging setup, providing
a non-trivial validation of the proposed method.
Assessment of pointing errors. Some of the pointing im-
ages captured in section 3.2 were not suitable for obtaining
valid 3D tool poses, owing to occlusions of the ChArUco board
from the external camera; the number of pointing images with
valid tool poses per tumour and per keyhole is given in table
2. Finally, we compute the average type-A error for the cam-
era projections and the average type-B error for the keyhole
projections, by measuring the distance between every tumour
centre and the tool axes. These errors are reported in table
3. We observe a reduction of 16.61 mm in the pointing error
when using the keyhole-aware AR compared to the existing di-
rect camera projection AR. It is worth noticing that the point-
ing errors include inaccuracies coming from the preoperative-
to-intraoperative registration, the keyhole estimations, and the
pointing gestures done by the user. For example, we can ob-
serve that the type-B errors per keyhole are proportional to the
keyhole estimation errors, which is an expected outcome of the
experiments. The single-view registration method Koo et al.
(2017) works better with frontal views of the liver having a
good visibility of the anterior anatomical landmarks. These
landmarks exert weaker constraints on the posterior part of the
liver, which may reduce the registration accuracy in this area.
This shortcoming is addressed by the multiple-view registra-
tion method Espinel et al. (2021), which combines frontal and
lateral views of the liver. Using this method could improve the
registration accuracy and, therefore, reduce the pointing errors.

4.3. Clinical cases

We start by testing the performance of the pretrained ART-
Net model from Hasan et al. (2021) on the patients introduced
in section 3.3. We extracted 116 images from the video of the
first patient, with 69 images corresponding to keyhole x1, 19 to
keyhole x2, 7 to keyhole x3, and 4 to keyhole x4. For the second
patient we extracted a total of 50 images, with 26 images corre-
sponding to keyhole x1 and 24 to keyhole x2. For the third pa-
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Fig. 14: Pointing experiments in the geometric in silico model for three tumour depths: (a) View from the liver’s right lobe; (b) View from the liver’s bottom side.

(a)

(b)

Fig. 15: Tool poses and estimated keyholes: (a) Reconstructed tool poses in
laparoscope’s reference frame; (b) Clustered tools and estimated keyholes.

Table 2: Number of pointing images with valid tool poses for 13 volunteers
using camera-based projections (a) and keyhole-based projections (b).

Keyhole→
x1 x2 x3 TotalTumour ↓

t1 11 13 6 30
t2 13 13 7 33
t3 12 13 13 38
t4 13 13 0 26
t5 13 13 13 39
t6 3 13 13 29
t7 1 13 13 27
t8 5 12 13 30

Total 71 103 78 252
(a)

Keyhole→
x1 x2 x3 TotalTumour ↓

t1 11 13 6 30
t2 9 12 11 32
t3 12 13 10 35
t4 11 12 1 24
t5 13 13 13 39
t6 3 13 13 29
t7 0 13 13 26
t8 5 13 13 31

Total 64 102 80 246
(b)

tient we extracted 43 images, with 20 images corresponding to
keyhole x1, 10 to keyhole x2, and 13 to keyhole x3. We observed
a poor performance in detecting the tool primitives, which we
explain by the fact that ART-Net was originally trained on a
limited dataset with a different distribution compared to our im-
ages. We thus fine-tuned ART-Net with 200 additional images
from 11 liver surgeries which we manually annotated. These 11
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Table 3: Pointing errors for camera projections (type A) and keyhole projections
(type B).

Keyhole Type-A error (mm) Type-B error (mm)
x1 22.0 ± 12.5 09.5 ± 06.5
x2 26.6 ± 14.0 11.6 ± 10.9
x3 50.5 ± 21.4 27.1 ± 12.6

Average 32.7 ± 20.3 16.1 ± 13.0

patients are different from the 3 test patients we use to estimate
the tool poses and the keyholes. We augmented the training
data by applying random flipping, scaling, blurring and rota-
tion. The fine-tuning improved ART-Net’s results as shown in
figure 16, and we could obtain the geometric primitives and the
tool 3D poses for most of the images. For the first patient, we
obtained reasonable tool poses in 56 images for keyhole x1, 16
images for keyhole x2, 5 images for keyhole x3, and 16 images
for keyhole x4. For the second patient, we obtained valid tool
poses in 22 images for keyhole x1 and 24 images for keyhole x2.
For the third patient, we obtained valid tool poses in 19 images
for keyhole x1, 9 images for keyhole x2, and 11 images for key-
hole x3. We then used our method to estimate the corresponding
keyhole locations, and proceed to project the tumours towards
the keyholes. Renderings of the tumour projections towards the
estimated keyholes are shown in figure 17 for the first patient,
figure 18 for the second patient, and figure 19 for the third pa-
tient. We observe from the keyhole-aware renderings that the
tumour projections are oriented towards the entry points of the
tools. The slight deviation is explained by the fact that the sur-
geon was not specifically pointing at the tumour, hence only
the keyhole direction is relevant to observe. In our protocol,
keyhole locations were estimated after surgery.

Fig. 16: Detection of tool edge primitives before (top) and after (bottom) fine-
tuning of ART-Net.

5. Conclusion

We have presented a visualisation method for surgical AR
in laparoscopic liver surgery, which takes into account the lo-
cation of the keyholes of the tools used to resect internal tu-
mours. Specifically, we have proposed keyhole-aware visuali-
sation, where the tumour is not directly rendered to the image
plane, but first projected to the liver surface towards the aiming
keyhole. For that, we have proposed to estimate the keyhole
position by reconstructing the tool 3D pose for several images
and computing their shaft axis intersection point. Our method
copes with noise and erroneous tool axes. We have shown that

Fig. 17: Keyhole-aware AR with tumour projection towards the estimated key-
hole x1 (top-left), keyhole x2 (top-right), keyhole x3 (bottom-left), and keyhole
x4 (bottom-right) of the first patient.

Fig. 18: Keyhole-aware AR with tumour projection towards the estimated key-
hole x1 (top) and keyhole x2 (bottom) of the second patient.

Fig. 19: Keyhole-aware AR with tumour projection towards the estimated key-
hole x1 (top-left), keyhole x2 (top-right), and keyhole x3 (bottom) of the third
patient.

keyhole-aware visualisation fixes a gap in existing AR systems
and may have a dramatic impact on AR usability and surgical
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safety. Compared to existing direct camera projection meth-
ods, which provides misleading guidance information on the tu-
mour’s real position, keyhole-aware rendering makes it possible
for the surgeon to directly aim at the tumour with the surgical
tool. This could increase the precision of laparoscopic resection
and reduce patient trauma.

We plan to extend our system in four ways. First, we plan
to handle a mobile organ such as the kidney, in which case, the
keyholes must be dynamically updated from new tool observa-
tions available during resection. Second, we plan to handle the
presence of multiple tools visible at once, for which the tool
3D pose method which we re-used from the literature will have
to be extended with an initial step of instance segmentation.
Third, we plan to take into account the vascularity around the
tumour and its location inside the liver to generate a suitable re-
section path. Fourth, we plan to extend the clinical evaluation of
our method, by quantifying the effect in terms of depth percep-
tion brought by the various visualisation modes. This includes
assessing the benefits of using the projection cylinder, the re-
section path and collecting feedback from surgeons to improve
their design.
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