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Abstract

In mini-invasive surgery, the laparoscopic ultrasound probe is visible in the laparo-
scopic image. We address the problem of estimating the probe pose with respect
to the laparoscope without using markers and additional sensors. We propose
the first method using a single standard laparoscopic monocular RGB image. It
is robust, initialization-free and runs at 10 fps, thus forming a promising tool to
improve robotic and augmented reality-based surgery.

1 Introduction

Mini-invasive surgery (MIS) has important advantages over open surgery. It reduces
the severity of postoperative complications, the length of hospital stay, and healthcare
costs [1]. MIS however does not allow the surgeon to palpate the organ. Conse-
quently, the localization of tumors internal to the organs forms a surgical challenge.
Laparoscopic ultrasound (LUS) is one of the important intraoperative tools to help
localize such tumors. In particular, LUS forms the gold standard for liver and kidney
surgery. However, LUS has drawbacks, including a long learning curve and operator
dependence. Two applications were proposed to mitigate these drawbacks: robotically-
controlled ultrasound (RobUS) and augmented reality (AR) based guidance [2, 3].
RobUS relieves the surgeon from manually maneuvering the LUS probe to find and
track the tumor; AR-based guidance automatically fuses the LUS images into the
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laparoscopic images. Both applications are very promising in terms of surgical assis-
tance; however, they crucially depend on the ability to quickly and accurately solve
the LUS pose problem, which is to estimate the position and orientation of the LUS
probe in the laparoscope’s coordinate frame, or equivalently the rigid body motion
between the LUS probe and the laparoscope. Specifically, most LUS probes include
an articulated joint connecting a shaft to the transducer head and the ultrasound
probe pose refers to the head’s.

The LUS pose problem is challenging, owing to the operating room (OR) condi-
tions, with four main reasons. First, the laparoscope is the only sensor and it provides
monocular RGB images. Second, the LUS probes are usually textureless, shiny, and
partially occluded. This makes it difficult to find features in the laparoscopic images
that strongly constrain the pose. Third, an approach using markers, optical or elec-
tromagnetic tracking would require one to introduce new elements or sensors in the
abdominal cavity, which is highly impractical and hardly feasible for obvious steril-
ization and safety reasons. They would also increase the OR clutter and the risk of
occlusions by the staff and other devices. Fourth, surgical robots with cable-driven
actuation do not allow one to estimate LUS pose reliably via their internal encoders.
This is because of the inherent inaccuracy of the readings [4] and the error accumu-
lation of encoder values over time [5]. Even with an accurate kinematic model of the
robot and tools, drop-in US probes are grasped differently each time by the robot’s
gripper.

We set four requirements for a practical LUS pose method: it should be free of (i)
markers, (ii) extra sensors, (iii) (re)initialization, and should (iv) run in real-time in
any OR. As for the vast majority of pose estimation problems, existing LUS pose esti-
mation methods can be broadly split into two categories: (C1) methods requiring new
elements or sensors to be integrated into the OR, and (C2) methods using only the
standard laparoscopic monocular RGB images. Methods in category C1 use either an
off-the-shelf tracking device requiring special equipment such as electromagnetic track-
ers and optical motion capture systems [6, 7], or marker-based vision techniques [8].
Methods in this category thus fail requirements (i) or (ii); yet, they form the state-
of-the-art in LUS pose estimation. On the other hand, methods in category C2 are
promising, as they generally fulfill the four requirements for a practical solution by
construction. Yet, this category is still void of existing methods for LUS pose.

We propose the first method in category C2 for LUS pose estimation comply-
ing with the four requirements. Our method uses the observation that most existing
commercial LUS probes have cylindrical shaft and head shapes and hemispherical
tips. These include Fujifilm L44LA, Siemens Acuson P300 LP323, Philips L10-4lap,
SonoScape LAP7, and Aloka UST-5418. We model the LUS probe mathematically as
a straight homogeneous spherical cylinder (SHSC) segment, which is also known as a
spherocylinder [16]. We define the LUS pose as the position of the tip’s hemispher-
ical center and as the direction vector of the head’s cylinder axis. It is obvious that,
owing to the symmetry of the spherocylinder, a 1 DoF rotational ambiguity exists on
the pose, as an unrecoverable angle about the cylinder axis. From this model, we pro-
pose a vision-based solution method named LUP (Laparoscopic Ultrasound Pose). Our
method takes as input the laparoscopic image, the laparoscope calibration and the

2



Table 1 Related work in image-based surgical tool pose estimation.

Reference Tool #DoF
Initialization-

free
Single
image

FPS
Marker-
free

Additional
sensors

Sarikaya et al.[9] Surgical tools* 2** ✓ ✓ 10 ✓ None
Laina et al.[10] Surgical tools* 2** ✓ ✓ 18 ✓ None
Kurmann et al.[11] Surgical tools* 2** ✓ ✓ 9 ✓ None
Ye et al.[12] Surgical tools* 6 × × 29 ✓ Robot encoders
Allan et al.[5] Surgical tools* 6 × × 0.9 ✓ None
Allan et al.[13] Surgical tools* 6 × × 3 ✓ None
Doignon et al.[14] General cylinder 4 ✓ ✓ × ✓ None
Zenteno et al.[15] Fiberscope 5 × × † ✓ None
LUP (proposed) LUS 5 ✓ ✓ 10 ✓ None

* Passive tools not comprising sensors
** In 2D image space
† Just mention “real-time” but do not report FPS

spherocylinder radius and returns the LUS pose automatically. It relies on two main
technical contributions:

• A well-engineered algorithmic pipeline, including image segmentation and robust
model estimation.

• A novel minimal formulation for the reconstruction of a spherocylinder from its
occluding contour.

We provide numerous experiments showing that LUP respects the four requirements
of a practical solution and thus has the potential to be directly deployed to standard
ORs.

2 Related Work

We review related work in vision-based surgical tool pose estimation and sphere and
cylinder reconstruction.

2.1 Vision-based Surgical Tool Pose Estimation

Tracking the surgical tools of the da Vinci robot in 2D images is well-studied [9–
11]. For tool pose estimation, [12] incorporates robot joint values and achieves a fast
run-time. [5, 13] use optical flow to achieve 3D tool tracking. These works are for
specific tools and inapplicable to LUS. For tools closer to an LUS shape, [14] includes
a markerless method but only for cylinders, lacking the tip position. [15] finds the
pose of a cylindrical fiberscope by maximizing the similarity of binary masks based
on [17]. This method is applicable to LUS, but is overly sensitive to the quality of
the masks. These works are summarized in Table.1. Finally, [18–21] register LUS and
laparoscopic images to the preoperative CT model. While beneficial for AR purposes
and indirectly providing the LUS pose, they are complex and unlikely to run in real-
time. In contrast, the proposed LUP method simply requires an RGB image as input
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and makes simple, yet general, assumptions on the LUS probe shape. It is thus widely
applicable in standard ORs.

2.2 Sphere and Cylinder Reconstruction

Both the cylinder and sphere are quadric surfaces, which can be reconstructed from
images. There exist methods exploiting multiple images such as [22], but we focus on
single image methods. Existing methods follow two steps for both the cylinder and
sphere: 1) occluding contour detection and 2) shape reconstruction from the occluding
contours. For the cylinder, the occluding contour is a pair of lines [23–25], from which
the cylinder axis can be reconstructed and also its depth, should the radius be given.
For the sphere, the occluding contour is in general an ellipse, which can be estimated
following [26], from which the sphere can be reconstructed given the radius [27]. The
main shortcoming of these methods is their computational requirements. In particular,
at least 5 points are needed to reconstruct the sphere center for a known radius,
making it impractical to use in a random sampling robust method such as RANSAC,
as the number of required samples will be prohibitively large. A very recent work [28]
estimates the sphere directly without ellipse fitting. The minimal case for this method
requires only 3 points and thus speeds up RANSAC substantially. In contrast, we
model the LUS pose using a hemisphere-cylinder pair forming a spherocylinder shape.
We propose a new minimal formulation for the hemisphere reconstruction from a single
view, which only requires 2 points from the hemisphere silhouette, constraining the
solution by the 2 silhouette lines of the cylindrical part. Our minimal formulation thus
brings a further speed boost to RANSAC.

3 Methodology

3.1 Problem Statement

Given a monocular RGB image I
LAP

of a calibrated laparoscope and the sphero-
cylinder LUS head radius r, we estimate the pose ξ

LUS
of the LUS probe seen in

I
LAP

.

Notation and modelling

We define si ∈ ℜ2, cj ∈ ℜ2 and ok ∈ ℜ2 as the occluding contour points of the
hemisphere and cylinder, and other points, respectively. The point indices count up
i = 1 . . . n ∈ N, j = 1 . . . m ∈ N and k = 1 . . . t ∈ N. The initial set of unclassified
image contour points is thus P = {si, cj , ok | ∀ i, j, k }. We denote the laparoscope’s
intrinsic parameter matrix as K ∈ ℜ3×3 and the lens distortion parameters with
set D. These parameters are to project a 3D point in the camera coordinate frame
cX ∈ ℜ3 to the image point x ∈ ℜ2. Equivalently, x̄ ∝ K cX where x̄ = [x⊤ , 1]⊤

is the image point in homogeneous coordinates. The left superscript c indicates the
camera coordinate frame. A line ℓ ∈ ℜ3 in Hesse normal form on the image plane holds
ℓ⊤ x̄ = 0 for any of its points x̄. The backprojection of line ℓ ∈ ℜ3 is a plane whose
unit normal vector is cm = K⊤ℓ / ∥K⊤ℓ ∥. The occluding contour of the LUS head’s
cylinder forms a pair of image lines denoted ℓ+ and ℓ−, oriented outwards from the
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cylinder. We denote the normals of the backprojection planes of these lines as cm+

and cm−. The backprojection of an image point x ∈ ℜ2 is a ray that starts from the
optical center and passes through this image point. We denote the direction of the
ray with a unit vector cx = cx/∥ cx ∥ where cx = K

−1

x̄. We denote the hemisphere
center of the spherocylinder as cH and the direction of the ray which passes through
it as ch. We denote the cylinder axis direction of the spherocylinder as cu. Finally,
we assemble the LUS pose into a vector ξ

LUS
= [ cH⊤, cu⊤ ]⊤ ∈ ℜ6×1 with ∥cu∥ = 1.

Figure 1 shows the spherocylindrical LUS model.

Fig. 1 Proposed LUS head geometry from two viewpoints.

Solution pipeline

Our pipeline has two main steps: (i) LUS probe segmentation and contour extraction,
and (ii) pose estimation from unclassified contour points, which we explain in the next
two sections. Both steps represent challenging problems.

3.2 LUS Probe Segmentation and Contour Extraction

This step is a semantic segmentation problem, which we address with deep learning
(DL) [29]. We trained and compared the state-of-the-art neural networks, including
UNet [30, 31], TernausNet [32] and LinkNet [33]. LinkNet-34 used in [34] provided
the best results. First, we sampled laparoscopic images from laparoscopic liver surgery
collected in our hospital with prior ethical approval. Second, we manually segmented
the LUS probes in these images to generate the ground-truth masks, with segmen-
tation validation by two medical experts. Intentionally, we selected a low quantity of
images (132) from Surgery 1 for training to demonstrate the robustness of our algo-
rithm toward improper segmentation. Then we applied data augmentation using the
Albumentations library. Third, we trained the network and evaluated their accuracy
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with a different surgery (144 images from Surgery 5) with the Intersection over Union
(IoU) metric in test images. LinkNet-34 achieved the highest accuracy, at 87%. The
bottom-left image in figure 2 shows a qualitative result. We extract the LUS probe’s
contour points from the segmentation mask using [35]. Our experiments in section 4.2
use laparoscopic images from 5 other surgeries.

3.3 Pose Estimation from Unclassified Contour Points

We use sampling-based robust estimation from a minimal solution.

3.3.1 Minimal solution for hemisphere reconstruction

Our solution method requires 2 points { s1, s2 } on the hemisphere silhouette and 2
silhouette lines { ℓ+, ℓ− } on the cylinder. The points backprojections are the rays
with directions { cs1,

cs2 }. The lines backprojections are the planes with normals
{ cm+,

cm− }. The two planes are tangent to the hemisphere and to the cylinder of
the spherocylinder. Given the spherocylinder radius r, the tangent planes constrain
the hemisphere center and the cylinder axis to lie on a 3D line L parallel to the 3D
intersection line of the two tangent planes. While line L fully constrains the cylinder
axis, it leaves 1 translational DoF to the hemisphere center. Fortunately, a ray from
the hemisphere silhouette is also tangent to the hemisphere, which further constrains
the hemisphere center on the line L. Specifically, while a single tangent ray leaves two
possible solutions, adding the second tangent ray fully resolves the hemisphere center.

Concretely, any image point’s ray direction csi from the hemisphere silhouette
holds the following relation due to the rotational symmetry:

cs⊤i
ch = cos (α) (1)

where ch is the direction of the ray passing through the hemisphere center, and α is
an unknown angle encoding the hemisphere center depth as d = r/ sin (α). Similarly,
any image line ℓ tangent to the hemisphere silhouette defines a plane whose outward
normal cm holds the following relation due the rotational symmetry:

cm⊤ ch = cos
(π
2
+ α

)
(2)

Using equations (1) and (2), we write the following minimal linear system:[
cs1 +

c m+,
cs1 +

c m−,
cs2 +

c m+

]︸ ︷︷ ︸
Q

3×3

⊤ ch = λ13×1 (3)

where λ = cos (α) + cos
(
π
2 + α

)
and Q3×3 is the minimal design matrix. Solving (3)

for ch and α leads to the hemisphere center cH, as shown in Algorithm 1. An n-point
overdetermined case with n ⩾ 3 has the design matrix:

Q3×2n =
[
cs1 +

c m+,
cs1 +

c m−, · · · , csn +c m−
]

(4)
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Algorithm 1: 2-point hemisphere fit

Inputs: ray directions {cs1, cs2} on hemisphere silhouette, plane normals
{cm+,

cm−} on cylinder silhouette, spherocylinder radius r.
Output: Hemisphere center cH ∈ ℜ3.
/* Design matrix */

1 Q = [cs1 +
c m+,

cs1 +
c m−,

cs2 +
c m+]3×3

/* Ray direction to hemisphere center */

2
ch =c h/||ch|| where ch = Q−⊤ 1

3×1

/* Depth */

3 d = r/ sin
(
0.5 arcsin

(
1− 1/||ch||2

))
/* Hemisphere center */

4
cH = d ch

and solved in the least-squares sense using the pseudo-inverse
(
Q⊤)† for the scaled

ray direction vector as:
ch =

(
Q⊤)† 1

2n×1
(5)

The n-point hemisphere reconstruction is obtained by replacing the expressions in
lines 1 and 2 of Algorithm 1 with equations (4) and (5), respectively.

3.3.2 Principal algorithm

We give the main LUP method in Algorithm 2, with a complete pipeline including
LUS probe segmentation and contour extraction in line 1. It continues with distortion
correction of the unclassified contour points P in line 2 and then reaches the main
part, in lines 3 to 10. We estimate the pose and classify the contours simultaneously
through sequential RANSACs. Each RANSAC internally iterates with a minimal solu-
tion method on random sample sets and terminates with a best-fit solution on the
largest consensus set. Once a RANSAC ends, the contour points associated with its
best-fit solution are removed from P. The following RANSACs thus operate on fewer
points, which accelerates computation. More explicitly, line 3 fits an image line to set
P and classifies the line’s consensus set as one of the cylinder edges. Line 4 removes
the line’s points from P. Line 5 fits a second image line to the updated set P and
classifies the line’s consensus set as the second cylinder edge. Line 6 removes the line’s
points from P. Line 7 orients the fitted image lines outward from the cylinder silhou-
ette. Line 8 removes the contour points outside of the cylinder’s silhouette. Line 9
finds a consensus set of the hemisphere silhouette using the 2-point solution from
Algorithm 1 and terminates with the least-squares n-point solution on the consensus
set. Line 10 computes the cylinder’s direction vector cu from the cylinder’s silhouette
lines, choosing its orientation as shown in figure 1. Line 11 assembles the pose.

4 Experimental Results

We report a quantitative sensitivity analysis of LUP on simulated data and then
qualitative results on five surgeries.
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Algorithm 2: LUP – Laparoscopic Ultrasound Pose

Inputs: Laparoscopic image I
LAP

, spherocylinder radius r, camera intrinsics
{K, D}

Output: LUS pose ξ
LUS

1 P = ExtractContour( SegmentLUS( I
LAP

) )
2 P = UndistortContour(P, D )
3 {ℓ1,Pℓ1} = RANSACLine(P) where Pℓ1 ⊂ P
4 P = RemovePoints(P,Pℓ1)
5 {ℓ2,Pℓ2} = RANSACLine(P) where Pℓ2 ⊂ P
6 P = RemovePoints(P,Pℓ2)
7 {ℓ+, ℓ−} = OutwardFromCylinder(ℓ1, ℓ2)
8 P = RemovePointsOutOfCylinder(P, ℓ+, ℓ−)
9 {cH,Ph} = RANSACHemisphere(P, ℓ+, ℓ−,K, r)

10
cu = ComputeCylinderDirection(ℓ+, ℓ−,K)

11 ξ
LUS

= [ cH⊤, cu⊤ ]⊤

4.1 Sensitivity Analysis

We use Monte Carlo simulation. We first create a set of ground-truth LUS poses and
generate their occluding contours, which we perturb with several pre-generated noise
schemes. We then estimate LUS probe pose from the perturbed data. Finally, we
measure the difference between the estimated and ground-truth poses.

4.1.1 Perturbation

The inputs to Algorithm 1 are two lines and tip pixels. We perturb these inputs by
adding noise drawn from a distribution formed from the manual and neural network
segmentations of real laparoscopic images.

For the line noise distribution, we fit lines to the manual segmentation and com-
pare them to lines fitted on the neural network segmentation. We first represent these
lines by their backprojected plane normal vector, which we express in spherical coordi-
nates under the ISO 80000-2:2019 convention. The error thus appears on the spherical
coordinates θ and ϕ. Finally, we observe that the noise PDF is well approximated by
zero-mean Gaussian distributions with σ = 1.5×10−4 radians for θ and σ = 1.2×10−3

radians for ϕ. For tip pixel noise distribution, we take a similar approach. First, we
find the inlier pixels of the hemisphere for the manual and the neural network segmen-
tations. From the inliers of the manual segmentation, we project the reconstructed
hemisphere onto the image, forming an ellipse. Finally, we compute the Euclidean dis-
tance between the inliers of the neural network segmentation and the ellipse to form
the error set. However, even though the first two moments of the error distribution
are µ = 3 pixels and σ = 2.5 pixels, the distribution is not Gaussian. Therefore, we
keep the samples to form a non-parametric noise distribution. As the generated noise
is obtained from improper segmentation results, it is generally overestimated and we
expect the real noise to have a lower magnitude.
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Fig. 2 LUP estimated the probe’s pose successfully from a single laparoscopic liver surgery image.
LUP also classified the contour points as the hemisphere (orange), the cylinder (blue and red), and
the outliers (green). The forward projection of the LUS head model onto the image plane yields the
rmse of 1.18 pixels with respect to the classified contour points. This rmse conforms to the chosen
standard deviation σ = 1.25 pixels of a zero mean Gaussian measurement error model considered in
the formation of the consensus sets of the robust pose estimation algorithm.

Fig. 3 Mean absolute errors and standard deviations versus LUS head’s pitch in the laparoscope
coordinate frame. The rotation axis indicates the angle between the LUS and the xy plane of the
laparoscope. The magenta shaded regions show the LUS head pitch observed in the accompanying
video.

4.1.2 Error Metrics

We measure the estimation error with 5 metrics for the estimated 5DoF LUS pose.
First, we define a reference plane formed by the camera center and the axis of the LUS
head cylinder. The plane normal is denoted by m. We then define an orthonormal
coordinate frame with axes (m,h,v) where v = m × h and h as in figure 1. For the
hemisphere position error, we name the projected error onto m as Out-of-Plane, onto
h as In-Plane Depth, and onto v as In-Plane Lateral. We also quantify the LUS head
cylinder’s axis direction errors in this orthonormal coordinate frame. We define Out-
of-Plane and In-Plane errors as the angles between the estimated cylinder axis of the
LUS head and the hv-plane and um-plane, respectively.
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Fig. 4 LUP’s accuracy versus depths.

4.1.3 Results

We first investigate the sensitivity in LUS head orientation. We have simulated the LUS
tip at the image center and 10 cm away from the laparoscope and set the LUS head to
rotate around the y-axis of the laparoscope, with the conventional camera coordinate
system shown in figure 2. For each orientation, the Monte Carlo simulation is run
10, 000 times and noise is applied. In each iteration, the ellipse from the hemisphere
LUS tip is uniformly divided into 50 points, and 10 of them are randomly selected.
In real data, the average number of inliers is around 30 points. The results are shown
in figure 3, indicating that the errors on the estimated LUS head direction and the
out-of-plane errors on the estimated hemisphere position are negligible. The in-plane
lateral errors on the estimated hemisphere position are sub-millimetric. The in-plane
depth errors on the estimated hemisphere position are higher and increase with higher
LUS head pitch. For a robotic surgery where both the laparoscope and LUS are held
by the robot, figure 3 suggest relative pose constraint which could further improve
the accuracy of LUP. The next analysis varies the depth of the LUS tip, as varying
other orientations of the LUS does not provide new situations. From the hemisphere
position parameters, depth has the strongest effect on estimation. Figure 4 shows
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Fig. 5 LUP’s accuracy versus noise levels.

varying depths of LUS in a practical range of laparoscopic surgery. To run the relevant
simulation, parameters are similar to the former test, and the error is averaged over all
pitch values as a random variable. As observed, the uncertainty of in-plane depth and
in-plane lateral components of the hemisphere position increases with depth. The next
analysis is the same as the first analysis in figure 3, except that the noise is multiplied
with a varying gain. The results are shown in figure 5 which are averaged over the
different pitch values. We observe that the accuracy of LUP scales linearly. As the final
analysis, we evaluate the accuracy of hemisphere position estimation with respect to
the number of inliers from the hemisphere silhouette and compare it with the recent
method [28]. As observed in figure 6, a smaller number of inliers provides a larger
error but beyond 12 inliers, there is no strong enhancement. Compared to [28], LUP’s
hemisphere position reconstruction outperforms in the minimum number of required
points and accuracy.

4.2 Experiments with Clinical Data

We applied LUP on laparoscopic images from 5 different liver surgeries. Figures 2 and 7
show qualitative LUP results. We observe that the projected LUS head model from the
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Fig. 6 LUP and [28] hemisphere reconstructions versus number of inliers in hemisphere silhouette.

Surgery 1 Surgery 2 Surgery 3 Surgery 4 Surgery 5

Fig. 7 Forward projections of the LUS head model onto the five different surgery images from their
estimated poses by LUP.

estimated LUS poses yields visually perfect alignments with the input images. In this
experiment, LUP runs at 10 fps (65 ms for image segmentation and contour extraction,
and 35 ms for pose estimation). This is fast enough considering that the LUS probe
moves slowly in search of the tumor.

4.3 The 6th DoF Estimation and AR Application

Most LUS probes have 4-way (i.e., left, right, up and down) articulation for the trans-
ducer head. We make the observation that the shaft axis and the transducer head axis
of the LUS probe form a plane ΠL, when only an up-or-down displacement is applied
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on the 4-way articulation. In such a LUS probe posture, by construction, the head
transducer’s imaging plane ΠL overlaps the plane ΠL. It follows that, given the LUS
pose by LUP and the LUS shaft’s cylinder axis direction in the laparoscope coordinate
frame, we can estimate the pose of the LUS imaging plane cΠL. Any of the follow-
ing scenarios allows us to recover the LUS shaft’s cylinder axis direction: scenario-(i)
when the LUS shaft is also visible in the laparoscopic image; or scenario-(ii) when
both the LUS and the laparoscope are controlled by robots providing their relative
pose. We exploit scenario-(i) on one of the liver laparoscopy images to showcase an
AR application using standard LUS calibration [8] in figure 8. We name it LARLUS

(laparoscopic augmented reality from laparoscopic ultrasound). LARLUS augments the
LUS image on the laparoscopy image to reveal the subsurface tumors.

5 Conclusion

We have proposed LUP, the first LUS pose method which works from a standard
laparoscopic image, free of markers, extra sensors, and (re)initialization. LUP is robust,
accurate, and fast, as shown from numerous experiments, with pose errors lower
than 1 cm and an unoptimized runtime of 10 fps. It thus forms an essential tool
to facilitate robotic and AR-based surgical applications. We have built LARLUS, an
AR-based guidance application, using LUP, which shows the subsurface tumors on
the laparoscopy images directly. As future work, we will (i) improve LUP segmenta-
tion step for faster and better performance, (ii) build a LUS pose tracking algorithm
by imposing new temporal constraints on LUP’s outputs, and (iii) develop RobUS2T

(robotically-controlled LUS probe for tumor tracking) for automatic tumor searching
and tracking with multimodal visual feedback.

Fig. 8 An instance of LARLUS output. The LUS image is augmented on the laparoscopy image with
the manually segmented bounding ellipses of tumors. The original LUS image is also overlaid on the
top-right corner.
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