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Abstract

Purpose. We investigate if foundation models pretrained on diverse visual data
could be beneficial to surgical computer vision. We use instrument and uterus
segmentation in minimally-invasive procedures as benchmarks. We propose mul-
tiple supervised, unsupervised and few-shot supervised adaptations of foundation
models, including two novel adaptation methods.
Methods. We use DINOv1, DINOv2, DINOv2 with registers and SAM back-
bones, with the ART-Net surgical instrument and the SurgAI3.8K uterus
segmentation datasets. We investigate five approaches: DINO unsupervised, few-
shot learning with a linear decoder, supervised learning with the proposed
DINO-UNet adaptation, DPT with DINO encoder, and unsupervised learning
with the proposed SAM adaptation.
Results. We evaluate 17 models for instrument segmentation and 7 models for
uterus segmentation, and compare to existing ad hoc models for the tasks at
hand. We show that the linear decoder can be learned with few shots. The unsu-
pervised and linear decoder methods obtain slightly subpar results but could be
considered useful in data scarcity settings. The unsupervised SAM model pro-
duces finer edges but has inconsistent outputs. However, DPT and DINO-UNet
obtain strikingly good results, defining a new state-of-the-art by outperforming
the previous-best by 5.6 and 4.1 pp for instrument and 4.4 and 1.5 pp for uterus
segmentation. Both methods obtain semantic and spatial precision, accurately
segmenting intricate details.
Conclusion. Our results show the huge potential of using DINO and SAM for
surgical computer vision, indicating a promising role for visual foundation models
in medical image analysis, particularly in scenarios with limited or complex data.
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1 Introduction

The dominant paradigm in natural language processing (NLP) is to adapt a foundation
model to the task at hand [1]. A foundation model is a large machine learning feature
extraction model pretrained on a vast quantity of data and generally used without
fine-tuning for the downstream task. Such large-scale models were recently introduced
for computer vision, including DINOv2 [2], SAM [3], SEEM [4] and CLIP [5]. These
models distilled the information from hundreds of millions of general internet-gathered
images and were shown to adapt to many downstream tasks. The strength of these
models comes from applying self-supervised methods over enough curated images from
diverse sources. In medical images, such data are generally not widely available. As
the domain shift between medical images and the general images might be large, the
performance may be limited in medical computer vision. A natural question is thus
whether one should shift from a task-specific to a foundation model in medical com-
puter vision. We address this question for surgical computer vision, specifically for the
tasks of instrument and uterus segmentation in abdominal minimally-invasive proce-
dures. We use seven foundation models and propose several adaptations, including the
combination with a specifically trained UNet.

2 Methods

2.1 General Points

We use several variants of DINOv1 [6], DINOv2 [2], DINOv2 with registers [7] and
SAM [3] backbones with the pretrained parameters as distributed and without fine-
tuning. All the tested foundation models were left frozen, through all the experiments.
We have kept them frozen as they are huge models with hundreds of millions of param-
eters. They cannot be fine-tuned on low-end computing hardware and the point of
foundation models is indeed to avoid this step. DINO backbones use the ViT archi-
tecture, taking an image as input and producing patch tokens as output. Specifically,
the image is divided in non-overlapping patches and a token, which is a spatially
localised high-level descriptor, is returned for each patch. DINOv1 is distributed in
two model sizes ViT-S and ViT-B and two patch sizes of 8×8 and 16×16 pixels.
DINOv2 is distributed in four model sizes, namely ViT-S, ViT-B, ViT-L and ViT-
g, with one patch size of 14×14 pixels and with optional registers [7]. The registers
are additional tokens to the input sequence of the Vision Transformer. They prevent
artefacts corresponding to high-norm tokens appearing during inference, primarily in
low-informative background areas of images. We selected the ‘base’ and ‘large’ back-
bones ViT-B and ViT-L, with 85M and 300M parameters and with token dimensions
of 768 and 1024 respectively. We skipped the smallest backbones ViT-S as they lack
accuracy [2], and the largest backbones ViT-g as they barely fit into most GPU mem-
ories and do not bring a noticeable benefit [2]. We tested all patch size options. We
eventually selected the pretrained ViT-B/8 and ViT-B/16 backbones of DINOv1 and
the pretrained ViT-L/14 with and without registers of DINOv2. We use the output
patch tokens as features for the downstream task of semantic segmentation. The SAM
model can either produce high quality object masks from input prompts such as points
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or boxes or can be used to generate masks for all objects in an image but without
semantic labels. We propose to use a coarse semantic segmentator to assign the labels
to the SAM generated masks. The SAM model is published in three variants of ViT-
B, ViT-L and ViT-H. We use the ART-Net [8] and SurgAI3.8K [9] datasets. The first
dataset contains surgical images with segmentation masks and the second one con-
tains surgery images with annotated gynaecological organs contours which we used to
generate uterus masks. For the methods with training for the tasks of surgical instru-
ment segmentation, we use the ART-Net training set of 662 images and evaluate over
the test set of 154 images. For the task of uterus segmentation we train over 3436
training images and test over 382 images. We investigate the following five methods.

2.2 Unsupervised Learning with DINO Backbones

We first used PCA to perform dimension reduction on the feature vectors of all patches
of all training images, empirically keeping the 5 first principal components. We then
used K-means to cluster the patches into two clusters. We selected the largest cluster
as background and the other as instruments. This method works at the patch level,
producing a coarse segmentation result.

2.3 Supervised Learning with Linear Decoder

We trained a linear decoder mapping the feature vector of a patch to the classification
result. The linear decoder has several thousands of parameters and is trained using
a binary cross-entropy loss using few shots. Similarly to the unsupervised learning
method, this method works at the patch level, producing a coarse segmentation result.

2.4 Supervised Learning with DINO-UNet

We propose the DINO-UNet architecture shown in figure 1. It is a modified UNet
architecture using a foundation model as second encoder. The first encoder is the usual
UNet encoder, which we chose as a ResNet34 with skip connections. The features
from the two encoders are concatenated to form the input to the first standard UNet
decoder. The UNet part of the architecture is trained with a binary cross-entropy loss.
In contrast to the above two methods, DINO-UNet works at the pixel level, producing
a fine segmentation result.

2.5 Supervised Learning with DPT

The dense prediction transformer (DPT) [10] can be used with ViT backbones. It
assembles tokens from various stages of the vision transformer into image-like repre-
sentations at various resolutions and progressively combine them into full-resolution
predictions using a convolutional decoder. We adapt the DPT to use it with differ-
ent DINO backbones. We kept the backbone parameters frozen and only updated the
parameters in the DPT head during downstream task training.
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Fig. 1 Proposed DINO-UNet adaptation architecture, combining a UNet with a foundation model.
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Fig. 2 Proposed adaptation architecture to assign class labels to SAM object masks using a coarse
segmentator.

2.6 Unsupervised SAM Training with Semantic Labels

We use the SAM model in unprompted mode, in which the model gives the masks for
all of the objects it detects in the image but without semantic labels. As shown in
figure 2, we propose to use a coarse segmentator to resolve the semantic labels. The
coarse segmentator can be either an unsupervised segmentator or a simple segmen-
tator trained supervisedly to give coarse segmentation. We use the above-described
unsupervised coarse segmentator. To determine the fine segmentation, we assign the
most frequent label from the coarse segmentation pixels inside the object to all pixels
of that object.

3 Experimental Results

We report results for the tasks of instrument then uterus segmentation. We use mean
intersection-over-union (mIoU) as evaluation metric.

3.1 Instrument Segmentation

For the task of surgical instrument segmentation, we evaluated 17 models formed
by combining the 5 methods of section 2 and the 7 selected foundation models. We
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also trained the baseline UNet network with ResNet34 encoders, which serves as an
ablation of the foundation model from the proposed DINO-UNet architecture. ART-
Net represents the state-of-the-art. We observe in table 1 that unsupervised learning
with DINO and SAM and supervised learning with linear decoding are subpar UNet
and ART-Net, yet give reasonably good performance. They could be useful for cases
with an absence or a strong shortage of labelled data. The unsupervised learning with
SAM shows outstanding results for an unsupervised method, especially with the ViT-H
backbone. We observe that DINO-UNet and DPT substantially outperform both UNet
and ART-Net. While all the four tested DINO backbones show good performance,
DINOv2 with registers is overall the one with the best performance.

Table 1 Evaluation of instrument segmentation, expressed as mIoU in %.

Foundation model Num. of parameters

Adaptation Model Variant Fixed Trainable mIoU (%)

ART-Net (mIoU from [8]) - - 0 17M 88.2
UNet - - 0 38M 86.5
Unsupervised with DINO DINOv1 ViT-B/8 85M 0 74.7

DINOv1 ViT-B/16 85M 0 64.9
DINOv2 ViT-L/14 300M 0 68.9
DINOv2+reg ViT-L/14 300M 0 72.4

DINO+Linear decoder DINOv1 ViT-B/8 85M 3K 79.4
DINOv1 ViT-B/16 85M 3K 69.2
DINOv2 ViT-L/14 300M 4K 82.0
DINOv2+reg ViT-L/14 300M 4K 82.6

DINO-UNet DINOv1 ViT-B/8 85M 38M 86.7
DINOv1 ViT-B/16 85M 38M 86.7
DINOv2 ViT-L/14 300M 38M 87.3
DINOv2+reg ViT-L/14 300M 38M 92.3

DPT DINOv2 ViT-L/14 300M 40M 90.6
DINOv2+reg ViT-L/14 300M 40M 93.8

Unsupervised with SAM SAM ViT-B 93M 0 52.3
SAM ViT-L 312M 0 76.0
SAM ViT-H 641M 0 80.6

As the number of trainable parameters in models with DINO encoder and linear
decoder are limited to a few thousands, we expect few shot learning to perform well.
We therefore conducted experiments of training with 1, 5 and 50 training samples along
with the full 662 training samples. Figure 3 shows the performance of the models in
these experiments, which shows that the performance downgrade for few-shot learning
is almost negligible.

We show in figure 4 a qualitative comparison between the methods and ground-
truth, as well as the first three PCA components of the DINO features using the red,
green and blue channels. We observe that all four DINO backbones produce discrim-
inative features and that DINOv2 with registers has the features with the highest
quality. Comparing the feature maps in figure 4 confirms the presence of artefacts in
low-informative regions when the registers are not used. Hence, registers are expected
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Fig. 3 Performance of models with DINO encoder and linear decoder trained on few shots in
instrument segmentation.

to improve performance in all adaptations. Although unsupervised learning and super-
vised learning with linear decoder are loyal to semantics, they, as expected, do not have
a precise spatial resolution and do not segment the objects with precise boundaries. In
contrast, DINO-UNet, DPT and unsupervised learning using SAM are faithful both
to semantics and spatial precision, segmenting small details such as the fine structures
in the instrument heads, which are particularly challenging.

3.2 Uterus Segmentation

For the task of uterus segmentation, we assessed the performance of 7 models generated
by combining 3 methods with 5 selected foundation models. We also trained a baseline
UNet with ResNet34 encoders to serve as a ablation of the foundation model within
the proposed DINO-UNet architecture. Our analysis, following the results given in
table 2, is that unsupervised learning with SAM models underperforms compared
to UNet. We observe consistent superior performance from DINO-UNet and DPT
compared to UNet. DINOv2 with registers is, again, the foundation model with the
best performance.

Table 2 Evaluation of uterus segmentation, expressed as mIoU in %.

Foundation model Num. of parameters

Adaptation Model Variant Fixed Trainable mIoU (%)

UNet - - 0 38M 84.9
DINO-UNet DINOv2 ViT-L/14 300M 38M 85.5

DINOv2+reg ViT-L/14 300M 38M 86.4
DPT DINOv2 ViT-L/14 300M 40M 86.0

DINOv2+reg ViT-L/14 300M 40M 89.3
Unsupervised with SAM SAM ViT-B 93M 0 41.3

SAM ViT-L 312M 0 70.5
SAM ViT-H 641M 0 71.7
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Fig. 4 Sample images from the ART-Net test set, with ground-truth (GT) segmentation, feature
maps and segmentation outputs for different models.

A qualitative comparison between the methods and ground-truth is shown in
figure 5. DPT and DINO-UNet segment the uterus correctly and with precise outlines.
DINOv2 with registers outperforms DINOv2 without registers. Unsupervised learning
with the SAM foundation model has an inconsistent performance over all the images.

4 Conclusion

The segmentation results obtained from both unsupervised and supervised training
with a linear decoder, even if coarse, are accurate enough for some applications such as
segmentation, as their mIoU is comparable to the UNet’s, while not needing or need-
ing much fewer training data. The unsupervised method with the SAM foundation
model shows good performance in instrument segmentation but not in uterus segmen-
tation. The DPT and proposed DINO-UNet architectures substantially outperform the
previous-best by 5.6 and 4.1 pp (percentage points) over the ART-Net dataset and 4.4
and 1.5 pp over the SurgAI3.8K dataset. They both effectively segment instruments
and the uterus, even in the most challenging conditions, maintaining nearly perfect
boundaries and capturing complex details. The analysis of the complete experiment
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Fig. 5 Sample images from the SurgAI3.8K test set, with ground-truth (GT) segmentation and
segmentation outputs for different models.

set suggests that visual foundation models, even trained on general images, could play
an important role in surgical computer vision in unsupervised, supervised and few-
shot learning, as medical data is often scarce and complex to collect. The proposed
DINO-UNet could represent an initial method to exploit these generic features for
cases where some annotated data are available. The proposed architecture combining
SAM with coarse segmentation could represent an initial method for cases without
labels. Obtaining a definitive answer will however require additional investigations.
We plan to provide more solid evidence in future work by experimenting with more
foundation models and downstream tasks, and fine-tuning the DINO backbones over
a wide dataset of surgical images to address the possibility of training a surgical foun-
dation model. The proposed framework could serve as a benchmark to continuously
test the new foundation models from computer vision or medical image analysis such
as [11] in the surgical context.
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