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Abstract. Our goal is to match contour lines between images and to re-
cover structure and motion from those. The main difficulty is that pairs of
lines from two images do not induce direct geometric constraint on cam-
era motion. Previous work uses geometric attributes — orientation, length,
etc. — for single or groups of lines. Our approach is based on using Pencil-
of-Points (points on line) or pops for short. There are many advantages to
using pops for structure-from-motion. The most important one is that, con-
trarily to pairs of lines, pairs of pops may constrain camera motion. We give
a complete theoretical and practical framework for automatic structure-
from-motion using pops — detection, matching, robust motion estimation,
triangulation and bundle adjustment. For wide baseline matching, it has
been shown that cross-correlation scores computed on neighbouring patches
to the lines gives reliable results, given 2D homographic transformations
to compensate for the pose of the patches. When cameras are known, this
transformation has a 1-dimensional ambiguity. We show that when cameras
are unknown, using pops lead to a 3-dimensional ambiguity, from which
it is still possible to reliably compute cross-correlation. We propose linear
and non-linear algorithms for estimating the fundamental matrix and for
the multiple-view triangulation of pops. Experimental results are provided
for simulated and real data.

1 Introduction

Recovering structure and motion from images is one of the key goals in computer
vision. A common approach is to detect and match image features while recovering
camera motion. The goal of this paper is the automatic matching of lines and
recovery of structure and motion. This problem is difficult for the reason that a
pair of corresponding lines does not give direct geometric constraint on the camera
motion. Hence, one has to work on a three-view basis or assume that camera motion
is known a priori, e.g. [10].

In this paper, we attack directly the two view case by introducing a type of
image primitive that we call Pencil-of-Points or pop for short. A pop is made
of a supporting line and a set of supporting points lying on the supporting line.
Physically, a pop corresponds to a set of interest points on a contour line. pops can
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be built on the top of most contour lines. Contrarily to pairs of corresponding lines,
pairs of corresponding pops may give geometric constraints on camera motion,
provided that what we call the local geometry, relating corresponding points along
the supporting lines, has been computed. We exploit these geometric constraints
for matching pops and recovering structure and motion. Once camera motion has
been recovered using pops, it can be employed for a reliable guided-matching and
reconstruction of other types of features.

The closest work to ours is [10]. The main difference is that the authors con-
sider that the cameras are known and propose a wide-baseline guided-matching
algorithm for lines. They show that reliable results are obtained based on cross-
correlation scores, computed by warping the neighbouring textures of the lines
using the 2D homography H(µ) ∼ [l′]×F + µe′lT, where l ↔ l′ are correspond-
ing lines, F is the fundamental matrix and e′ the second epipole. The projective
parameter µ is computed by minimizing the cross-correlation score.

Before going into further details about our approach, we underline some of the
advantages of using pops for automatic structure and motion recovery. First, a pop
has fewer degrees of freedom than the supporting line and the individual supporting
points which implies that (i) its localization is often more accurate that those of
the individual features, (ii) finding pops in a set of interest points and contour
lines increase their individual repeatability rate and (iii) structure and motion
parameters estimated from pops are more accurate than that recovered from points
and/or lines. Second, matching or tracking pops through images is more reliable
than individual contour lines or interest points, since a pair of corresponding pops
defines a local geometry, used to score matching hypotheses based on geometric
or photometric criteria. Third, the robust estimation of camera motion based on
random sampling from putative correspondences, i.e. in a ransac-like manner [3],
is more efficient using pops than other standard features, since only three pairs of
pops define a fundamental matrix, versus seven pairs of points.

Contributions and paper organization. Using pops for structure-from-motion is a
new concept. We propose a comprehensive framework for multiple-view matching
and recovery of structure and motion. Our framework is based on the following
traditional steps, which also give the organization of this paper.

First, §2, we investigate the detection of pops in images and their matching.
We define and study the local geometry of a pair of pops. We propose methods for
its estimation, which allow to obtain putative pop correspondences, from which
the epipolar geometry can be robustly estimated.

Second, §3, we propose techniques for estimating the epipolar geometry from
pop correspondences. Minimal and redundent cases are studied.

Third, §4, we tackle the problem of triangulating pops from multiple images.
We derive and approximate the optimal (in the Maximum Likelihood sens) solu-
tion by an algorithm based on the triangulation of the supporting line, then the
supporting points.

Finally, bundle adjustment is described in §5. We provide experimental results
on simulated data and give our conclusions and further work in §§6 and 7 respec-
tively. Experimental results on real data are provided throughout the paper. The
following two paragraphs give our notation, some preliminaries and definitions.



A Framework For Pencil-of-Points Structure-From-Motion 3

Notation and preliminaries. We make no formal distinction between coordinate
vectors and physical entities. Equality up to a non-null scale factor is denoted
by ∼. Vectors are typeset using bold font (q, Q), matrices using sans-serif fonts
(F, H) and scalars in italic (α). Transposition and transposed inverse are denoted
by T and −T. The (3 × 3) skew-symmetric cross-product matrix is written as in
[q]×x = q × x. Indices are used to indicate the size of a matrix or vector (F(3×3),
q(3×1)), to index a set of entities (qi) or to select coefficients of matrices or vectors
(q1, qi,1). Index i is used for the n images, j for the m features and k for the p
supporting points of a pop3. The supporting lines are written lij (the supporting
line of the j-th pop in image i) and supporting points as qijk (the k-th supporting
point of the j-th pop in image i). Indices are sometimes dropped for clarity. The
identity matrix is written I and the null-vector as 0. We use the Euclidean distance
between points, denoted de and an algebraic distance defined by:

d2
a(q,u) = ‖S[q]×u‖2 with S = ( 1 0 0

0 1 0 ) . (1)

Definitions. A pencil of points is a set of p supporting points lying on a supporting
line. If p ≥ 3, the pop is said to be complete, otherwise, it is said to be incomplete.
A complete correspondence is a correspondence of complete pops. As shown in the
next section, only complete correspondences may define a local geometry.

We distinguish two kinds of correspondences of pops: line-level and point-level
correspondences. A line-level correspondence means that only the supporting lines
are known to match. A point-level correspondence is stronger and means that a
point-to-point mapping along the supporting lines has been established.

2 Detecting and Matching Pencil-of-Points

2.1 Detecting

Detecting pops in images is the first step of the structure-from-motion process. One
of the most important properties of a detector is its ability to achieve repeatability
rates4 as high as possible, which reflects the fact that it can detect the same features
in different images. In order to ensure high repeatability rates, we formulate our
pop detector based on interest points and contour lines, for which there exist
detectors achieving high repeatability rates, see [9] for interest points and [2] for
contour lines.

In order to detect salient pops, we merge nearby contour lines. Algorithms
based on the Hough transform or ransac [3] can be used to detect pops within
a set of points and/or lines. We propose the following simple solution. First, an
empty pop is instanciated for each line (which gives the supporting line). Second,
each point is attached to the pops whose supporting line is at a distance lower
than a threshold, that we typically choose as a few pixels. Finally, incomplete
pops, i.e. those for which the number of supporting points is less than three, are

3 To simplify the notation, we assume without loss of generality that all pops have the
same number of supporting points.

4 The repeatability rate between two images is the number of corresponding features
over the mean number of detected points [9].
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eliminated. Note that we use a loose threshold for interest point and contour line
detection, to get as many as possible pops. The less significant interest points and
contour lines are generally pruned as they are respectively not attached to any
pop or form incomplete pops. An example of pop detection is shown on figures 1

(a) (b) (c) (d)

Fig. 1. (a) & (b) show the detected pops. The repeatability rate is 51% while for points
and lines it is lower, respectively 41% and 37%. (c) & (d) show the 9 putative matches
obtained with our algorithm. On this example, all of them are correct, which shows the
robustness of our local geometry based cross-correlation measure.

(a) & (b). It is observed that the repeatability rate of pops is higher than each of
the repeatability rates of points and lines.

2.2 Matching

Traditional structure-from-motion algorithms using interest points usually rely on
an initial matching, followed by the robust estimation of camera geometry and
a guided-matching step, see e.g. [6]. The initial matching step is often based on
similarity measures between points such as correlation or grey-value invariants.
Guided-matching uses the estimated camera geometry to constrain the search-
area. In the case of pops, the initial matching step is based on the local geometry
defined by a pair of pops. This step is described below followed by the robust
estimation of the epipolar geometry.

Matching Based on Local Geometry As mentioned above, the idea is to use
the local geometry defined by a pair of pops. We show that this local geometry
is modeled by a 1D homography and allows to establish dense correspondences
between the two supporting lines. Given a hypothesized line-level pop correspon-
dence, we upgrade it to point-level by computing its local geometry. Given a point-
level correspondence, a similarity score can be computed using cross-correlation,
in a manner similar to [10]. For each pop in one image, the score is computed for
all pops in the other image and a ‘winner takes all’ scheme is employed to extract
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a set of putative pop matches. Putative matches obtained by our algorithm are
shown on figures 1 (c) & (d).

Defining and computing the local geometry. We study the local geometry induced
by a point-level correspondence, and propose an estimation method.

Proposition 1. Corresponding supporting points are linked by a 1D homography,
related to the epipolar transformation, relating corresponding epipolar lines.

Proof: Corresponding supporting points lie on corresponding epipolar lines: there
is a trivial one-to-one correspondence between supporting points and epipolar lines
(provided the supporting lines do not contain the epipoles). The proof follows from
the fact that the epipolar pencils are related by a 1D homography [12]. �

First, we shall define a local P
1 parameterization of the supporting points, using

two Euclidean transformation matrices A and A′ acting such that the supporting
lines are rotated to be vertical and aligned with the y-axes of the images. The
transformed supporting points are xk ∼ Aqk ∼ (0 yk 1)T and x′

k ∼ A′q′
k ∼

(0 y′
k 1)T. Second, we introduce a 1D homography g as:

(
y′

k

1

)
∼ g

(
yk

1

)
with g ∼

(
g1 g2

g3 1

)
, (2)

which is equivalent to x′ ∼ G(µ)x with G(µ) ∼
( µ1 0 0

µ2 g1 g2
µ3 g3 1

)
, where the 3-vector

µT ∼ (µ1 µ2 µ3) represents projective parameters which are significant only when
G(µ) is applied to points off the supporting line. The 2D homography mapping
corresponding points along the supporting lines is H(µ) ∼ A′−1

G(µ)A.
The 1D homography g can be estimated from p ≥ 3 pairs of supporting points

using equation (2). This is the reason why complete pops are defined as those
which have at least 3 supporting points. Given g, H(µ) can be formed.

Computing H(µ). The above-described algorithm can not be applied directly since
at this stage, we only have line-level pop correspondence hypotheses. We have to
upgrade them to point-level to estimate H(µ) with the previously-given algorithm
and score them by computing cross-correlation. We propose the following algo-
rithm:

– for all valid pairs of triplets of supporting points5:
• compute the local geometry represented by H(µ).
• compute the cross-correlation score based on H(µ), see below.

– return the H(µ) corresponding to the highest cross-correlation score.

Computing cross-correlation. For a pair of pops, the matching score is obtained
by evaluating the cross-correlation using H(µ) to associate corresponding points.
The cross-correlation is evaluated within rectangular strips centered onto the sup-
porting lines. The length of the strips are given by the overlap of the supporting
lines in each image. The width of the strips must be sufficiently large for cross-
correlation to be discriminative. During our experiments, we found that a width of
5 Valid triplets satisfy an ordering constraint, namely middle points have to match.
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3 to 7 pixels was appropriate. For pixels off the supporting lines, the µ parameters
are significant. The following solutions are possible: compute these parameters by
minimizing the cross-correlation score, as in [10], or use the median luminance and
chrominance of the regions adjacent to the supporting lines [1]. The first solution
is computationally too expensive to be used in our inner loop, since 3 parameters
have to be estimated, while the second solution is not discriminative enough. We
propose to map pixels along lines perpendicular to the supporting lines. Hence, the
method uses neighbouring texture while being independent of µ. In order to take
into account a possible non-planarity surrounding the supporting lines, we weight
the contribution of each pixel to cross-correlation proportionally to the inverse of
its distance to the supporting line.

Robustly Computing the Epipolar Geometry At this stage, we are given a
set of putative pop correspondences. We employ a robust estimator, allowing to
estimate the epipolar geometry and to discriminate between inliers and outliers.
We use a scheme based on ransac [3], which maximizes the number of inliers. In
order to use ransac, one must provide a minimal estimator, i.e. an estimator which
computes the epipolar geometry from the minimum number of correspondences,
and a function to discriminate between inliers and outliers, given an hypothesized
epipolar geometry. The number of trials required to ensure a good probability of
success, say 0.99, depends on the minimal number of correspondences needed to
compute the epipolar geometry. Our minimal estimator described in §3 needs 3
pairs of pops. Applying a ransac procedure is therefore much more efficient with
pops than with points: with 50% of outliers, 35 trials are sufficient with pops,
while 588 trials are required for points (values taken from [6]).

Our inlier/outlier discriminating function is based on computing the cross-
correlation score using [10]. Inliers are selected by thresholding this score. We use
a threshold of few percents (2% — 5%) of the maximal grey value. Figures 2 (a-d)
show an example of epipolar geometry computation, and the set of corresponding
pops obtained after guided-matching based on the method of [10].

3 Computing the Epipolar Geometry

Proposition 2. The minimal number of pairs of pops in general position6 needed
to define a unique fundamental matrix is 3.

Proof: Due to lack of space, this proof is left for an extended version of the paper.

3.1 The ‘Eight Corrected Point’ Algorithm

This linear estimator is based on the constraints induced by the supporting points.
Pairs of supporting points qjk ↔ q′

jk are obtained based on the previously esti-
mated local geometries H(µ). The first idea that comes to mind is to use the sup-
porting points as input to the eight point algorithm [7]. This algorithm minimizes
an algebraic distance between predicted epipolar lines and observed points. The
6 General position means that the supporting lines are not coplanar and do not lie on

an epipolar plane, i.e. the image lines do not contain the epipoles.
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(a) (b) (c) (d)

Fig. 2. (a) & (b) show a representative set of corresponding epipolar lines while (c) & (d)
show the 11 matched lines obtained after guided-matching using the algorithm of [10].

eight corrected point algorithm consists in correcting the position of the support-
ing points, i.e. to make them colinear, prior to applying the eight point algorithm.
Using this procedure reduces the noise on the points positions, as we shall verify
experimentally.

3.2 The ‘Three pop’ Algorithm
This linear algorithm compares observed points and predicted points. This algo-
rithm is more statistically meaningful than the eight point algorithm, in the case
of pops, in that observed and predicted features are directly compared.

We wish to predict the supporting point positions. We intersect the pre-
dicted epipolar lines, i.e. Fqjk in the second image, with the supporting lines
l′j : the predicted point is given by [l′j ]×Fqjk. Our cost function is given by sum-
ming the squared algebraic distances between observed and predicted points:∑

j d2
a(q′

jk, [l′j ]×Fqjk). In order to obtain a symmetric criterion, we consider pre-
dicted and observed points in the first image also, which yields:

Ca =
∑

j

∑
k

(
d2

a(qjk, [lj ]×FTq′
jk) + d2

a(q′
jk , [l′j]×Fqjk)

)
. (3)

After introducing explicitly da from equation (1) and minor algebraic manip-
ulations, we obtain the matrix form Ca =

∑
j

∑
k(‖Bjkf‖2 + ‖B′

jkf‖2) where
f = vect(F) is the row-wise vectorization of F and:

Bjk = S[qjk]×[lj ]×
(
q′jk,1I q′jk,2I q′jk,3I

)
, B′

jk = S[q′
jk]×[l′j ]×diag(qT

jk qT
jk qT

jk) .

The cost function becomes Ca = ‖Bf‖2 with BT ∼
(
BT

11 B′
11

T
. . . BT

mp B′
mp

T
)
.

The singular vector associated to the smallest singular value of B gives the f that
minimizes Ca. Similarly to the eight point algorithm, the obtained fundamental
matrix does not satisfy the rank-deficiency constraint in general, and has to be
corrected by nullifying its smallest singular value, see e.g. [6].
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3.3 Non-Linear ‘Reduced’ Estimation

The previously-described three pop estimator is statistically sound in the sense
that observed and predicted points are compared in the linear cost function (3).
However, the comparison is done using the algebraic distance da. This is the price
to pay to get a linear estimator. In this section, we consider a cost function with
a similar form, but using the Euclidean distance de to compare observed and
predicted points:

Ce =
∑

j

∑
k

(
d2

e(qjk , [lj]×FTq′
jk) + d2

e(q
′
jk, [l′j ]×Fqjk)

)
. (4)

We use the Levenberg-Marquart algorithm, see e.g. [6], with a suitable parame-
terization of the fundamental matrix [12] to minimize this cost function, based on
the initial solution provided by the three pop algorithm.

4 Multiple-View Triangulation

We deal with the triangulation of pop seen in multiple views. Note that since the
triangulation of a line is independent from the others, we drop the index j in this
section.

4.1 Optimal Triangulation

The optimal 3D pop is the one which better explains the data, i.e. which minimizes
the sum of squared Euclidean distances between predicted and observed supporting
points. Assuming that 3D pops are represented by two points M and N for the
supporting line and p scalars αk for the supporting points Qk ∼ αkM+(1−αk)N,
the following non-linear problem is obtained:

min
M,N,...,αk,...

Cpop with Cpop =
n∑

i=1

p∑
k=1

d2
e(Pi(αkM + (1 − αk)N),qik). (5)

We use the Levenberg-Marquart algorithm, e.g. [6]. We examine the difficult prob-
lem of finding a reliable initial solution in the next section.

4.2 Initialization

Finding an initial solution which is close to the optimal one is of primary impor-
tance. The initialization method must minimize a cost function as close as possible
to (5). We propose a two-step initialization algorithm consisting in triangulating
the supporting line, then each supporting point. Our motivations for these steps
are explained while reviewing line triangulation below.

Line Triangulation Line triangulation from multiple views is a standard
structure-from-motion problem and has been widely studied, see e.g. [5]. The
optimal line < M,N > is given by minimizing the sum of squared Euclidean
distances between the predicted lines (PiM)× (PiN) and the observed points qik

as minM,N

∑n
i=1

∑p
k=1 d2

e((PiM)× (PiN),qik). To make the relationship with the
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cost function (5) appear, we introduce a set of points Qik on the 3D line. Using
the fact that the Euclidean distance between a point and a line is equal to the
Euclidean distance between the point and the projection of this point on the line,
we rewrite the line triangulation problem as:

min
M,N,...,αik,...

Cline with Cline =
n∑

i=1

p∑
k=1

d2
e(Pi(αikM + (1 − αik)N),qik). (6)

Compare this cost function (5): the difference is that for line triangulation, the
points are not supposed to match between the different views. Hence, a 3D point
on the line is reconstructed for each image point, while in the pop triangulation
problem, a 3D point on the line is reconstructed for each image point correspon-
dence. Now, the interesting point is to determine if, in practice, cost functions (5)
and (6) yield close solutions for the reconstructed 3D line. Obviously, an experi-
mental study is necessary, and we refer to §6. However, we intuitively expect that
the results are close.

Point-on-Line Triangulation We study the problem of point-on-line optimal
triangulation: given a 3D line, represented by two 3D points M and N, a set of
corresponding image points . . . ,qik, . . . , find a 3D point Qk ∼ αkM+(1−αk)N on
the given 3D line, such that the squared Euclidean distances between the predicted
and the observed points is minimized.

For point-on-line triangulation, we formalise the problem as
minαk

∑n
i=1 d2

e(Pi(αkM + (1 − αk)N),qik) and by introducing bi = Pi(M − N)
and di = PiN, we obtain:

min
αk

Cpol with Cpol =
n∑

i=1

d2
e(αkbi + di,qik). (7)

Sub-optimal linear algorithm. We give a linear algorithm, based on approximat-
ing the optimal cost function (7) by replacing the Euclidean distance de by the
algebraic distance da. The algebraic cost function is

∑n
i=1 d2

a(αkbi + di,qik) =∑n
i=1 ‖αkS[qik]×bi + S[qi]×di‖2. A closed-form solution giving the best αk in the

least-squares sens is αk = −
∑n

i=1 bi
T[qik]× Ĩ[qik]×di∑

n
i=1 bi

T[qik]× Ĩ[qik]×bi
with Ĩ ∼ STS ∼

(
1

1
0

)
.

Optimal polynomial algorithm. This algorithm consists in finding the roots of a
degree-(3n− 2) polynomial in the parameter αk, whose coefficients depend on the
bi, the di and the qik. Due to lack of space, details are left to an extended version
of the paper.

5 Bundle Adjustment

Bundle adjustment consists in minimizing the reprojection error over structure
and motion parameters:

min
P1,...,Pn,M1,N1,...,Mm,Nm,...,αjk,...

n∑
i=1

m∑
j=1

p∑
k=1

d2
e(Pi(αjkMj + (1 − αjk)Nj),qijk),
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where we consider without loss of generality that all points are visible in all views.
We use the Levenberg-Marquardt algorithm to minimize this cost function, start-
ing from an initial solution obtained by matching pairs of images and computing
pair-wise fundamental matrices using the algorithms of §§2 and 3, from which the
multiple-view geometry is extracted as in [11]. Multiple-view matches are formed,
and the pops are triangulated using the optimal method described in §4.

6 Experimental Results

We simulate a set of 3D pops observed by two cameras, with focal length 1000 pix-
els. To simulate a realistic scenario, each pop is made of 5 supporting points. The
supporting points are projected onto the images, and a Gaussian centered noise
is added. The images of the supporting lines are determined as the best fit to the
noisy supporting points. These data are used to compare quasi-metric reconstruc-
tions of the scene, obtained using different algorithms. We mesure the reprojection
error and a 3D error, obtained as the minimum residual of minHu

∑
j d2(Q

j
, HuQj),

where Q
j

are the groung truth 3D points, Qj the reconstruction points and Hu

an aligning 3D homography.
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Fig. 3. Reprojection and 3D error when varying the added image noise variance to com-
pare structure and motion recovery methods.

Comparing triangulation algorithms. The two first methods are based on trian-
gulating the supporting line, then each supporting point using the linear solution
(method ‘Line Triangulation + Lin’) or using the optimal polynomial solution
(method ‘Line Triangulation + Poly’). The third method is Levenberg-Marquardt
minimization of the reprojection error, for pops (method ‘ML Pops’) or points
(method ‘ML Points’). We observe on figure 3 (a) that triangulating the support-
ing line followed by the supporting points on this line (methods ‘Line Triangula-
tion + *’) produce results close to the non-linear minimization of the reprojection
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error of the reprojection error of the pop (method ‘ML Pops’). Minimizing the
reprojection error individually for each point (method ‘ML Points’) produce lower
reprojection errors.

Concerning the 3D error, shown on figure 3 (b), we also observe that methods
‘Line Triangulation + *’ produce results close to method ‘ML Pop’. However, we
observe that method ‘ML Points’ gives results worse than all other methods. This
is due to the fact that this method does not benefit from the structural constraints
defining pops.

Comparing bundle adjustment algorithms. The two first methods are based on
computing the epipolar geometry using the eight point algorithm (method ‘Eight
Point Alg.’) or the three pop algorithm (method ‘Three Pop Alg.’), then triangu-
lating the pops using the optimal triangulation method. The two other methods
are bundle adjustment of pops and points respectively. We observe on figure 4 (a)
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Fig. 4. Reprojection and 3D error when varying the added image noise variance to com-
pare triangulation methods.

that the eight point algorithm yields the worse reprojection error, followed by the
three pop algorithm and the eight corrected point algorithm. Bundle adjustement
of pops gives reprojection error slightly higher than with points. However, figure
4 (b) shows that bundle adjustment of pops gives a better 3D structure than
point, due to the structural constraints. It also shows that the eight corrected
point algorithm yields good results.

7 Conclusions and Further Work

We addressed the problem of automatic structure and motion recovery from images
containing lines. We introduced a feature that we call pop, for Pencil-of-Points.
We demonstrated our matching algorithm on real images. This confirms that the
repeatability rate of pops is higher than the repeatability rates of the points and
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lines from which they are detected. This also shows that using pops, wide baseline
matching and the epipolar geometry can be successfully computed in an automatic
manner, using simple cross-correlation. Experimental results on simulated data
show that due to the strong structural constraints, pops yield structure and motion
estimates more accurate than with points.

Advantages for using pops are numerous. Briefly, localization, repeatability
rate and structure and motion estimate are better with pops than with points,
and robust estimation is very efficient since only three pairs of pops define an
epipolar geometry. For this reason, we believe that this new feature could become
standard for automatic structure-and-motion in man-made environment, i.e. based
on lines.

Further work will consist in investigating the determination of parameters µ
needed to compute undistorted cross-correlation, since we believe that it could
strongly improve the initial matching step, and studying methods for estimating
the trifocal tensor from triplets of pops.
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