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Abstract

The recovery of 3D shape and camera motion for non-rigid
scenes from single-camera video footage is a very impor-
tant problem in computer vision. The low-rank shape model
consists in regarding the deformations as linear combina-
tions of basis shapes. Most algorithms for reconstructing
the parameters of this model along with camera motion are
based on three main steps. Given point tracks and the rank,
or equivalently the number of basis shapes, they factorize a
measurement matrix containing all point tracks, from which
the camera motion and basis shapes are extracted and re-
fined in a bundle adjustment manner. There are several is-
sues that have not been addressed yet, among which, choos-
ing the rank automatically and dealing with erroneous point
tracks and missing data.

We introduce theoretical and practical contributions that
address these issues. We propose an implicit imaging
model for non-rigid scenes from which we derive non-rigid
matching tensors and closure constraints. We give a non-
rigid Structure-From-Motion algorithm based on comput-
ing matching tensors over subsequences, from which the im-
plicit cameras are extrated. Each non-rigid matching tensor
is computed, along with the rank of the subsequence, using
a robust estimator incorporating a model selection criterion
that detects erroneous image points.

Preliminary experimental results on real and simulated
data show that our algorithm deals with challenging video
sequences.

1. Introduction
Structure-From-Motion – the recovery of 3D shape and
camera motion from images – is one of the most studied
problems in computer vision. The decades of work has led
to significant successes, especially when the observed en-
vironment is static. However, the assumption of rigidity
is violated in many cases of interest, for example expres-
sive faces, moving cars, etc. For that reason, dealing with
non-rigid scenes coming from single-camera footage has re-
ceived an increasing attention over the last few years. The
problem is highly challenging since both the camera mo-
tion and the non-rigid 3D shape have to be recovered. A
major step forwards for such cases was made by Bregler et

al. [5, 9], Brand [4] and Aanæs et al. [1]. Building on the
work of [2, 7], they developed and demonstrated factoriza-
tion of images of non-rigid scenes, where the non-rigidity
was represented as a linear combination of basis shapes.
Xiao et al. [14] studied the degenerate deformations that
may defeat the reconstruction algorithms.

This paper tackles the two following open problems. (i)
the factorization of a measurement matrix containing all
point tracks in the presence of missing and erroneous im-
age points. This must be done to recover the parameters of
the implicit imaging model. Most previous work do not deal
with missing data [1, 4, 5, 9, 13]. (ii) the automatic choice
of the rank r of the measurement matrix, characterising the
degree of non-rigidity in the sequence. Most previous work
rely on a user-defined rank [4, 5, 9, 10, 13].

More precisly, we build on the low-rank shape model to
derive an implicit imaging model projecting points affinely
from Rr – the implicit shape points – onto the images us-
ing implicit camera matrices. The rank r reflects the degree
of non-rigidity of the model and is thus a very important
parameter. This implicit model is simpler than the explicit
model used in e.g. [5, 10], in the sense that it ignores the
replicated block structure of the camera matrices. The im-
plicit model gives weaker constraints on point tracks than
the explicit model. It is the model used for non-rigid fac-
torization in e.g. [5, 9, 13]. Based on this model, we derive
non-rigid matching tensors that constrain point tracks and
encapsulate information about the implicit camera matrices.
We define non-rigid closure constraints relating the match-
ing tensors to the implicit camera matrices. These theoret-
ical concepts are based on the fact that implicit reconstruc-
tion is performed in Rr. They lead to a batch algorithm for
computing the motion and structure matrices in the presence
of erroneous and missing data. The idea is to robustly com-
pute a set of matching tensors over several subsequences
using MAPSAC and the GRIC criterion to choose the associ-
ated rank [8]. From these matching tensors, we solve for the
implicit camera matrices using the closure constraints. The
next step consists in computing the basis shapes by non-
rigid triangulation. We refine both the implicit cameras and
implicit shape in a bundle adjustment manner. Finally, each
image point is classified as an inlier or an outlier. Almost all
steps in this algorithm are done robustly, meaning that blun-
ders are detected and thus do not corrupt the computation.



Roadmap. In §2, we derive the non-rigid shape and imag-
ing models. We examine previous work in §3. We derive the
non-rigid matching tensors and closure constraints in §§4
and 5 respectively. Our Structure-From-Motion algorithm
is derived in §6 while the robust estimation of matching ten-
sors and associated ranks is given in §7. Experimental re-
sults are reported in §8 and our conclusions in §9.

Notation. Vectors are denoted using bold fonts, e.g. x
and matrices using sans-serif or calligraphic characters, e.g.
M or X . Index i = 1, . . . , n is used for the images,
j = 1, . . . ,m for the points and k = 1, . . . , l for the ba-
sis shapes, e.g. xij is the position of the j-th point track in
the i-th image and Bkj is the k-th basis shape for the j-th
point. Visibility indicators modeling occlusions are denoted
vij . The Hadamard (element-wise) product is written �.
The zero and one vectors are respectively 0 and 1, 0 is the
zero matrix and T is vector and matrix transpose. Bars in-
dicate centred data, as in e.g. X̄ . Notation [i, i′] refers to a
subsequence between image i and image i′, e.g. X[i,i′] is the
measurement matrix for this subsequence. {} is a set over
some variable. We use the Singular Value Decomposition,
denoted SVD, e.g. X = UΣVT where U and V are orthonor-
mal matrices, and Σ is diagonal, containing the singular val-
ues of X in decreasing order.

Noise distribution. The noise on image point positions is
supposed to be centred Gaussian i.i.d. Under this hypoth-
esis, minimizing the L2-norm between measured and pre-
dicted point positions, often dubbed the reprojection error,
yields Maximum Likelihood Estimates.

2. Non-Rigid Imaging Model
We review the low-rank shape model, dubbed the explicit
model and derive our implicit model.

2.1. Explicit Model
The low-rank shape assumption consists in writing the co-
ordinates of a time-varying set of points Qij as linear com-
binations over l basis shapes Bkj with the configuration
weights αik: Qij =

∑l
k=1 αikBkj . Points Qij are pro-

jected onto the images by affine cameras: xij = PiQij +ti,
from which the explicit imaging model is obtained:

xij = Pi

(
l∑

k=1

αikBkj

)
+ ti. (1)

This trilinear equation is the most explicit form of the
low-rank shape imaging model. Only rank-3 basis shapes
are considered for simplicity, but rank-2 and rank-1 basis
shapes can be modeled as well [14].

2.2. Implicit Model
Rewriting (1), one obtains:

xij =
(
αi1Pi · · · αilPi

)B1j

...
Blj

+ ti

= MiSj + ti with (2)
Mi =

(
αi1Pi · · · αilPi

)
.

We call Mi a (2 × 3l) explicit camera matrix and ST
j =(

BT
1j · · · BT

lj

)
a (3l×1) shape vector. Introduce r = 3l,

the rank of the model, a (r × r) full-rank matrix A and
relaxing the replicated structure yields the bilinear implicit
model. From (2), xij = MiSj +ti =

(
MiA−1

)
(ASj)+ti,

giving:

xij = JiKj + ti. (3)

We call Ji = MiA−1 and Kj = ASj the implicit camera
matrix and the implicit shape matrix respectively. Matrix
A represents a corrective transformation. As shown in the
next section, this is the model used for non-rigid factoriza-
tion. The model generalizes, in some sense, the Pk → P2

projection matrices introduced by Wolf et al. [12].

3. Previous Work
Most of the previous work [1, 4, 5, 9, 13] is based on fac-
torizing a measurement matrix using SVD and hence do
not cope with missing data. We note that Torresani et al.
[10] propose an approach where the likelihood of the ex-
plicit model is maximized over the entire image sequence
using a generalized EM (Expectation Maximization) algo-
rithm which finds the nearest local optimum. The important
rank selection problem is neglected in most papers, besides
[1]. Below, we describe the three main steps involved in
most algorithms. The inputs are the complete measurement
matrix X and the rank r. The outputs are the camera pose,
the configuration weights and the basis shapes.

Step 1: Factorizing. A (2n×m) measurement matrix X
is built by gathering all point coordinates. The translation
part of the imaging model, i.e. the ti, is estimated as the
mean of the point coordinates in each image. A (2n × 1)
joint translation vector tT = (tT

1 · · · tT
n) is built and used

to centre the measurement matrix: X̄ ← X − t · 1T, from
which we get:x11 · · · x1m

...
. . .

...
xn1 · · · xnm


︸ ︷︷ ︸

X̄(2n×m)

=

J1

...
Jn


︸ ︷︷ ︸
J(2n×r)

(
K1 · · · Km

)︸ ︷︷ ︸
K(r×m)

,



where J and K are the joint implicit camera and shape ma-
trices. The centred measurement matrix is factorized using
SVD as X̄ = UΣVT. The joint implicit camera and shape
matrices J and K, are recovered as the r leading columns
of e.g. U and ΣVT respectively.

Step 2: Upgrading. The implicit model is upgraded to the
explicit one by computing a corrective transformation. Xiao
et al. [13] show that constraints on both the explicit camera
and shape matrices must be considered to achieve a unique
solution, namely the ‘rotation’ and the ‘basis’ constraints.
They give a closed-form solution based on these constraints.
Previous work [4, 5, 9] use only the rotation constraints,
leading to ambiguous solutions. For instance, Brand [4]
shows that a block-diagonal corrective transformation is a
good practical approximation. Once the replicated structure
has been approximately enforced, the rotation matrices are
extracted using orthonormal decomposition. The configu-
ration weights are then recovered using the orthonormal-
ity of the rotation matrices. Bregler et al. [5] assume that
the information about each basis shape is distributed in the
appropriate column triple in the shape matrix by the initial
SVD, in other words that the entries off the block-diagonal of
the corrective transformation matrix are negligible. Experi-
ments show that this assumption restricts the cases that can
be dealt with since only limited non-rigidity can be handled.
A second factorization round on the reordered weighted mo-
tion matrix elements enforces the replicated block structure,
yielding the weight factors and the Pi, which are upgraded
to Euclidean by computing a linear transformation as in the
rigid factorization case. Aanæs et al. [1] assume that the
structure resulting from rigid factorization gives the mean
non-rigid structure and camera motion. Given the camera
motion, recovering the structure is done by examining the
principal components of the estimated variance.

Step 3: Nonlinear refinement. The solution obtained so
far is finely tuned in a bundle adjustment manner by mini-
mizing e.g. the reprojection error. The algorithms proposed
in [4, 9] differ by the prior they are using to regularize the
solution. These priors state that the reconstructed shapes
should not vary too much between consecutive images.

4. Non-Rigid Matching Tensors
Matching tensors are known for the rigid case. Examples
are the fundamental matrix and the trifocal tensor. They re-
late the image position of corresponding points over multi-
ple images. The implicit imaging model allows us to derive
matching tensors for non-rigid scenes. These tensors are
briefly mentioned in [6, §18.3.1].

A non-rigid matching tensor is a matrix N whose
columns span the d dimensional nullspace of the (2n×m)

centred measurement matrix X̄ :

NTX̄ = 0. (4)

The size of matrixN is (2n×d) where the tensor dimension
is d = 2n − r. Loosely speaking, N constrain each point
track x̄j – the j-th column of X̄ – by NTx̄j = 0. These
constraints easily extend to the non centred measurement
matrix X by substituting X̄ = X − t · 1T into equation (4):(

NT −NTt
)(X

1T

)
= 0.

Minimal number of points and views. The three follow-
ing parameters are characteristic of an image sequence: the
number of images n, the number of point tracks m and the
rank r. They can be related to each other, in particular for,
given r, deriving what the minimal number of point tracks
and views are for computing the matching tensor. The com-
putation is possible if the (2n × m) centred measurement
matrix X̄ is at least of size (r× r). Counting the point track
needed to compute the translations for centring the measure-
ment matrix, we directly get the minimal number of point
tracks as m ≥ r + 1. From 2n ≥ r, we obtain the minimal
number of views as n ≥ b r

2c + 1. These numbers can also
be derived by counting the number of degrees of freedom in
the tensor and the number of independent constraints given
by equation (4).

Example: 2D rigid scene. In this case, r = 2 and pairs
of points are related by a 2D affine transformation that can
be estimated from 3 point correspondences. With centred
coordinates, the relationship is x̄2j = Ax̄1j , i.e. :

(
A −I

)︸ ︷︷ ︸
NT

(
x̄1j

x̄2j

)
= 0,

from which we observe that the matching tensor has size
(4×2). More generally, even-rank matching tensors predict
an image point given all other n− 1 image points.

Example: 3D rigid scene. In this case, r = 3 and pairs
of points are related by the affine fundamental matrix that
can estimated from 4 point correspondences. With centred
coordinates, the relationship is (x̄T

2 1)F̄A(x̄T
1 1)T = 0 with

F̄A =
(

0 0 a
0 0 b
c d 0

)
the centred affine fundamental matrix:

(
c d a b

)︸ ︷︷ ︸
NT

(
x̄1j

x̄2j

)
= 0.

More generally, odd-rank matching tensors predict the
equivalent of an epipolar line in an image given all other
n− 1 image points.



OBJECTIVE

Given m point tracks over n images as a an incomplete (2n×m)
measurement matrixX and a (n×m) visibility matrix V , compute
the implicit non-rigid cameras Ji, the non-rigid shape points Kj

and the rank r.

ALGORITHM

1. Partition the sequence, see §6.1 while robustly computing the
matching tensors {N[ib,i′

b
]} and associated ranks, see §7.2.

2. Solve for the implicit cameras (Ji, ti) using the closure con-
straints, see §6.2.

3. Triangulate the point tracks to get the implicit shape points
Kj , see §6.3.

4. Nonlinearly refine the implicit cameras and shape points by
minimizing the reprojection error, see §6.4.

5. Classify each image point track as an inlier or an outlier.

Table 1: Summary of our non-rigid implicit Structure-From-
Motion algorithm.

5. Non-Rigid Closure Constraints
The closure constraints introducted by Triggs in [11] relate
matching tensors to projection matrices. These constraints
are used to derive a batch Structure-From-Motion algorithm
dealing with high amounts of missing data.

In this section, we derive new types of closure constraints
for the non-rigid case, based on the above-derived matching
tensors, namely the N -closure. Our derivation is valid for
any rank r.

Let K ∈ Rr be an implicit shape point. We project
K in the images using the joint implicit camera matrix J :
x̄ = JK, ∀K ∈ Rr. From the definition (4) of the match-
ing tensors, NTx̄ = 0. Substituting the joint projection
equation yields NTJK = 0, ∀K ∈ Rr, which gives the
N -closure constraint:

NTJ = 0. (5)

This constraint means that the joint implicit camera matrix
lies in the right nullspace of NT.

6. Non-Rigid Structure-From-Motion
Our batch algorithm for implicit non-rigid Structure-From-
Motion is based on the above-derived non-rigid matching
tensors and closure constraints. It is summarized in table 1.
We consider only sets of consecutive images for simplicity.
It begins by selecting a set of s subsequences {[ib, i′b]}b=s

b=1

and by computing a set of matching tensors {N[ib,i′b]
}, one

for each subsequence, and the associated rank estimates
{r[ib,i′b]

}. Our joint tensor and rank estimation algorithm

is presented in §7. The full sequence rank r is the maximum
over all subsequence ranks: r = maxb(r[ib,ib]).

6.1. Partitioning the Sequence
The measurement matrix is partitioned into overlapping
blocks with points visible in all of the selected images. Be-
fore going into further details, we must figure out what the
minimal tensor dimension is, and how many views each ten-
sor should operate on. Let [ib, i′b] and [ib+1, i

′
b+1] be two

consecutive subsequences and let δb,b+1 = ib+1 − ib be the
offset between them. We need to determine what the max-
imum value of δb,b+1 is. The b-th matching tensor, with
dimension db = 2nb − rb, gives db constraints. The num-
ber of unknowns constrained by the first matching tensor
only is δ1,2, from which we get δ1,2 ≤ n1 − b r1+1

2 c. Mak-
ing the same reasoning for the b-th tensor, i.e. ignoring the
constraints coming from previous overlapping sets, gives a
bound on δb,b+1:

δb,b+1 ≤ nb − b
rb + 1

2
c. (6)

Taking into account the other constraints lead to a tighter
bound on δb,b+1, but requires a cumbersome formalism to
count the number of constraints and unknowns. Requiring
δb,b+1 > 0 gives the minimal size of each image set as:

nb ≥ brb + 1
2
c+ 1. (7)

For instance, for a 2D rigid scene, i.e. r = 2, the mini-
mal nb is 2 from equation (7) and the maximal δb,b+1 is 1
from equation (6), i.e. using the affine transformations over
pairs of consecutive views is fine. For a 3D rigid scene, i.e.
r = 3, the minimal nb is 3 and the maximal δb,b+1 is 1,
meaning that using trifocal tensors over triplets of consecu-
tive of views is fine1.

In practice, we do not know the ranks rb at this step. We
tune an initial guess while jointly partitioning the sequence
and computing the matching tensors, as described in §7.2.

6.2. Solving For the Implicit Cameras
The leading part. We solve for the non-rigid cameras us-
ing the closure constraints. For each computed matching
tensor, equation (5) gives the following constraints on the
joint camera matrix J :(

0(db×2(ib−1)) NT
[ib,i′b]

0(db×2(n−i′b))

)
J = 0.

Stacking the constraints for all {[ib, i′b]}b=s
b=1 yields an ho-

mogeneous system AJ = 0. It must be solved, e.g. in the
least-squares sense, while ensuring that matrix J has full

1Triggs [11] states this result and shows the equivalence of using pairs
of fundamental matrices over triplets of consecutive views.



column rank: minJ ‖AJ ‖2 s.t. det(J ) 6= 0. We replace
the full column rank constraint by a column orthonormality
constraint, i.e. J TJ = I(r×r). Note that the latter implies
the former. This is done without loss of generality since for
any full column rank joint camera matrix J , there exist sev-
eral coordinate transformations, say G(r×r), such that JG
is column orthonormal. One such a transformation is given
by the QR decomposition of J = J ′G−1. The transformed
problem is solved by using the SVD A = UΣVT. Matrix
J is given by the r last columns of V. Note that matrix A
typically has a band-diagonal shape that one might exploit
to efficiently compute its singular vectors, see e.g. [3].

The translations. The implicit imaging model (3) is
xij = JiKj + ti. By minimizing a least-squares error over
all image points, the translations ti in the joint translation
vector t, along with the basis shape vectors Kj can be re-
constructed. We prefer to postpone the basis shape vector
reconstruction to the next step, for robustness purposes. In-
stead, we consider the translation estimate y[i,i′] for each
subsequence [i, i′], giving the centroid with respect to the
points visible in the subsequence. We reconstruct these
centroids along with vector t. Note that in the absence of
missing data, these centroids coincide. We minimize the re-
projection error

∑s
b=1 ‖y[ib,i′b]

−J[ib,i′b]
Y[ib,i′b]

− t[ib,i′b]
‖2,

where J[i,i′] and t[i,i′] are respectively a partial joint projec-
tion matrix and a partial joint translation vector restricted to
the subsequence [i, i′], and Y[i,i′] is the reconstructed cen-
troid. By expanding the cost function, the reprojection error
is rewritten ‖Aw − b‖2, where the unknown vector w con-
tains the Y[ib,i′b]

and t. The solution is given by using the
pseudo-inverse of matrix A, as w = A†b. One must use
a pseudo-inverse, since there is a r-dimensional ambiguity,
making A rank deficient with a left nullspace of dimension
r. This is a translational ambiguity between the basis shapes
and the joint translation t, that one can see by considering
that ∀γ ∈ Rr, xj = JKj + t = J (Kj − γ) + J γ + t =
JK′

j + t′, with K′
j = Kj − γ and t′ = J γ + t.

6.3. Reconstructing the Implicit Shape Points
We compute the basis shape vectors by non-rigid triangula-
tion. This is done by minimizing the reprojection error. As-
sume that the j-th point is visible in the subsequence [i, i′],
then this is formulated by:

min
Kj

‖x̄[i,i′] − J[i,i′]Kj‖2,

with x̄[i,i′] = x[i,i′] − t[i,i′]. The solution is Kj =
J †[i,i′]x̄[i,i′]. We perform the minimization in a robust man-
ner to eliminate erroneous image points. We use a RANSAC-
like algorithm with adaptive number of trials. The number
of image points sampled in the inner loop is b r

2c+ 1.

6.4. Nonlinear Refinement
We complete the reconstruction algorithm by minimizing
the reprojection error in order to finely tune the estimate:

min
J ,t,K

‖V+ � (X − JK − t · 1T)‖2,

where V+ is obtained by duplicating2 each row of the
(n×m) visibility matrix V . The minimization is done in a
bundle adjustment manner. More precisly, we use a damped
Gauss-Newton algorithm with a robust kernel. The damp-
ing is important to avoid singularities in the Hessian matrix,
due to the r(r+1) dimensional coordinate frame ambiguity.
Contrarily to the explicit case, see [1, 13], no extra regular-
izing constraint is necessary.

7. Estimating the Non-Rigid Matching
Tensors and Ranks

Our method estimates a non-rigid matching tensor over a
(sub)sequence, i.e. for a complete measurement matrix, in a
Maximum Likelihood framework. First, we tackle the case
where the data do not contain outliers, and when the rank
is given. Second, we examine the case where the data may
contain outliers, and when the rank have to be estimated.

7.1. Outlier-Free Data, Known Rank
We describe a Maximum Likelihood Estimator, that handles
minimal and redundent data. The translation t is obtained
by averaging the point positions, and the measurement ma-
trix is then centred as X̄ = X − t · 1T. The problem of
finding the optimal N is formulated by minX̂ ‖X̄ − X̂ ‖2

s.t. NTX̂ = 0, where X̂ contains predicted point posi-
tions. This is a matrix approximation problem under rank
deficiency constraint. It is solved by computing the SVD
X̄ = UΣVT, from which X̂ is obtained by nullifying all but
the r leading singular values in Σ and recomposing the SVD.
Matrix N is given by the 2n− r last columns of U.

7.2. Contaminated Data, Unknown Rank
In most previous work, the rank of the sequence is assumed
to be given. One exception is Aanæs et al. [1] who use the
BIC model selection criterion to select the rank, but do not
deal with blunders. When one uses subsequences, the subse-
quence rank may be lower than the sequence rank, and must
be estimated along with the matching tensor. In addition,
one has to deal with erroneous image points. We propose
to use the robust estimator MAPSAC in conjunction with the
GRIC model selection criterion proposed in [8]. GRIC is a
modified BIC for robust least-squares problems. Our algo-
rithm maximizes the GRIC score, as follows. In the inner

2This is simply to make it the same size as X .



loop of the robust estimator, we sample point tracks and not
only compute a single matching tensor, but multiple ones by
varying the rank. Obviously, an upper bound rmax on the
rank is necessary to fix the number of point tracks that one
samples at each trial. One must take into account that the
computational cost rises with rmax. One possible solution
is to divide the sequence of trials into groups using gradu-
ally narrower intervals of possible rank values. The GRIC
score is given by:

GRIC =
m∑

j=1

ρ

(
e2
j

σ2

)
+ λd + rm log(m),

where ej is the prediction error for the j-th point track,
λ = 4d log(z) − log(2πσ2) and z is chosen as the image
side length. Function ρ is ρ(x) = x for x < t and ρ(x) = t
otherwise, where the threshold t = 2 log(θ) + dλ/(2n)
with θ the ratio of the percentage of inliers to the percent-
age of outliers. The noise level is robustly estimated using
the weakest model, i.e. for a tensor dimension d = 1, as
σ2 = med(e2

j )/0.67452. We refer the reader to [8] for more
details.

8. Experimental Results
Most other methods do not handle missing data, and hence
can not be compared to our. The method from Torresani et
al. [10] handles missing data but uses the explicit model.

8.1. Simulated Data
We simulated n = 180 cameras observing a set of m =
1000 points generated from l = 5 basis shapes, hence with
rank r = 3l = 15. The configuration weights are cho-
sen in order to give a decaying energy to successive defor-
mation modes. The simulation setup produces a complete
measurement matrix X̃ , from which we extract a sparse,
band-diagonal measurement matrixX , similar to what a real
intensity-based point tracker would produce. A Gaussian
centred noise with variance σ2 = 1 is added to the image
points.

In the experiments, we measured the reprojection error
and the generalization error, which are dubbed in a machine
learning context training and test error respectively. The re-

projection error is E =
√

1
e‖V+ � (X − JK − t · 1T)‖2,

where e is the total number of visible image points. In other
words, the reprojection error reflects the difference between
the measures and the predictions. The generalization er-
ror is given by Gγ =

√
1
eγ
‖Ṽ+

γ � (X̃ − JK − t · 1T)‖2,
where γ indicates the percentage of hidden image points
in X̃ involved in the estimation and eγ is the total num-
ber of image points used in the calculation. The (n × m)
matrix Ṽγ indicates which image points are used in the cal-
culation: it is constructed by including points further away

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

Noise variance (pixels)

E
rr

or
 (

pi
xe

ls
)

Reprojection Error
Generalization Error 11%
Generalization Error 22%
Generalization Error 49%
Generalization Error 84%
Generalization Error 100%

Figure 1: Reprojection and generalization error versus the
variance of added noise σ for different percentages γ of hid-
den points to compute the generalization error.

from the visible points area while γ grows, i.e. Ṽ0 = V
and Ṽ100 = 1(n×m). For example, G0 = E and G100 =√

1
nm‖X̃ − JK − t · 1T‖2, i.e. all the visible and hidden

image points are used to compute the error. Obviously, we
expect the generalization error to be greater than the repro-
jection error, and to grow with γ.

The first experiment we performed consists in varying
the level of added noise σ for different percentages γ of hid-
den points to compute the generalization error. The results
are shown on figure 1. We observed that the reprojection
error is slightly higher than the level of noise. The ability to
generalize is accurate for a 1 pixel noise level, and smoothly
degrades for larger noise levels, but is still reasonable: in the
tested rang σ = 0, . . . , 5 pixels, the γ = 100% generaliza-
tion error is slightly higher than twice the noise level.

The second experiment we performed consists in vary-
ing the rank used in the computation, namely we tested
r = 11, . . . , 27, for different percentages γ of hidden points
to compute the generalization error. The results are shown
on figure 2. We observed that it is preferable to overesti-
mate rather than to underestimate the rank, up to some up-
per limit. A similar experiment with roughly equal magni-
tude configuration weights to generate the data shows that
r can be slightly underestimated and largely overestimated.
The conclusion is that in practice, overestimating the rank
is safe.

The third experiment is devised to assess the quality of
the rank estimation based on GRIC in the presence of out-
liers. We tested for true ranks in the range r = 3, . . . , 18
which covers what one expects to meet in practice. The
results we obtained are shown in table 2, which shows av-



3 6 9 12 15 18
0% 3.82 6.06 8.48 11.28 13.82 16.22
10% 3.86 6.02 8.60 11.02 13.66 16.24
20% 3.72 5.98 8.48 11.20 13.84 16.44
30% 3.64 5.94 8.52 11.00 13.52 16.58
40% 3.60 5.98 8.44 11.00 13.58 16.28
50% 3.40 5.88 8.30 10.86 13.68 16.16

3 6 9 12 15 18
0% 0.38 0.42 0.57 0.66 0.65 1.12
10% 0.35 0.37 0.49 0.65 0.55 1.14
20% 0.45 0.37 0.50 0.60 0.58 0.50
30% 0.48 0.37 0.57 0.53 0.61 0.67
40% 0.49 0.32 0.57 0.53 0.64 1.08
50% 0.49 0.62 0.70 0.63 0.71 1.17

Table 2: (left) Average estimated rank r and (right) its standard deviation σr versus the true rank r and percentage of outliers.
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Figure 2: Reprojection and generalization error versus the
rank r for different percentages γ of hidden points to com-
pute the generalization error. The true rank r = 15 is indi-
cated with a vertical bar.

erages over 50 trials. We observed that these results are
acceptable, even if the GRIC criterion we used is slightly
biased since low ranks, i.e. less than 6, are slightly overes-
timated, while larger ranks, i.e. greater than 9 are slightly
underestimated. It is however possible to correct for this
bias in accordance with our conclusions on the previous ex-
periment.

8.2. Real Data
We tested our algorithm on several image sequences. For
one of them, extracted from the movie ‘Groundhog Day’,
we show results. The sequence shows a man driving a car
with a groundhog seated on his knees. The head of the man
is rotating and deforming since he is speaking, and the ani-
mal is looking around, deforming its fur, opening and clos-
ing its mouth. Finally, the interior of the car is almost static,
while the exterior is rigid, but moving with respect to the
car.

The sequence contains 154 images, see figure 3 (top). We

ran a KLT-like point tracker. We obtained a total of 1502
point tracks after having removed the small point tracks,
namely which last less than 20 views. The visibility matrix,
shown on figure 3 (bottom) is filled to 29.58%.

Figure 4: One frame with points and motion vectors repro-
jected from the reconstructed model.

For some parts of the sequence, where the motion of the
different moving and deforming parts in the images is slow,
computing the matching tensors is quite easy. Indeed, blun-
ders can clearly be detected and classified as outliers. How-
ever, other parts in the sequence contain significant motion
between single frames and motion blur occurs, making the
point tracks slightly diverging from their ‘true’ position, and
making the detection of outliers difficult. Large illumination
changes sometimes make the tracker fails for entire areas of
the image.

The reprojection errors we obtained at the non-rigid
matching tensors estimation stage were distributed between
0.5 and 0.9 pixels, and 0.65 pixels on average. We used a
user-defined rank r = 15. The initialization step yielded
58021 inliers over 68413 image points, i.e. the inlier rate
was 84.8%, with a reprojection error of 1.19 pixels. The ro-
bust bundle adjustment yielded 61151 inliers, i.e. the inlier
rate was 89.4%, with a reprojection error of 0.99 pixels. We



Figure 3: (top) 5 out of the 154 frames and (bottom) the visibility matrix V for the ‘Groundhog Day’ sequence.

believe it is a successful result on this challenging image
sequence.

Figure 5: Closeup on the actor, the groundhog and the back-
ground overlaid with points and motion vectors reprojected
from the reconstructed model (white dots), original points
(light grey squares) and outliers (dark grey diamonds).

9. Conclusions

We proposed an implicit imaging model for non-rigid
scenes, from which we derived non-rigid matching tensors
and closure constraints. Based on these theoretical con-
cepts, we proposed a robust batch implicit Structure-From-
Motion algorithm for monocular image sequences of non-
rigid scenes, dealing with missing data and blunders. Future
work will be devoted to comparing various model selection
criteria, and segmenting the scene based on the configura-
tion weights, to recover objects that move or deform inde-
pendently.
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