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Abstract Estimating smooth image warps from landmarks
is an important problem in computer vision and medical im-
age analysis. The standard paradigm is to find the model pa-
rameters by minimizing a compound energy including a data
term and a smoother, balanced by a ‘smoothing parameter’
that is usually fixed by trial and error.

We point out that warp estimation is an instance of the
general supervised machine learning problem of fitting a
flexible model to data, and propose to learn the smoothing
parameter while estimating the warp. The leading idea is to
depart from the usual paradigm of minimizing the energy
to the one of maximizing the predictivity of the warp, i.e.
its ability to do well on the entire image, rather than only
on the given landmarks. We use cross-validation to measure
predictivity, and propose a complete framework to solve for
the desired warp. We point out that the well-known non-
iterative closed-form for the leave-one-out cross-validation
score is actually a good approximation to the true score and
show that it extends to the warp estimation problem by re-
placing the usual vector two-norm by the matrix Frobenius
norm. Experimental results on real data show that the pro-
cedure selects sensible smoothing parameters, very close to
user selected ones.
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1 Introduction

The image registration problem is important since it directly
relates to numerous applications, for instance deformable
surface augmentation in computer vision, see e.g. [21], or
multimodal image fusion in medical imaging, see e.g. [15].

The problem has been tackled in several different ways.
A commonly agreed paradigm is to minimize some com-
pound energy including a data term and a smoother [18].
The latter is weighted so that the estimated warp is smooth
but still close to interpolating the landmarks. Most of the
work uses trial and error to manually set an acceptable value
for this weight, called the smoothing parameter. The energy
can obviously not be minimized over the smoothing para-
meter since the result would always be zero.

The purpose of this paper is to bring a simple method
that jointly learns the warp and the smoothing parameter.
The key idea is to make the warp as general as possible in
the sense of making it able to explain the deformation of
the entire image, given a restricted set of landmarks. This
is different from the classical approach that makes the warp
interpolate the landmarks as best as possible, given some
smoothing parameter. This is strongly inspired by the ma-
chine learning paradigm of supervised learning from exam-
ples: the source image landmarks are the inputs and the tar-
get image landmarks are the corresponding outputs. In this
setting, the classical approach is an empirical risk minimiza-
tion algorithm. The smoothing parameter controls the model
complexity since increasing smoothness decreases the num-
ber of effective model parameters.

Determining smoothing weights and other parameters
such as kernel widths is a common machine learning prob-
lem. A successful approach is to consider the expected pre-
diction error, also termed test or generalization error, which,
as the smoothing weight varies, measures the bias-variance
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trade-off, see e.g. [22]. For the warp estimation problem, the
generalization error can not be computed exactly since the
number of landmarks is usually low and their distribution is
unknown. There are however several ways to approximate
the generalization error. The so-called model selection cri-
teria such as BIC, AIC and GRIC have been successfully ap-
plied to pick up the best model in a discrete set of possi-
ble models. For instance, given two images of a rigid scene,
one must choose between, say a homography and the fun-
damental matrix, see [14, 26]. Determining the smoothing
parameter is however not a model selection problem since it
does not change the actual warp model, but the estimation
method.1 A related approach is MDL, that has been used in
medical image registration to register sets of multiple im-
ages, see e.g. [16], and for the Structure-from-Motion prob-
lem in [17].

The approach we follow is to split the data points in a
training and a test set, and select the smoothing parameter
for which the trained model minimizes the test error. Since
the number of landmarks is usually small, we follow the ap-
proach of recycling the test set, in a leave-one-out cross-
validation (LOOCV) manner. This technique was introduced
in [1, 28]. It is related to the Jackknife and bootstrap tech-
niques of sampling the dataset so that statistics can be drawn
from it, and has been widely applied in machine learning,
see e.g. [2]. For linear least squares (LLS) problems, there
exists a non-iterative closed-form giving the LOOCV score.
It is very close to the prediction sum of squares (PRESS)
statistic and the studentized residuals.2 We show that, while
exact for the PRESS, this closed-form is actually an approx-
imation of the LOOCV score, which turns out to be a very
good approximation for typical parameter values. For the
warp estimation problem, each landmark brings two equa-
tions through its two-dimensional coordinates. These two
equations are said to be linked since they must be handled
jointly (it would be meaningless to select one coordinate of
a landmark for the training set and the other one for the test
set). We show that the existing LOOCV closed-form extends
to the linked measurement case by replacing the usual vector
two-norm by the matrix Frobenius norm, and that this holds
true for any dimension of the target space.

We point out that cross-validation is very different from
the Random Sample Consensus (RANSAC) paradigm [9].
The latter trains the model using randomly sampled sets
of minimal data, test on the rest of the data, and keeps the
model with the largest ‘consensus set’. It is meant to robustly

1Another reason is that most of the model selection criteria requires
that the distribution of the data point to model residuals has a known
parametric form, which is clearly not the case in general for empirical
smooth deformable warps.
2The PRESS statistic is similar to the LOOCV score but for a cost func-
tion with a data term only.

estimate the model parameters, while cross-validation aims
at quantifying the predictivity of the model. It is not obvious
how RANSAC could be used to estimate image warps since
there is not a clear definition of what a minimal data set is in
this case. The proposed method using cross-validation is not
robust, in the sense that it does not cope with mismatched
landmarks.

We implement the idea of using cross-validation to reg-
ister images through a parametric registration framework
based on landmarks. The warp is assumed to be linear
for some nonlinearly lifted source landmark coordinates.
This includes warps such as Free-Form Deformations (FFD)
based on tensor products [24, 25] and Radial Basis Func-
tions (RBF), see e.g. [3, 10]. Experimental results are re-
ported for Thin-Plate Spline (TPS) warps [3] which are the
bending energy minimizing RBF.

Paper Organization Section 2 reviews the standard LLS

estimation of warps from landmarks. Section 3 derives our
approximate non-iterative closed-form to the LOOCV score
and shows how it relates to the generalized cross-validation
(GCV) score. Section 4 reports experimental results and
Sect. 5 concludes. Finally, Appendix 1 reviews the TPS

and derives our feature-driven parameterization, Appendix 2
brings a proof of the LOOCV lemma, and Appendix 3 an ex-
perimental evaluation of the closed-form LOOCV formula.

Notation Vectors are in bold fonts, e.g. p, and matrices in
sans-serif, e.g. A. Matrix, vector transpose and matrix in-
verse are written as in pT, AT and A−1. Vector two-norm is
denoted as in ‖x‖2 = √

xTx and matrix Frobenius norm as in
‖A‖F = √

tr(ATA), where tr is the matrix trace operator. We
stress that ‖A‖2

F = ‖a1‖2
2 + ‖a2‖2

2 + · · · , where a1, a2, . . .

are the columns of matrix A. The real and projective spaces
of dimension n are respectively written R

n and P
n.

2 Landmark-Based Warp Estimation

Let p ∈ R
2 be a landmark coordinate vector in the source

image. The warp W : R
2 × R

l×2 �→ R
2 maps a point from

the source to the target image and depends on a set of pa-
rameters (often a set of l control points) in matrix L ∈ R

l×2

as:

W(p;L)
def= LTν(p), (1)

with ν : R
2 �→ R

l some nonlinear lifting function, which
outputs an l-vector representing the lifted coordinates of a
landmark. The lifted coordinates are linearly projected to R

2

to give the predicted point in the target image. This general
model encompasses FFDs and general RBFs. As an example,
the lifting function for TPS warps is derived in Appendix 1.
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Let pj ↔ qj , j = 1, . . . ,m be m landmark correspon-
dences between the two images. Let εj be some random
variable representing the noise and the deviation between
the physics and the warp model, i.e. qj = W(pj ;L) + εj ,
from which the mean sum of squared residuals (MSR) is:

E2
d (L)

def= 1

m

m∑

j=1

‖W(pj ;L) − qj‖2
2.

It plays the role of a data term as it measures the trans-
fer error, i.e. the discrepancy between the predicted and the
measured target landmarks. It is used in conjunction with a
smoother Es in a compound cost function:

E2(L;μ)
def= E2

d (L) + μ2E2
s (L),

with μ the smoothing parameter. The smoothing term is usu-
ally based on partial derivatives of the warp, such as the sec-
ond derivatives:

B2(L)
def=

∫

R2

∥∥∥∥
∂2W
∂p2

(p;L)

∥∥∥∥

2

F
dp. (2)

Other examples are elastic registration which uses spring
terms [6] and fluid registration which uses viscosity [4].
A different way of controlling the smoothness is to directly
change the number of warp parameters, such as the num-
ber of control points in FFD-based registration [24]. Brown-
ian warps are proposed in [20] along with a smoother con-
straining the estimated warp to be invertible [19]. Depending
on the warp being used, the integral in (2) needs to be dis-
cretized. Note that using TPS warps allows to solve the inte-
gral in closed-form, as is shown in Appendix 1. We assume
that it can anyway be fairly approximated by a discrete dif-
ferential operator or any other matrix operator, and define:

E2
s (L)

def= ‖ZL‖2
F ≈ B2(L). (3)

The compound cost function thus writes as:

E2(L;μ) = 1

m
‖NL − �‖2

F + μ2‖ZL‖2
F

with

NT def= (
ν(p1) · · · ν(pm)

)

and

�T def= (
q1 · · · qm

)
.

Using the matrix Frobenius norm is a natural choice since, as
the vector two-norm, it is based on summing squared matrix
or vector elements. Given the smoothing parameter μ, the
warp parameters L̂(μ) are solved for through:

L̂(μ) = arg min
L

E2(L;μ) (4)

= arg min
L

∥∥∥∥

(
N√
mμZ

)
L −

(
�

0

)∥∥∥∥

2

F

= (NTN + mμ2ZTZ)
−1

NT

︸ ︷︷ ︸
T(mμ2)

�. (5)

The influence matrix T maps the target landmark coordinates
in � to the warp coefficients L̂ and plays an important role in
the cross-validation technique given in the next section. We
note that the matrix Frobenius norm naturally allows han-
dling the linked equations induced by the two dimensions of
landmark coordinates.

3 Maximizing Predictivity by Cross-Validation

The idea of cross-validation is to approximate the general-
ization error by splitting the data in a training and a test
set, and average the test error over several such partition-
ings. There are different kinds of cross-validations, includ-
ing leave-one-out (LOOCV), v-fold and generalized cross-
validation (GCV). The two latter ones are usually preferred
for computation efficiency. We use LOOCV and show that
it can be very efficiently approximated in closed-form, for
models in the form (1). The formula for LOOCV is the same
as for the PRESS [1], except that the hat matrix is replaced
by the influence matrix, incorporating the smoother, and that
an approximation needs to be made in the derivation.

The LOOCV score is defined as a function of the smooth-
ing parameter μ:

E2
g (μ)

def= 1

m

m∑

j=1

‖W(pj , L̂(j)(μ)) − qj‖2
2, (6)

where L̂(j)(μ) are the model parameters estimated with all
but the j -th landmark:

L̂(j)(μ)
def= arg min

L
E2

(j)(L;μ). (7)

We therefore have to solve the following nested optimization
problem to get the most predictive solution L̂, obtained by
plugging the optimal μ̂ in (4), giving:

L̂
def= arg min

L
E2(L; arg min

μ
E2

g (μ)).

At first glance, the LOOCV score seems computationally ex-
pensive, making its minimization over μ extremely costly if
not infeasible in a reasonable amount of time on a standard
computer. It turns out that there actually is a non-iterative
closed-form for the LOOCV score which does not require
solving the system m times as a trivial, greedy application
of (6) requires.
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The closed-form is based on the so-called LOOCV lemma,
demonstrated in Appendix 2. Consider an LLS problem, and
a reduced problem with only a subset of the measurements.
The lemma says that replacing in the full dataset problem the
measurements by their prediction with the solution to the re-
duced problem makes the solution to this modified problem
the same as for the reduced one. In other words, define �̃j as
� except that the j -th row, corresponding to the j -th land-

mark, is replaced by the prediction W(pj ; L̂(j)(μ))
T
, i.e.:

�̃j def= � − ej (qj −W(pj ; L̂(j)(μ)))
T
, (8)

with ej a zero vector with one at the j -th entry and L̂(j)(μ)

the solution to the reduced problem. The lemma states:

L̂(j)(μ) = T
(
(m − 1)μ2)�̃j . (9)

In other words, the solution is a constant linear function of a
slightly modified right-hand side matrix. Although it could
seem weird that the unknown estimate L̂(j)(μ) is used to
make a prediction in order to artificially create a problem
to solve for this estimate, it actually is essential for deriving
the non-iterative closed-form we are aiming at, as is clearly
shown below.

Recall that matrix T maps the target landmarks to the
model parameters while matrix N maps the model parame-
ters to the predicted landmarks. We therefore construct the
influence matrix H which maps the target landmarks to the
predicted ones as:

H(γ )
def= NT(γ ) = N(NTN + γ ZTZ)

−1
NT.

Matrix H has size (m × m), i.e. it has as many rows and
columns as there are landmark correspondences, and is sym-
metric. We write hj (γ ), j = 1, . . . ,m the columns (or rows)
of H(γ ). This allows us to write:

W(pj ; L̂(μ)) = �Thj (mμ2)

W(pj ; L̂(j)(μ)) = (�̃j )
T
hj ((m − 1)μ2).

Taking the difference between the two equations and ap-

proximating hj
def= hj (mμ2) ≈ hj ((m − 1)μ2) gives:

W(pj ; L̂(μ)) −W(pj ; L̂(j)(μ)) ≈ (� − �̃j )
T
hj .

Substituting the definition (8) of �̃j gives:

W(pj ; L̂(μ)) −W(pj ; L̂(j)(μ))

≈ hT
j ej (qj −W(pj ; L̂(j)(μ))).

Writing hj,j
def= hT

j ej the diagonal elements of H(mμ2), we
get:

W(pj ; L̂(μ)) −W(pj ; L̂(j)(μ))

≈ hj,j (qj −W(pj ; L̂(j)(μ))),

that we rearrange to:

hj,j qj + (1 − hj,j )W(pj ; L̂(j)(μ)) ≈ W(pj ; L̂(μ)).

Subtracting qj on each side gives:

hj,j qj + (1 − hj,j )W(pj ; L̂(j)(μ)) − qj

≈ W(pj ; L̂(μ)) − qj ,

(1 − hj,j )(W(pj ; L̂(j)(μ)) − qj ) ≈ W(pj ; L̂(μ)) − qj ,

W(pj ; L̂(j)(μ)) − qj ≈ 1

1 − hj,j

(W(pj ; L̂(μ)) − qj ).

We thus have obtained an analytical, non-iterative expres-
sion giving each term in the sum for the LOOCV score (6),
that we can rewrite as:

E2
g (μ) ≈ 1

m

∥∥∥∥diag

(
1

1 − diag(H(mμ2))

)
(NL̂(μ) − �)

∥∥∥∥

2

F
,

(10)

where diag(M) is a vector containing the diagonal entries of
matrix M and diag(v) is a diagonal matrix with as diagonal
entries the elements of vector v, and 1 is a vector of ones.

Minimizing the LOOCV score is done through the closed-
form (10). Most of the methods in the literature are spe-
cific to the GCV score, which uses the approximation
diag(H(mμ2)) ≈ tr(H(mμ2))I, with I the identity matrix,
which allows simplifying the closed-form Eg further, see
[27]. The minimization problem however remains nonlin-
ear, and most of the methods for the GCV score can be ap-
plied to the LOOCV score, eventhough it is often neglected
in the literature. Possible methods range from golden sec-
tion search [5] and sampling (with optional local polyno-
mial interpolation), e.g. [12, 13]. We tried several differ-
ent methods. Most of them find the correct minimum in all
cases. The fastest one is downhill simplex, which has typi-
cal computation times of less than half a second for m ≈ 50
landmarks and l ≈ 25 deformation centres on a standard PC

running our MATLAB implementation.3 This computation
time, although not prohibitive, is much higher than that of
a straightforward fitting of the warp, given the smoothing
parameter.

The approximation based on hj = hj (mμ2) in the above
derivation allows to derive the closed-form (10). We call it
the m-approximation. We compared its value against the
direct evaluation of (6), giving the ‘true’ LOOCV score,
on a bunch of typical values, and with another candi-
date approximation using hj = hj ((m − 1)μ2), called the

3The downhill simplex or Nelder-Mead algorithm is implemented
within the fminsearch MATLAB function.
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Fig. 1 (left, middle) The source and target images in the dishcloth dataset overlaid with the 130 manually clicked point correspondences. (right)
The ancillary image, showing the dishcloth flat, which is used to create a warp visualization grid, as shown on Fig. 2

Fig. 2 (left) The ancillary image showing the warp visualization grid over the region of interest. (middle) The warp visualization grid transferred
from the ancillary image to the source image. (right) The 10 × 10 deformation centre grid in the source image

(m − 1)-approximation. The results are reported in Ap-
pendix 3. Our conclusions are that there is no significant
difference between the two approximations, albeit that the
m-approximation has a better behavior than the (m − 1)-
approximation in the sense that its minimum is located
closer to the true one, and has the same value as the true min-
imum LOOCV score. We also tried approximations based on
hj = hj ((ηm + (1 − η)(m − 1))μ2) = hj ((m − 1 + η)μ2)

with η ∈ [0,1] – none of them did better than the m-
approximation.

4 Experimental Results

We evaluated our algorithm on several datasets. For three
of them we show results. Most of the other methods in the
literature assume that the smoothing parameter is given and
estimate the warp parameters, whereas the proposed algo-
rithm estimate both the warp and smoothing parameters.

4.1 The Dishcloth Dataset

This dataset has three images of a dishcloth for which 130
corresponding points were manually marked, see Fig. 1. The
two images that we use for testing our algorithm show the
dishcloth with the same deformation but from a different

viewpoint. The point correspondences cover the entire dish-
cloth, which remains entirely visible. This dataset is thus
easy in the sense that many point correspondences are avail-
able and that the two images are quite similar.

The third image in this dataset shows the dishcloth flatten
on a table, and is called the ancillary image. It is used to cre-
ate a warp visualization grid in the source image, as shown
on Fig. 2 and explained below. First, we mark the four cor-
ners of the region of interest in the ancillary image, and use
them to create a homography of P

2 mapping the canonical
unit square to these four corners. This is used to transfer a
regular grid from the canonical unit square to the ancillary
image. Second, we use the point correspondences to com-
pute a deformable warp from the ancillary to the source im-
age, and use it to transfer the visualization grid to the source
image. This visualization grid, although similar to the data
points, is very useful to visualize the behavior of the warp
independently of the actual data points.

We proceed to register the images and use a regular grid
of 10 × 10 deformation centres, as shown in Fig. 2. Fig-
ure 3 shows the LOOCV score and the RMSR as functions
of the smoothing parameter μ. We observe that they both
asymptotically tend to respectively the PRESS statistic and
RMSR of a two-dimensional affine image transformation,
which we measured to be respectively 3.14 pixels and 3.06
pixels. The minimization finds the LOOCV optimal smooth-
ing parameter μ̂ ≈ 0.55. Zooming onto the graph shows that
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Fig. 3 (left) The LOOCV score (thick, red curve) and RMSR (thin, black
curve) as functions of the smoothing parameter μ—the green hori-
zontal line is the PRESS for an affinity. (middle) Zoom onto the left

graph—the blue vertical line shows the selected optimal smoothing pa-
rameter μ̂. (right) The mean LOOCV score (thick, red curve) and RMSR

(thin, black curve) as functions of the number of deformation centres l

Fig. 4 The visualization grid predicted by the warp for (left) the LOOCV optimal solution parameter, (middle) an exaggerated smoothing parame-
ters and (right) an extreme smoothing parameter corresponding to the asymptotically affine behavior of the warp

it actually has a shallow minimum. This is explained by
the fact that this dataset is ‘simple’, in the sense that the
image deformation is limited. Once a sufficient amount of
smoothness is reached, it is not that critical to oversmooth.
As expected, the RMSR is a monotonic function of μ: the
smoother the warp, the lower the effective number of pa-
rameters and so the higher the training RMSR error. Figure
3 also shows the LOOCV score and the RMSR as functions
of the number of centres l. These curves were obtained by
randomly sampling centres in the convex hull of the source
landmarks, and for each set of centres, finding the smooth-
ing parameter minimizing the LOOCV score. It can be seen
that both the LOOCV score and the RMSR are decreasing
functions of m. This is explained by the fact that since an
adaptive smoothing parameter is used, adding more para-
meters can not degrade the quality of the warp, since the ex-
tra parameters just get smoothed out. This means that with-
out any prior information, the number of deformation cen-
tres should be chosen large. On this particular example, it is
clear that choosing more than 40 deformation centres, say,

does not bring a significant improvement to the quality of
the warp.

Finally, Fig. 4 shows the visualization grid transferred to
the target image, for different smoothing parameters. As was
expected from the shape of the LOOCV score in Fig. 3, over-
smoothing has a limited effect on the estimated warp. Note
however that the LOOCV score grows by more than a third,
from 1.40 pixels to 1.91 pixels, when 10 times the optimal
smoothing parameter is used.

4.2 The Paper Sheet Dataset

This dataset has two images of a paper sheet shown in Fig. 5.
One of the images shows the paper sheet flat, with sub-
stantial radial distortion. The other image shows the paper
smoothly bent in such a way that a self-occlusion shows up,
i.e. part of the surface is being occluded by itself. We man-
ually clicked 53 points on both images as shown in Fig. 5.
We clicked the four corners or the paper sheet in the flat pa-
per image, and, as for the dishcloth ancillary image, created
a regular visualization grid. It is used to visually assess the
quality of an estimated warp.
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Fig. 5 (left, middle) The source and target images of the self-occluding paper sheet dataset overlaid with the 53 manually clicked point correspon-
dences. (right) The warp visualization grid covering the region of interest

Fig. 6 (left) The 5 × 5 deformation centre grid. (middle) The LOOCV

score (thick, red curve) and RMSR (thin, black curve) as functions of
the smoothing parameter μ—the green horizontal line is the PRESS for

an affinity. (right) Zoom onto the middle graph—the blue vertical line
shows the selected optimal smoothing parameter μ̂

This dataset is much more difficult than the dishcloth
dataset, in the sense that due to surface self-occlusion in the
target image, a large part of the region of interest visible in
the source image disappears in the target image.

Figure 6 shows the 5 × 5 grid of deformation centres we
selected over the source image. This figure also shows the
LOOCV score as a function of the smoothing parameter μ.
We observe that it asymptotically converges to the PRESS

score for an affine image transformation, which is 31.24 pix-
els. The RMSR has the same behavior in that it converges to
the RMSR for the affine transformation (not shown on the
graph), which is 29.05 pixels. Zooming onto the beginning
of the LOOCV curve shows that it actually has a well defined
minimum, and that this is what our algorithm selects as op-
timal smoothing parameter μ̂.

The LOOCV optimal warp we obtain is shown on Fig. 7.
An under- and an over-smoothed solutions are also shown
for comparison. The selected μ̂ clearly corresponds to what
one would have chosen by tweaking, since it is visually very
satisfying.

We observed that the LOOCV score and the RMSR are,
as for the dishcloth example, monotonic decreasing func-
tions of the number of deformation centres l (this graph is

not shown). Choosing l = 25 for this particular example is a
sensible choice.

4.3 The Spine Dataset

This dataset is extracted from the one used in [7]. It consists
of lateral, lumbar spine X-ray images, similar to the pair of
example images shown in Fig. 8 for two different patients.
Each image has been annotated by experienced radiologists
who placed 6 points on the corners and in the middle of the
vertebra endplates. This provides a total of 36 landmarks
since L1 to L4, and the 2 neighboring vertebrae are used in
every image. They also manually marked the outlines of the
L1 to L4 vertebrae in each image. As can be seen from the
outlines, the vertebrae show different degrees of fracture at
follow up. On the source image, L3 and L4 show a moderate
biconcave deformity, while on the target image, L1 shows a
severe wedge deformity.

We estimated a warp with a grid of 3 × 3 deformation
centres, as show on Fig. 8. The LOOCV score we obtained
is 12.60 pixels and the RMSR is 9.71 pixels. This is quite
high, as the noticeable discrepancy between the target and
predicted landmarks shows.
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Fig. 7 The visualization grid predicted by the warp for (left) the LOOCV optimal smoothing parameter, (middle) no smoothing at all and (right)
an exaggerated smoothing parameter

Fig. 8 (from left to right) The source and target images overlaid with the 36 landmarks (circles) and the vertebrae boundaries (see main text for
details), the 3 × 3 grid of deformation centres we use in the source image, and the landmarks predicted by the LOOCV optimal warp (diamonds)

Figure 9 shows the visualization grid for different val-
ues of the smoothing parameter. We observe that the
LOOCV optimal solution has a nice visual behavior. The
under-smoothed one almost folds on itself, while the over-
smoothed one is very rigid.

Figure 10 shows the LOOCV score and RMSR as func-
tions of the smoothing parameter. The LOOCV has a well-
defined minimum μ̂ ≈ 2.17, and the curves have the same

shape as for the two previous datasets. These two graphs
however show a novel curve, representing the target to trans-
ferred boundary distance. This is computed as follow. Given
a warp estimate, we transfer each point on the source bound-
ary to the target image, and measure the distance to the
closed point onto the target boundary. Averaging over the
source boundary points gives the ‘boundary error’. What
we observe is that this boundary error has a minimum,
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Fig. 9 (from left to right) The source image with the visualization grid, the LOOCV optimal smoothing parameter, an under-smoothed and an
over-smoothed solutions

which is located at a slightly lower value than the LOOCV

optimal smoothing parameter. We tried different combina-
tions of images: the LOOCV score and the boundary er-
ror exhibited the same behavior in all cases, i.e. minimiz-
ing the LOOCV score slightly overestimates the location of
the minimum for the boundary error. Recall that the warp,
and thus the LOOCV score, are computed only from the 36
landmarks. This means that these landmarks and the ver-
tebra outlines are strongly correlated, which was expected
since those landmarks actually form the basis for classi-
cal semi-quantitative vertebra fracture grading strategies,
see [11].

Figure 11 shows the vertebra boundaries, and allows one
to visually compare the marked and the predicted boundaries
in the target image. It is seen that the LOOCV optimal and
the under-smoothed solutions are both visually satisfying.
They obviously fail to capture all the subtle shape changes,
but account for the main deformations. This was expected
since the LOOCV minimum over-estimates the boundary er-
ror minimum. The over-smoothed solution clearly misses
important shape changes.

5 Conclusion

We described a framework for estimating a deformable im-
age warp from landmarks based on a compound cost func-
tion including a data term and a smoother. The method,
based on leave-one-out cross-validation, automatically de-
termines the smoothing parameter balancing the data term
and the smoother. We showed that a simple closed-form
solution exists for computing the leave-one-out cross-
validation score given the smoothing parameter, and min-
imize it with a downhill simplex algorithm, yielding rea-
sonable computation time, typically much less than a sec-
ond. We report convincing experimental results on various
datasets.

Generally speaking, one possible issue with leave-one-
out cross-validation is the “testing-on-training data” prob-
lem. This does not occur with the kind of data we use in
this paper since the landmarks are usually sparse, but should
be considered if more data are available, e.g. a pixel-wise
displacement field, by using for instance an exclusion zone
around each training point. There also exist pathological
cases, for which the leave-one-out cross-validation score has
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Fig. 10 (left) The LOOCV score
(thick, red curve) and RMSR

(thin, black curve) as functions
of the smoothing parameter μ,
as well as the boundary transfer
error (thick dashed, purple
curve)—the green horizontal
line is the PRESS for an affinity.
(right) Zoom onto the left
graph—the blue vertical line
shows the selected optimal
smoothing parameter μ̂

Fig. 11 (from left to right) The
vertebra boundaries in the
source image, and in the target
image. The manually marked
boundary is shown (thick curve),
as well as the one transferred by
the warp from the source image
(thin curve) for different
smoothing parameters

several local minima. How to find the optimal minimum in
practice in a guaranteed manner is an open research topic.
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Appendix 1: The Thin-Plate Spline

The TPS is an R
2 → R function driven by assigning target

values αk to control centres ck with k = 1, . . . , l and enforc-
ing several conditions: the TPS is the Radial Basis Func-
tion that minimizes the integral bending energy. The idea
of using the thin-plate equation as an interpolation map is
due to Duchon [8]. Standard R

2 �→ R
2 TPS-Warps are ob-

tained by stacking two TPSs sharing their centres, as pro-
posed by Bookstein [3]. This is described below, along with
our feature-driven parameterization.

6.1 Standard Parameterization

The TPS is usually parameterized by an l + 3 coefficient
vector ηT = (wT aT) and an internal smoothing parameter
λ ∈ R

+. There are l coefficients in w and three coefficients
in a. These coefficients can be computed from the (l × 1)

target vector α. The TPS is given by:

ω(p,ηα,λ)
def=

(
l∑

k=1

wk ρ(d2(p, ck))

)

+ aTp̃, (11)

where ρ(d) = d log(d) is the TPS kernel function for the
squared distance and p̃T = (pT 1). The coefficients in w must
satisfy C̃Tw = 0, where the k-th row of C̃ is c̃k . These three
‘side-conditions’ ensure that the TPS has square integrable
second derivatives. It is convenient to define the (l + 3)-
vector �p as:

�T
p

def= (ρ(d2(p, c1)) · · · ρ(d2(p, cl)) p̃T), (12)

allowing the TPS (11) to be rewritten as a dot product:

ω(p,ηα,λ) = �T
pηα,λ. (13)

Equation (12) thus represents the first step in the nonlinear
lifting function making the TPS-warp fit in the general warp
definition (1) used in this paper.

6.2 Standard Estimation

Applying the TPS (11) to the centre cr with target value αr

gives:
(

l∑

k=1

wk ρ(d2(cr , ck))

)

+ aTc̃r = αr .
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Combining the equations obtained for all the l centres with
the side-conditions C̃Tw = 0 in a single matrix equation
gives:

⎛

⎜⎜
⎝

Kλ C̃

C̃T 0

⎞

⎟⎟
⎠

︸ ︷︷ ︸
D

⎛

⎜⎜
⎝

w

a

⎞

⎟⎟
⎠

︸ ︷︷ ︸
ηα,λ

=

⎛

⎜⎜
⎝

α

0

⎞

⎟⎟
⎠

with Kr,k
def=

{
λ r = k,

ρ(d2(cr , ck)) otherwise.

Adding λI to the leading block of the design matrix D to
give Kλ acts as an internal smoother. An ad hoc method for
finding λ is described in [23]. Solving for ηα,λ by inverting
D is the classical linear method for estimating the TPS co-
efficients [3]. The coefficient vector ηα,λ is thus a nonlinear
function of the internal smoothing parameter λ and a linear
function of the target vector α.

6.3 A Feature-Driven Parameterization

We express ηα,λ as a linear ‘back-projection’ of the target
value vector α. This is modeled by the matrix Eλ, nonlin-
early depending on λ, given by the l leading columns of
D−1:

ηα,λ = Eλα

with Eλ
def=

(
K−1

λ (I − C̃(C̃TK−1
λ C̃)

−1
C̃TK−1

λ )

(C̃TK−1
λ C̃)

−1
C̃TK−1

λ

)

. (14)

This parameterization has the advantages to separate λ and
α and to introduce units.4 The side-conditions are naturally
enforced by this parameterization.

Incorporating the parameterization (14) into the TPS (13)
we obtain what we call the feature-driven parameterization
τ(p;α, λ) = ω(p;ηα,λ) for the TPS:

τ(p;α, λ)
def= �T

pEλα. (15)

The square integral bending energy κ = ∫
R2 ‖ ∂2τ

∂p2 (p;α, λ)‖2
F

dp = 8πwTKλw is given by κ = 8παTĒλα, where Ēλ is the
(l × l) bending energy matrix given by amputating Eλ of its
last three rows:

Ēλ
def= K−1

λ (I − C̃(C̃TK−1
λ C̃)

−1
C̃TK−1

λ ). (16)

The bending energy matrix is symmetric and in the absence
of internal regularization, i.e. for λ = 0, has rank l − 3. The

4While ηα,λ has no obvious unit, α in general has (e.g. pixels, meters).

eigenvectors corresponding to the l − 3 nonzero eigenval-
ues are the principal warps, the corresponding eigenvalues
indicating their bending energy, as defined by Bookstein [3].

The TPS-warp is obtained by stacking two R
2 �→ R TPSs.

From (11), we get:

(
τ(p;αx, λ)

τ (p;αy, λ)

)
= (�T

pEλL)
T
,

where αx and αy are the first and second columns of L. The
TPS warp is thus expressed in the form (1), i.e. W(p;L) =
LTν(p), with the following nonlinear lifting function:

ν(p) = ET
λ �p.

The internal smoothing parameter λ is chosen small to en-
sure that matrix Eλ is well-conditioned.

Finally, the second derivative based smoother in (2) has
the form:

B2(L) = 8π‖
√
ĒL‖2

F ,

and we thus just choose Z such that ZTZ = 8π Ē in the matrix
form (3) to achieve the exact integral. Note that in practice,
one does not need to compute Z since only ZTZ is needed,
e.g. for building the influence matrix T in (5).

Appendix 2: The LOOCV Lemma

This lemma states that replacing a target value with its pre-
diction by the model estimated with this equation omitted
does not change the result. In other words, adding equations
to an LLS problem with as right-hand side the prediction by
the model solving the initial problem, does not change the
result.

Define Dj = I − diag(ej ). Our goal is to show that (9)
gives L̂(j)(μ) as from (7). Following (5) we rewrite (7) as:

L̂(j)(μ) = arg min
L

∥∥∥∥

(
Dj N√

m − 1μZ

)
L −

(
Dj�

0

)∥∥∥∥

2

F

= (NTDj N + (m − 1)μ2ZTZ)
−1

NTDj�, (17)

since DT
j = Dj and Dj Dj = Dj . We rewrite �̃j from (8) as

�̃j = Dj� + (I − Dj )NL̂(j). We expand equation (9) by re-
placing T from (5) and �̃j from just above, giving:

T((m − 1)μ2)�̃j

= (NTN + (m − 1)μ2ZTZ)
−1

NT

· (Dj� + NL̂(j) − Dj NL̂(j)). (18)

The second term rewrites to:
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Fig. 12 Zoom around the minimum onto the difference between the true LOOCV score from the greedy formula (6) and the m- and
(m − 1)-approximations. The vertical lines show the minima (the dashed red line is the true minima)

(NTN + (m − 1)μ2ZTZ)
−1

NTNL̂(j)

= L̂(j) − (m − 1)μ2(NTN + (m − 1)μ2ZTZ)
−1

ZTZL̂(j).

(19)

Substituting in (18) gives:

T((m − 1)μ2)�̃j

= L̂(j) + (NTN + (m − 1)μ2ZTZ)
−1

· (NTDj� − (m − 1)μ2ZTZL̂(j) − NTDj NL̂(j)). (20)

This concludes the proof since the right-most factor van-
ishes, as shown below. Substitute L̂(j) from (17), this gives:

NTDj� − (m − 1)μ2ZTZL̂(j) − NTDj NL̂(j)

= NTDj� − ((m − 1)μ2ZTZ + NTDj N)

· (NTDj N + (m − 1)μ2ZTZ)
−1

NTDj�

= NTDj� − NTDj�

= 0.

Appendix 3: The Non-Iterative Approximation to
LOOCV

In order to compare the m-approximation and the (m −
1)-approximation we plot the difference between the true
LOOCV score from (6) and each of the two approximations.
This is shown for the three datasets in Fig. 12. As can be
seen, both approximations are very close to the true LOOCV

score. The m-approximation is in general better than the
(m − 1)-approximation, except at some points for μ < μ̂.
The minimum value of the m-approximation coincides with
the true value at the true minimum, albeit that the location of
the approximated minimum is slightly shifted from the true

location. The (m − 1)-approximation has a larger shift. Us-
ing the m-approximation is thus the best option, although the
difference is very small. The order of magnitude on the loca-
tion of the minimum is between 10−2 and 10−4. The error on
the minimum LOOCV score for the (m − 1)-approximation
is at 10−1 pixels.

References

1. Allen, D.M.: The relationship between variable selection and data
augmentation and a method for prediction. Technometrics 16,
125–127 (1974)

2. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford
University Press, Oxford (1995)

3. Bookstein, F.L.: Principal warps: thin-plate splines and the decom-
position of deformations. IEEE Trans. Pattern Anal. Mach. Intell.
11(6), 567–585 (1989)

4. Bro-Nielsen, M., Gramkow, C.: Fast fluid registration of medical
images. In: Visualization in Biomedical Imaging (1996)

5. Burrage, K., Williams, A., Erhel, J., Pohl, B.: The implementa-
tion of a generalized cross validation algorithm using deflation
techniques for linear systems. Technical report, Seminar fur Ange-
wandte Mathematik, July 1994

6. Christensen, G.E., He, J.: Consistent nonlinear elastic image reg-
istration. In: Workshop on Mathematical Methods in Biomedical
Image Analysis (2001)

7. de Bruijne, M., Lund, M.T., Tankó, L.B., Pettersen, P.C.,
Nielsen, M.: Quantitative vertebral morphometry using neighbor-
conditional shape models. Med. Image Anal. 11(5), 503–512
(2007)

8. Duchon, J.: Interpolation des fonctions de deux variables suivant
le principe de la flexion des plaques minces. RAIRO Anal. Numér.
10, 5–12 (1976)

9. Fischler, M.A., Bolles, R.C.: Random sample consensus: a para-
digm for model fitting with applications to image analysis and au-
tomated cartography. Comput. Vis. Graph. Image Process. 24(6),
381–395 (1981)

10. Fornefett, M., Rohr, K., Stiehl, H.S.: Radial basis functions with
compact support for elastic registration of medical images. Image
Vis. Comput. 19(1), 87–96 (2001)

11. Genant, H., Wu, C., van Kuijk, C., Nevitt, M.: Vertebral fracture
assessment using a semiquantitative technique. J. Bone Miner Res.
8(9), 1137–1148 (1993)



J Math Imaging Vis

12. Golub, G.H., von Matt, U.: Generalized cross-validation for large-
scale problems. J. Comput. Graph. Stat. 6(1), 1–34 (1997)

13. Hawkins, D.M., Yin, X.: A faster algorithm for ridge regression
of reduced rank data. Comput. Stat. Data Anal. 40(2), 253–262
(2002)

14. Kanatani, K.: Geometric information criterion for model selection.
Int. J. Comput. Vis. 26(3), 171–189 (1998)

15. Maintz, J.B.A., Viergever, M.A.: A survey of medical image reg-
istration. Med. Image Anal. 2(1), 1–36 (1998)

16. Marsland, S., Twining, C.J., Taylor, C.J.: A minimum description
length objective function for groupwise non-rigid image registra-
tion. In: Image and Vision Computing (2007)

17. Maybank, S., Sturm, P.: MDL, collineations and the fundamental
matrix. In: British Machine Vision Conference (1999)

18. Modersitzki, J.: Numerical Methods for Image Registration. Ox-
ford Science, Oxford (2004)

19. Nielsen, M., Johansen, P.: A PDE solution of Brownian warping.
In: European Conference on Computer Vision (2004)

20. Nielsen, M., Johansen, P., Jackson, A.D., Lautrup, B.: Brown-
ian warps: a least committed prior for non-rigid registration. In:
Medical Image Computing and Computer-Assisted Intervention
(2002)

21. Pilet, J., Lepetit, V., Fua, P.: Fast non-rigid surface detection, reg-
istration and realistic augmentation. Int. J. Comput. Vis. 76(2),
109–122 (2008)

22. Poggio, T., Rifkin, R., Mukherjee, S., Niyogi, P.: General con-
ditions for predictivity in learning theory. Nature 458, 419–422
(2004)

23. Rifkin, R.M., Lippert, R.A.: Notes on regularized least squares.
Technical Report MIT-CSAIL-TR-2007-025, MIT, May 2007

24. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O.,
Hawkes, D.J.: Nonrigid registration using free-form deformations:

application to breast MR images. IEEE Trans. Med. Imaging
18(8), 712–721 (1999)

25. Szeliski, R., Coughlan, J.: Spline-based image registration. Int. J.
Comput. Vis. 22(3), 199–218 (1997)

26. Torr, P.H.S.: Bayesian model estimation and selection for epipolar
geometry and generic manifold fitting. Int. J. Comput. Vis. 50(1),
27–45 (2002)

27. Wahba, G.: Splines Models for Observational Data. SIAM,
Philadelphia (1990)

28. Wahba, G., Wold, S.: A completely automatic French curve: fit-
ting spline functions by cross-validation. Commun. Stat. 4, 1–17
(1975)

Adrien Bartoli is a permanent CNRS re-
search scientist at the LASMEA laboratory in
Clermont- Ferrand, France, since October 2004
and a visiting professor at DIKU in Copen-
hagen, Denmark for 2006-2009. Before that, he
was a postdoctoral researcher at the University
of Oxford, UK, in the Visual Geometry Group,
under the supervision of Prof. Andrew Zisser-
man. He did his PhD in the Perception group, in
Grenoble at INRIA, France, under the supervi-

sion of Prof. Peter Sturm and Prof. Radu Horaud. He received the 2004
INPG PhD Thesis prize and the 2007 best paper award at CORESA.
Since September 2006, he is co-leading the ComSee research team. His
main research interests are in Structure-from-Motion in rigid and non-
rigid environments and machine learning within the field of computer
vision.


	Maximizing the Predictivity of Smooth Deformable Image Warps through Cross-Validation
	Abstract
	Introduction
	Paper Organization
	Notation

	Landmark-Based Warp Estimation
	Maximizing Predictivity by Cross-Validation
	Experimental Results
	The Dishcloth Dataset
	The Paper Sheet Dataset
	The Spine Dataset

	Conclusion
	Acknowledgements
	Appendix 1: The Thin-Plate Spline
	Standard Parameterization
	Standard Estimation
	A Feature-Driven Parameterization

	Appendix 2: The loocv Lemma
	Appendix 3: The Non-Iterative Approximation to loocv
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


