
Efficient Camera Smoothing in Sequential

Structure-from-Motion using Approximate

Cross-Validation

Michela Farenzena, Adrien Bartoli, and Youcef Mezouar

LASMEA, UMR6602 CNRS
Université Blaise Pascal, Clermont, France
Michela.Farenzena@univ-bpclermont.fr

Abstract. In the sequential approach to three-dimensional reconstruc-
tion, adding prior knowledge about camera pose improves reconstruction
accuracy. We add a smoothing penalty on the camera trajectory. The
smoothing parameter, usually fixed by trial and error, is automatically
estimated using Cross-Validation. This technique is extremely expen-
sive in its basic form. We derive Gauss-Newton Cross-Validation, which
closely approximates Cross-Validation, while being much cheaper to com-
pute. The method is substantiated by experimental results on synthetic
and real data. They show that it improves accuracy and stability in the
reconstruction process, preventing several failure cases.

1 Introduction

The sequential approach to Structure-from-Motion (SfM) [1–4] entails starting
from a seed reconstruction, then adding one new view at a time, updating the
structure accordingly. The strategy that is usually adopted to robustly calculate
a new camera pose is to use the already estimated three-dimensional (3D) points
to solve a resection problem [1, 5, 6] within RANSAC [7]. In our experience how-
ever, this does not guarantee a good initialisation for bundle adjustment and
does not prevent the reconstruction process from failing. Resection indeed uses
only local information; it is prone to drifting and local instabilities.

It is commonly admitted that using prior knowledge improves the quality of
an estimate. In video sequences, it is reasonable to add a continuity or smooth-
ing prior on the camera trajectory, encouraging each camera to lie close to the
previous ones. We minimize a compound cost function, which sums the repro-
jection error and a smoothing penalty. The trade-off between these is regulated
by the smoothing parameter.

The smoothing parameter is commonly tuned by trial and error, and is kept
constant in the whole sequence. We show that accuracy can be enhanced by
choosing this parameter automatically, customising the smoothness for each
pose. The idea is to estimate the most predictive camera pose, in the sense that
it can ’explain’ the whole image as well as possible, given a restricted set of
data points. This is a typical machine learning problem. Cross-Validation (CV)



techniques can be used. The dataset is split in a training and a test set. The
smoothing parameter for which the trained model minimizes the test error is
selected.

The main drawback of CV is the computational cost. The greedy formula to
compute the leave-one-out CV score (CVloo) for one certain value of λ requires
to solve n nonlinear least squares problems, with n the number of points in
the dataset. For the case of regular linear least squares there is a simple non-
iterative formula that gives the CVloo score without having to solve as many
problems as there are measurements [8]. We derive a similar non-iterative formula
for the nonlinear least squares resection problem. We define the Gauss-Newton
CVloo (GNCVloo) score and show that it closely approximates the true CVloo.
The computation of GNCVloo requires to solve only one nonlinear least squares
problem. This makes the estimation of the smoothing parameter a much cheaper
problem. Thus, our method could be embedded in other SfM pipelines, such as
[4, 9, 10], working in real time.

The approach is validated by experimental results on synthetic and real data.
They show that it increases accuracy and stability in the reconstruction process,
preventing several failure cases.

2 Background on Sequential Structure-from-Motion

A common scheme for sequential SfM, in both the calibrated and uncalibrated
camera cases, has three main steps. Our contribution concerns the last step.

Extraction of keyframes and keypoint matching. The first step consists
in relating the images. This means extracting keypoints and matching them
between the images. In video sequences the baseline (the camera displace-
ment between two views) is however often too limited. This makes the com-
putation of matching tensors (such as the fundamental matrix) ill condi-
tioned. A solution is to select a subset of images (keyframes). Many ways
to choose these keyframes have been proposed [2, 3, 11, 12]; they balance the
baseline and the number of matched keypoints. Once keyframes are selected,
matching tensors are estimated. The initial set of corresponding points is typ-
ically contaminated with outliers. Traditional least squares approaches thus
fail and a robust method, such as RANSAC, must be used.

Initialisation of structure and motion. The first few views and the matched
keypoints are used to retrieve a seed 3D structure of the scene and the mo-
tion of the camera. Usually two or three views are used [2, 3, 13].

Sequential processing. Keyframes are sequentially added, calculating the pose
of each new camera using the previously estimated 3D points. This is a non-
linear least squares problem, called resection. Robust estimation is usually
necessary in order to cope with outliers. Subsequently, the 3D structure is
updated by triangulating the 3D points conveyed by the new view. Both



structure and motion are finally adjusted using bundle adjustment, with the
aim of finding the parameters for the cameras and the 3D points which min-
imize the mean squared distances between the observed image points and
the reprojected image points.

3 Resection with Automatic Camera Smoothing

Each time a new camera is added, bundle adjustment is performed in order to
refine both structure and motion. This has been proved to be the essential step
to achieve a good accuracy and to prevent failures [14]. The initial estimate must
however be sufficiently close to the optimal solution.

Figure 1 shows an example of reconstruction failure, from a real sequence
taken by a handheld camera. At the 47th keyframe the computation stops be-
cause there are not enough points to estimate the new camera pose, meaning that
all points seen in the last views have been rejected as outliers. At the moment of
failure, the camera is rotating. Even if the rotation is not around the camera’s
optical centre, this is a delicate situation, where the field of view varies rapidly
and reconstruction accuracy is crucial. It is evident from Figure 1 that the pose
for the last 5 keyframes are wrongly estimated, and that bundle adjustment can
not fix the problem.

3.1 A Compound Cost Function

In order to refine the initial estimate a common strategy is to minimize a data
term representing geometric error, i.e. the reprojection error. The problem is
formalised as a least squares minimization of the mean of squared residuals
(MSR):

E2
d (P) =

1

n

n∑

i=1

‖ Ψ(P,Qi) − qi ‖
2
2 , (1)

where P is the projection matrix and Qi is the 3D position of the image point
qi. The function Ψ(P,Qi) is the reprojection of Qi through P, in Cartesian
coordinates. The optimal solution is usually obtained by approximating Ψ(P +
∆,Qi) ≈ Ψ(P,Qi) + J(P,Qi)vect(∆), where J(P,Qi) is the Jacobian matrix of
Ψ wrt P evaluated at (P,Qi), and vect is the operator that rearranges a matrix
into a vector. The normal linear least squares equations are then solved in an
iterative Gauss-Newton manner.

Since the keyframes come from a video, it is reasonable to add a smoothing
penalty on the camera trajectory, saying that the position of one keyframe should
not differ too much from that of the previous one. If properly weighted, this
penalty increases the stability in the camera trajectory estimation.

The problem is formalised as the minimization of a compound cost function,
which sums the reprojection error Ed and a smoothing term Es:

E2(P, λ) = (1 − λ)2E2
d(P) + λ2E2

s (P) , (2)



−2 −1.5 −1 −0.5 0
7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

9

Fig. 1. Reconstruction failure in case of non smoothing of camera pose. On the left,
the 1st and 47th keyframe; in the centre, a 3D view of the recovered cameras; on the
right, the top view of the last keyframes. Visual inspection shows that the last five
cameras are misestimated.

−0.1 0 0.1 0.2

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

−2.2 −2 −1.8 −1.6 −1.4 −1.2

−1

−0.8

−0.6

−0.4

−0.2

0

−0.1 0 0.1 0.2

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

−2.2 −2 −1.8 −1.6 −1.4 −1.2

−1

−0.8

−0.6

−0.4

−0.2

0

(a) (b) (c) (d)

Fig. 2. Examples of resection using the norm of the difference between camera matrices
(a,b) or Equation (3) (c,d) as smoothing penalties. In black thick line is the ground
truth for the previous and current pose; in thin green line are the poses obtained after
resection, with λ varying from 0 to 1.

where λ is the smoothing parameter.

As a smoothness measure we use the mean of squared residuals between
reprojected points in the current and previous keyframes. That is, if the two
cameras are close to each other, then the points they reproject should be close
as well:

E2
s (P) =

1

n

n∑

i=1

‖ Ψ(P,Qi) − Ψ(Pp,Qi) ‖
2
2 , (3)

with Pp the projection matrix of the previous keyframe. This is actually a con-
tinuity measure, as it can be interpreted as a finite difference approximation to
the first derivatives of the predicted tracks. The same scheme holds if higher
order derivatives are used.



The smoothing penalty usually utilised in the literature in similar contexts
is often the norm of the difference between camera matrices, but we found that
the resulting cost function does not lead to the expected solution, as shown in
Figure 2.

Equation (2) depends on a smoothing parameter that must be estimated.
In the next section we present an automatic data-driven method solving this
problem.

3.2 Smoothing Parameter Estimation by Cross-Validation

We propose to automatically determine both the camera pose and the smoothing
parameter. The idea is to find the most predictive camera pose, in the sense
that it can ’explain’ the whole image, given a restricted set of 3D positions
matching 2D points. This concept derives from the machine learning paradigm
of supervised learning from examples.

The approach we follow is to split the data points we have in a training and
a test set, and select the smoothing parameter for which the trained model min-
imizes the test error. A well-known method, widely applied in machine learning
[16], is CV (Cross-Validation), firstly introduced in [17]. Considering that the
number of samples is small, this technique recycles the test set, averaging the
test error over several different partitions of the whole data set. There are dif-
ferent kinds of CV techniques; we chose the CVloo (leave-one-out CV).

The CVloo score is defined as a function of the parameter λ:

E2
g (λ) =

1

n

n∑

j=1

‖ Ψ(P̂(j)(λ),Qj) − qj ‖2
2, (4)

where P̂(j)(λ) is the camera pose estimated with all but the j-th 3D–2D point

correspondence. The most predictive camera pose P̂ is obtained by solving the
following nested optimization problem:

P̂ = arg min
P

E2(P, argmin
λ

E2
g (λ)). (5)

This means that the optimal camera pose is obtained by minimizing E(P, λ̂),

where λ̂ is the optimal vale for λ, i.e. the one that gives the lowest CVloo score.
λ̂ is usually calculated by sampling λ over the range [0, 1].

Computing the CVloo score using (4) is computationally expensive: it requires
to solve n nonlinear least squares problems. Solving (5) is thus extremely costly.

In the next section we propose a non-iterative approximation to the CVloo

score. Non-iterative means that it does not require to solve n nonlinear least
squares problems as a trivial greedy application of Equation (4) entails.

The derivation proceeds in two steps. First we approximate the greedy for-
mula (4) through the Gauss-Newton approximation, then we provide a non-
iterative formula that exactly solves such linear least squares problems.



3.3 GNCVloo : Gauss-Newton Leave-One-Out Cross-Validation

We rewrite Equation (2) in matrix form:

E2(P, λ) = (1 − λ)2
1

n
‖ B(P) − b ‖2

2 +λ2 1

n
‖ B(P) − B(Pp) ‖

2
2 , (6)

with B(P)T = [Ψ(P,Q1) Ψ(P,Q2) . . . Ψ(P,Qn)] and bT = [q1 . . .qn].
Given a certain λ, let P̂λ be the global solution to Equation (6) obtained by
Gauss-Newton (GN). Let C = J(P̂λ) be the Jacobian matrix evaluated at P̂λ. It
is given by the GN algorithm. The GN approximation to E is:

E2(P̂λ+∆, λ) ≈ (1−λ)2
1

n
‖B(P̂λ)+Cδ−b‖2

2 +λ2 1

n
‖B(P̂λ)+Cδ−B(Pp)‖

2
2 , (7)

with δ = vect(∆).
Substituting s = b− B(P̂λ) and t = B(Pp) − B(P̂λ), we get:

E2(P̂λ + ∆, λ) ≈ Ẽ2(δ, λ) = (1−λ)2
1

n
‖ Cδ − s ‖2

2 +λ2 1

n
‖ Cδ − t ‖2

2 . (8)

Note that this holds if higher order derivative are used as a smoothing penalty.

The CVloo score can similarly be approximated by:

Ẽ2
g (λ) =

1

n

n∑

j=1

‖ cT
j δ̂(j) − sj ‖2

2 , (9)

where δ̂(j) is the solution of the linear least squares system (8) with all but the
j-th correspondence. This way we have approximated the nonlinear least squares
problem by a linear least squares one. We call this approximation the GNCVloo

score.
Calculating the GNCVloo score using (9) is cheaper than calculating the

CVloo score, but it still requires iterating over the n correspondences.

We derive a non-iterative formula that exactly estimate (9). This formula is
the following:

Ẽ2
g (λ) =

1

n

∥
∥
∥
∥
∥
diag

(

1

1− diag (Ĉ)

)
(

Ĉk− s − diag (diag (Ĉ))(k − s)
)
∥
∥
∥
∥
∥

2

2

,

(10)
where

Ĉ = CC
+, C+ is the pseudoinverse of C and k =

(1 − λ)s + λt

(1 − λ)2 + λ2
.

1 is a vector of ones and the diag operator, similar to the one in Matlab, ex-
tracts a diagonal matrix or constructs one from a vector. The derivation of this



formula is shown in the Appendix.

Maximizing the GNCVloo score is then done through the global solution of
Equation (2) and the closed-form (10): instead of n nonlinear least squares prob-
lems only one has to be solved.

As is, this CV method is not robust, in the sense that it does not cope with
mismatched correspondences. Therefore, we use RANSAC to robustly estimate
as initial solution with λ = 0 to get P̂λ in Equation (6), and the dataset is
restricted to only correspondences classified as inliers after RANSAC. Moreover,
the computation of λ̂ is carried out by sampling, estimating Equation (2) at
steps of 0.01 from 0 to 1. Here 0.01 was experimentally derived as a sufficiently
fine discretization step to find the global minimum of the GNCVloo score. Table
1 summarizes the proposed method.

Camera Resection Method

Find an initial robust estimation of P;
On those points classified as inliers:

for λ = 0 : 0.01 : 1

Find P̂λ, using Gauss-Newton;
Estimate the GNCVloo score using (10);

end

Select P̂λ with minimum GNCVloo score.

Table 1. Automatic camera resection based on our GNCVloo score.

4 Implementation Details

We give some details of our implementation of the reconstruction pipeline. We
assume that the camera is calibrated.

The KLT tracker [18] is used to detect and track keypoints in the sequence.
Similarly to [19], the first frame is chosen as the first keyframe I1. I2 is chosen
so that there are as many frames as possible between I1 and I2 with at least N

feature points in common. Frame In is selected as a keyframe if: a) there are
as many frames as possible between In and In−1; b) there are at least N point
correspondences between In−1 and In and c) there are at least M point corre-
spondences between In−2 and In. This criterion ensures that there are common
matches at least in three consecutive views. In our experiments we used N = 300
and M = 200.

In order to initialize the 3D reconstruction we use the first image triplet,
computing relative camera motion as described in [13]. This process is coupled
with RANSAC, in order to have a robust estimate, and the final solution is
further refined with bundle adjustment [20]. The resection problem is solved
as described in Section 3, using Fiore’s linear algorithm [5] to find the initial
estimate.



The 3D points are obtained by triangulation considering all image points of
the visible tracks up to the current keyframe. A reconstructed point is considered
an inlier if a) its computation is well conditioned – we set a threshold on the
condition number of the matrix in the linear system that computes the 3D point
– and b) if it projects sufficiently close, say by a distance of one pixel, to all
associated image points. This requires us to refine the initial estimation of a
3D point based on all observations, including the latest. Therefore, each time a
new keyframe is added the tracks visible in it are checked and the list of inliers
updated.

For the first 10 views, a full bundle adjustment using all keyframes and all
points is performed. After that the computation becomes increasingly expensive,
even if the sparseness inherent to the problem is exploited [21]. So we perform
local bundle adjustment, i.e. only a subset of keyframe poses are adjusted. Sim-
ilarly to [14], we choose the last 5 keyframes, while the frames beyond these are
locked and not moved. All 3D points visible in the last keyframes are considered,
together with all measurements ever made of these points. That is, the reprojec-
tion errors are accumulated for the entire tracks backwards in time, regardless
of whether the views where the reprojections reside are locked.

5 Experimental Results

In Figure 3 we show the final camera pose obtained by the proposed nonlinear
refinement for the cases depicted in Figure 2. We compare the true CVloo score,
calculated in the greedy way, with the approximated GNCVloo score proposed in
this paper. The optimal values of λ obtained with the CVloo score are respectively
0.05 and 0, while the values obtained with the GNCVloo score are respectively
0.05 and 0.02. It can be seen that the approximation is close to the true score.

We show the effectiveness of our method on synthetic unstable sequences.
The dataset consists of 100 points randomly scattered in a sphere of radius 1
meter, centred at the origin. We consider three different scenarios. In the first
setting, views are generated by placing cameras along a line in the z-direction,
at a distance from the origin of 5.5 up to 7 meters approximately. In the second
setting, in order to simulate more unstable cases, the rectilinear trajectory is
perturbed along the x-direction, applying Gaussian noise of standard deviation
0.8. In the third setting the trajectory is perturbed in the three directions, with
the same noise. In the three cases the number of views is fixed to 10, and Gaussian
noise with standard deviation 0.5 is added to the image points.

For each scenario we compare results in terms of distance of the estimated
cameras to the ground truth, considering four cases: a) without using nonlin-
ear refinement of camera pose, b) using nonlinear refinement, but without the
smoothing penalty, c) with the smoothing term and λ carefully set by hand and
kept constant for the whole sequence, and finally d) with λ estimated by CV, as
proposed in this paper. For each scenario 50 independent trials are carried out.

Results are shown in Table 2. The distances between the camera centres of
the estimated cameras and the ground truth are reported. In the third scenario



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

Smoothing parameter λ

C
V

lo
o s

co
re

 / 
G

N
C

V
lo

o s
co

re
 (

pi
xe

ls
)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.385

0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425

Smoothing parameter λ

C
V

lo
o s

co
re

 / 
G

N
C

V
lo

o s
co

re
 (

pi
xe

ls
)

−0.1 0 0.1 0.2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

Smoothing parameter λ

C
V

lo
o s

co
re

 / 
G

N
C

V
lo

o s
co

re
 (

pi
xe

ls
)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Smoothing parameter λ

C
V

lo
o s

co
re

 / 
G

N
C

V
lo

o s
co

re
 (

pi
xe

ls
)

−2.2 −2 −1.8 −1.6 −1.4 −1.2

−0.5

−0.4

−0.3

−0.2

−0.1

0

Fig. 3. In the left column, comparison between the true CVloo score (blue thick line)
and its approximation (red dashed line) in the examples of Figure 2. The central
column shows a zoom around the minimum. The vertical lines indicate the CVloo score
minimum (black line) and the GNCVloo score minimum (black dashed line). In the
right column, the final pose estimate (green, thin line). In black thick line the ground
truth for the previous and current pose, in red dashed line the initial pose estimated
by RANSAC.

without nonlinear pose refinement the computation stopped before estimating all
cameras in 20% of cases. Adding the smoothing penalty improves stability and
accuracy in pose estimation, and our automatic method gives the best results.

Setting 1 Setting 2 Setting 3
a b c d a b c d a* b c d

mean 0.1704 0.0916 0.0793 0.0566 0.0766 0.110 0.091 0.044 0.052 0.072 0.090 0.067

min 0.001 0.005 0.004 0.002 0.005 0.004 0.007 0.001 0.003 0.003 0.005 0.004

max 1.018 1.021 0.301 0.383 0.582 0.707 0.614 0.543 0.396 0.479 0.545 0.465

Table 2. Results on synthetic scenes. Mean, minimum and maximum distance of esti-
mated optical centres from the ground truth (in meters) for the three synthetic settings
and the cases a) without using nonlinear refinement, b) using nonlinear refinement, but
without the smoothing term, c) with the smoothing term and λ carefully set by hand
and d) with λ estimated by CV. (*) In this setting 20% of the cases fails.

For real sequences, we first show the results from a video, Campus, taken by a
calibrated handheld camera (see Figure 4). The trajectory executed is an initial
rotation, then a rectilinear part and finally another small rotation, without caring
too much about shaking. From 1608 frames of resolution 784 × 516, without
smoothness the reconstruction process stops at the 47th keyframe, as already



Fig. 4. Thumbnails of the Campus (top) and Laboratory (bottom) sequences.

displayed in Figure 1. Using the proposed method, instead, all the sequence
can be processed, with 135 keyframes extracted, and 5000 points reconstructed
with a mean reprojection error of 0.53 pixel. The 3D map produced, with the
estimated camera trajectory, can be seen in Figure 5.

The second video, Laboratory, is taken with a camera mounted on a Un-
manned Autonomous Vehicle (UAV), in an indoor setting. It is made up of 929
frames of resolution 576 × 784 (see Figure 4). 89 keyframes are calibrated, and
the final 3D map is composed of 4421 points (Figure 5) with a mean reprojection
error of 0.64 pixel. With no smoothness, the reconstruction process stops in the
last rotation.

6 Conclusions

Local camera pose estimation might often be unstable. We proposed adding a
smoothing penalty on the camera trajectory and automatically estimating the
smoothing parameter, usually manually fixed, using Cross-Validation. The non-
iterative closed-form we proposed allows us to solve the problem very efficiently,
dropping the complexity one order of magnitude below the straightforward appli-
cation of Cross-Validation. Experimental results show that the method is effec-
tive in improving accuracy and stability in the reconstruction process, preventing
several failure cases.

References

1. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. 2nd edn.
Cambridge University Press (2003)

2. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In:
Proc. Sixth IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR’07), Nara, Japan (November 2007)



Fig. 5. In the left column, top view of the 3D maps of Campus (top) and Laboratory

(bottom) sequences; in red the estimated cameras. The right column show a perspective
view of respectively Campus and Laboratory maps, where for visualisation understand-
ing one keyframe of the sequence is superimposed.

3. Pollefeys, M., Gool, L.V., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch,
R.: Visual modeling with a hand-held camera. International Journal of Computer
Vision 59(3) (2004) 207–232

4. Clipp, B., Welch, G., Frahm, J.M., Pollefeys, M.: Structure from motion via a two-
stage pipeline of extended kalman filters. In: British Machine Vision Conference.
(2007)



5. Fiore, P.D.: Efficient linear solution of exterior orientation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 23(2) (2001) 140–148

6. Haralick, R., Lee, C., Ottenberg, K., Nolle, M.: Review and analysis of solutions
of the three point perspective pose estimation problem. International Journal of
Computer Vision 13(3) (1994) 331–356

7. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: a paradigm model fitting
with applications to image analysis and automated cartography. Communications
of the ACM 24(6) (June 1981) 381–395

8. Gentle, J.E., Hardle, W., Mori, Y.: Handbook of Computational Statistics.
Springer-Verlag (2004)

9. Eade, E., Drummond, T.: Scalable monocular vision. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. (2006) 469–476

10. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single
camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence
29(6) (June 2007) 1052–1067

11. Torr, P.H.S.: Bayesian model estimation and selection for epipolar geometry and
generic manifold fitting. International Journal of Computer Vision 50(1) (2002)
35–61

12. Thomahlen, T., Broszio, H., Weissenfeld, A.: Keyframe selection for camera motion
and structure estimation from multiple views. In: Proceedings of the European
Conference on Computer Vision. (2004) 523

13. Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. Volume 2. (2004)
652–659

14. Hengels, C., Stewénius, H., Nistér, D.: Bundle adjustment rules. In: Photogram-
metric Computer Vision. (September 2006)

15. Olsen, S.I., Bartoli, A.: Using priors for improving generalization in non-rigid
structure-from-motion. In: British Machine Vision Conference. (2007)

16. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press
(1995)

17. Wahba, G., Wold, S.: A completely automatic french curve: Fitting spline functions
by Cross-Validation. Communications in Statistics 4 (1975) 1–17

18. Shi, J., Tomasi, C.: Good features to track. Technical Report 93-1399, Department
of Computer Science, Cornell University, Ithaca, NY 14853-7501 (November 1993)

19. Royer, E., Lhuillier, M., Dhome, M., Lavest, J.: Monocular vision for mobile robot
localization and autonomous navogation. International Journal of Computer Vision
74(3) (2007) 237–260

20. Lourakis, M., Argyros, A.: The design and implementation of a generic sparse
bundle adjustment software package based on the levenberg-marquardt algorithm.
Technical Report 340, Institute of Computer Science - FORTH, Heraklion, Crete,
Greece (Aug. 2004) Available from http://www.ics.forth.gr/~lourakis/sba.

21. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment
- a modern synthesis. In: ICCV ’99: Proceedings of the International Workshop on
Vision Algorithms. (2000) 298–372

A Deriving a Non Iterative Formula for GNCVloo

We show that there exists a non-iterative formula that exactly estimate (9).



First, given the smoothing parameter λ, δ̂ in Equation (8) is solved through:

δ̂ = argmin
δ

Ẽ(δ, λ)

= argmin
δ

∥
∥
∥
∥

[
(1 − λ)C

λC

]

δ −

[
(1 − λ)s

λt

]∥
∥
∥
∥

2

2

= ((1 − λ)2CT
C + λ2

C
T
C)−1

C
T((1 − λ)2s + λ2t)

=
1

(1 − λ)2 + λ2
(CT

C)−1
C

T((1 − λ)2s + λ2t)

=
1

‖ω‖2
2

C
+
Rωs , (11)

where C+ is the pseudo-inverse of C, ωT = [(1 − λ) λ], ωT
s = [(1 − λ)2 λ2] and

R = [s t].
We define ej as a zero vector with one at the j-th element and Kj = I −

diag(ej). We recall that KjKj = Kj and KT
j = Kj . Then δ̂(j) is solved through:

δ̂(j) = arg min
δ

∥
∥
∥
∥

[
(1 − λ)KjC

λKjC

]

δ −

[
(1 − λ)Kjs

λKjt

]∥
∥
∥
∥

2

2

=
1

‖ω‖2
2

(KjC)+KjRωs . (12)

δ̂(j) can be expressed alternatively as this following Lemma says:

Lemma 1. δ̂(j) as defined by Equation (12) is given by the following equation:

δ̂(j) =
1

‖ω‖2
2

C
+

R̃jωs, with R̃j = KjR +
‖ω‖2

2

‖ωs‖2
2

(I − Kj)Cδ̂(j)ω
T
s . (13)

Proof. We start by expanding the right-hand side of Equation (13):

1

‖ω‖2
2

C
+
R̃jωs =

1

‖ω‖2
2

(

C
+
KjRωs +

‖ω‖2
2

‖ωs‖2
2

C
+(I − Kj)Cδ̂(j)ω

T
s ωs

)

,

and as ωT
s ωs = ‖ωs‖

2
2 we can simplify:

1

‖ω‖2
2

C
+
R̃jωs =

1

‖ω‖2
2

(C+
KjRωs + ‖ω‖2

2C
+
Cδ̂(j) − ‖ω‖2

2C
+
KjCδ̂(j)) .

The second term reduces to δ̂(j) since C+C = I. The third term, replacing δ̂(j)

with its expression (12), expands as:

‖ω‖2
2C

+
KjCδ̂(j) = C

+
KjC (KjC)+KjRωs

= (CT
C)−1

C
T
KjC(CT

KjC)−1

︸ ︷︷ ︸

I

C
T
KjRωs

= C
+
KjRωs ,



and the overall expression simplifies to:

1

‖ω‖2
2

C
+
R̃jωs = δ̂(j) .

�

The projection of the j-th data with the global model δ̂ is cT
j δ̂ and with the

partial model δ̂(j) is cT
j δ̂(j). Using Equations (11) and (12) we can rewrite these

projections as:

cT
j δ̂ =

1

‖ω‖2
2

cT
j C

+
Rωs =

1

‖ω‖2
2

ĉT
j Rωs , (14)

cT
j δ̂(j) =

1

‖ω‖2
2

cT
j C

+
R̃jωs =

1

‖ω‖2
2

ĉT
j R̃jωs , (15)

with ĉT
j the j-th row of the hat matrix Ĉ = CC+.

We note that (I−Kj)C = ejc
T
j . Taking the difference between the two predictions

and factoring we obtain:

cT
j δ̂ − cT

j δ̂(j) =
1

‖ω‖2
2

ĉT
j (R − R̃j) ωs

=
1

‖ω‖2
2

ĉT
j

(

R − KjR −
‖ω‖2

2

‖ωs‖2
2

ejc
T
j δ̂(j)ω

T
s

)

ωs

=
1

‖ω‖2
2

ĉT
j (ejr

T
j ωs − ‖ω‖2

2 ejc
T
j δ̂(j))

=
1

‖ω‖2
2

ĉjj(r
T
j ωs − ‖ω‖2

2 cT
j δ̂(j)) ,

where ĉjj is the j-th diagonal element of the matrix Ĉ. Rearranging the terms
gives:

cT
j δ̂ −

1

‖ω‖2
2

ĉjjr
T
j ωs = (1 − ĉjj)c

T
j δ̂(j) .

Subtracting (1 − ĉjj)sj on both sides we have:

cT
j δ̂ −

1

‖ω‖2
2

ĉjjr
T
j ωs − sj + ĉjjsj = (1 − ĉjj)(c

T
j δ̂(j) − sj) ,

from which:

cT
j δ̂(j) − sj =

1

1 − ĉjj

(

cT
j δ̂ − sj + ĉjj

(

sj −
1

‖ω‖2
2

rT
j ωs

))

.

We observe that cT
j δ̂(j) − sj is the residual vector of the j-th measurement, as in

Equation (9). Replacing δ̂ from Equation (11) and summing the squared norm
over j we get, after some rewriting, the non-iterative formula (10):

Ẽ2
g (λ) =

1

n

∥
∥
∥
∥
∥
diag

(

1

1− diag (Ĉ)

)
(

Ĉk− s − diag (diag (Ĉ))(k − s)
)
∥
∥
∥
∥
∥

2

2

.


