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Abstract

The prediction sum of squares is a useful statistic for comparing different models. It is based on the principle

of leave-one-out or ordinary cross-validation, whereby every measurement is considered in turn as a test set, for

the model parameters trained on all but the held out measurement. As for linear least squares problems, there is

a simple well-known non-iterative formula to compute the prediction sum of squares without having to refit the

model as many times as the number of measurements. We extend this formula to cases where the problem has

multiple parameter or measurement sets.

We report experimental results on the fitting of a warp between two images, for which the number of deformation

centres is automatically selected, based on one of the proposed non-iterative formulae.

Keywords: PRESS, cross-validation, registration, image warp, deformation centre, Thin-Plate Spline.

1 Introduction

The prediction sum of squares (press) is a statistic based on the leave-one-out technique. It was proposed by Allen

in 1974 [1], and is typically used to compare different models. It is equivalent to the sum of studentized residuals,

and can be extended to select parameters such as the regularization weight in smoothing splines, as shown by Wahba

et al. [12]. The press is a statistic that depends on a chosen cost function, and is in a sense complementary to this

cost function. The cost function often expresses the discrepancy between measurements and the values predicted by

a parametric model. While minimizing the cost function allows one to find the model parameters, it is clear that the

most complex model always has the lowest residual error. In other words, the ‘best’ model cannot be selected based

on the residual error only. The press statistic, however, does not depend on some particular model parameters, but

on the model itself. As with techniques based on cross-validation, it expresses to which extent a particular model

is able to generalize to new data. The press should therefore be used as a measure of predictivity to compare and

select the ‘best’ model, while minimizing the cost function gives the parameters of a particular model.



One of the main problems of cross-validation techniques is their computational cost. For the case of regular linear

least squares, it is well-known that there is a simple non-iterative formula giving the press without having to solve

as many problems as there are measurements1 [6]. This has been derived for several variants of the basic linear least

squares problem. For instance, Tarpey [11] examines the case of restricted least squares.

We derive non-iterative press formulae for those cases with multiple parameter or measurement sets. Multiple

parameter sets means that the same measurement has several predictions, while multiple measurement sets means

that a prediction is compared to several measurements. We assume that the model is well constrained by the

measurements, or in other words, that the design matrix in the linear least squares system of equations has full rank.

The case of regularized least squares is left as future work. We report experimental results showing how one of the

proposed non-iterative press formulae can be used to assess the fit of an inter-image warp we proposed in [3], and to

automatically select the number of deformation centres for this warp. In this case, the warp with different numbers

of deformation centres gives the different models to be compared. The ‘best’ model, and thus the ‘best’ number of

deformation centres, is selected as the one which minimizes the press statistic.

Notation. In general, we write vectors in bold fonts, e.g. x, matrices in sans-serif and calligraphic fonts, e.g. A, W,

and scalars in italics, e.g. m. Matrix inverse is written as in A−1. Matrix and vector transpose are written as in A>

and x>. The homogeneous coordinates of a 2D point q are written as a (3× 1) vector overlaid with a tilde, as in q̃.

Organization of the article. We review the non-iterative press formula for standard linear least squares in §2.

The extension to linear least squares problems with multiple parameter or measurement sets is given in §3. The

proofs of some key results are reported in §4. An application to estimating an image warp is eventually given in §5,

and our conclusion in §6.

2 Background: Standard Linear Least Squares

Let x be the parameter vector, A the design matrix with m rows aj , j = 1, . . . ,m and b the (m × 1) measurement

vector. The j-th measurement bj is thus predicted by the model as a>j x. Consider a regular linear least squares cost

function:

E2
STD(x) def=

1
m

m∑
j=1

(
a>j x− bj

)2
=

1
m
‖Ax− b‖2

2,

where ‖u‖2 is the vector two-norm i.e., ‖u‖2 =
√

u>u. The solution to the problem minx E2
STD(x) is:

x̄ = A†b,

1‘Non-iterative formula’ emphasizes the fact that explicitly training the model with all but one measurement and testing on this
measurement is not required.



with A† the matrix pseudo-inverse. The press PSTD is defined as follows. The model is fitted without the j-

th measurement giving the parameter vector x̄(j) and is used to predict the j-th measurement as a>j x̄(j). This

prediction is compared against the actual measurement bj . This is averaged over the m measurements, giving:

P2
STD

def=
1
m

m∑
j=1

(
a>j x̄(j) − bj

)2
.

Directly using this formula for estimating the press would be extremely inefficient since the model has to be fitted

m times to compute all the x̄(j). However, it is well-known that there is a non-iterative formula giving the press as:

P2
STD =

1
m

∥∥∥∥Γ(I− Â
)−1 (

Â− I
)
b
∥∥∥∥2

2

, (1)

with Â = AA† the hat matrix, I the identity matrix, and where Γ(B) keeps only the diagonal entries of the square

matrix B. Note that
(
Â− I

)
b = Ax̄− b is the residual vector. A proof of formula (1) is given in e.g. [2, 10].

3 Multiple Parameter or Measurement Sets

This section brings our main results. Proofs are reported in §4. We deal with four cases of parameter and measurement

sets. Standard linear least squares is the first case, and corresponds to a single parameter set and a single measurement

set. In this case, the model parameters and the measurements are both contained in a vector, respectively x and

b. In the multiple parameter sets case, the model parameters are contained in a matrix L, each column of which

being a parameter set. The single measurement set b is replicated using an outer vector product as bω>, where ω

is an (n× 1) vector that scales the replicated measurements. In the multiple measurement sets case, each prediction

matches multiple measurements in a matrix R. The single parameter set is replicated using an outer vector product

as xω>.

Our basic assumption to formulate the press for those different cases, is that the measurements lying on the

same row of the ‘measurement matrix’ R (whether replicated from a single measurement set or not) are linked, and

should be held out simultaneously.

Multiple parameter sets, single and multiple measurement sets. We first deal with the multiple parameter

and measurement sets case (MPM). This kind of linear least squares problems has n sets of parameters and measure-

ments represented in matrix form: L is the parameter matrix and R is the measurement matrix with rows rj . They

both have n columns, each being respectively a parameter and a measurement set, the former linked to the latter

through the design matrix A. The least squares cost function is as follows:

E2
MPM(L) def=

1
m

m∑
j=1

∥∥∥a>j L− r>j
∥∥∥2

2
=

1
m
‖AL− R‖2

F ,



where ‖U‖F is the matrix Frobenius norm i.e., ‖U‖F
def=
√

tr(U>U). The solution to the problem minL E2
MPM(L) is:

L̄
def= A†R.

The press is defined by:

P2
MPM

def=
1
m

m∑
j=1

∥∥∥a>j L̄(j) − r>j
∥∥∥2

2
,

and can be computed efficiently with the following non-iterative formula:

P2
MPM =

1
m

∥∥∥∥Γ(I− Â
)−1 (

Â− I
)

R

∥∥∥∥2

F
, (2)

which is exactly as (1) for the standard linear least squares case, except that the vector two-norm is replaced by the

matrix Frobenius norm. This is demonstrated very easily by following the proof in [2, 10], replacing the vector by the

matrix norm. The intuition is that each column of R is independent, in the sense that the corresponding parameters

lie in a different column in L, and that ‖U‖2
F = ‖u1‖2

2 + ‖u2‖2
2 + . . . , where u1, u2, . . . , are the columns2 of matrix

U. The problem can thus be split into n standard linear least squares problems, and their press combined together

to give (2).

The case of multiple parameter sets and single measurement set in b is a special case of the above derivation.

Formula (2) holds, replacing the measurement matrix R by the replicated measurement vector bω>, where ω contains

scaling factors.

In the above definition of the press, we consider that the rows of the measurement matrix must be held out

simultaneously. For the multiple parameter sets case, holding out each measurement independently makes little

difference, since the independence properties of the parameters are preserved. Only the normalization factor would

change in the press formula, from 1
m to 1

nm .

Single parameter set, multiple measurement sets. We investigate the case where there is a single parameter

vector with multiple measurement sets (MM). In other words, each model prediction matches several measurements.

This is modeled by the following cost function:

E2
MM(x) def=

1
m
‖CL− R‖2

F with L = xv>,

where C is the m row design matrix, and v is the ‘all-one’ vector i.e., v> = (1 · · · 1). This is a particular case of

the multiple scaled measurement sets described below. We can obviously not apply the standard press formula3

since n linked measurements must be removed jointly. Holding out only one measurement at a time underestimates
2This obviously also holds with the rows.
3This formula is (1) and could be direcly (but incorrectly) applied to the ‘vectorized’ formulation (8) of the problem.



the press. The difference with the true press is more involved than just a scale factor as in the above multiple

parameter sets case, since the parameters are dependent, and their estimated values would change.

In the next paragraph, we deal with a more general case, whereby each measurement set is scaled differently. By

setting the (n × 1) scaling vector ω to the all-one vector v, and noting that ‖v‖2
2 = n the solution to minx E2

MM(x)

is obtained from the general solution (5) as:

x̄ =
1
n

C†Rv.

The press is defined by:

P2
MM

def=
1
m

m∑
j=1

∥∥∥c>j x̄(j)v
> − r>j

∥∥∥2
,

with cj and rj the rows of C and R respectively. The non-iterative press formula we derive is:

P2
MM =

1
m

∥∥∥∥Γ(I− Ĉ
)−1

(
1
n

ĈRV − R + Γ
(
Ĉ
)

R

(
I− 1

n
V

))∥∥∥∥2

F
, (3)

with V = vv> the ‘all-one’ (n× n) matrix. Specializing the general, scaled measurement equation (7) with ω = v to

get (3) is straightforward.

Single parameter set, multiple scaled measurement sets. This case generalizes the previous one by incor-

porating a different scale for each of the measurement sets (MSM) i.e., for each column in R, through an (n × 1)

scaling vector ω:

E2
MSM(x) def=

1
m
‖CL− R‖2

F with L = xω>. (4)

The solution to minx E2
MSM(x) is:

x̄ =
1

‖ω‖2
2

C†Rω. (5)

The press is defined by:

P2
MSM

def=
1
m

m∑
j=1

∥∥∥c>j x̄(j)ω
> − r>j

∥∥∥2

2
, (6)

and we demonstrate below that the non-iterative press formula is:

P2
MSM =

1
m

∥∥∥∥Γ(I− Ĉ
)−1

(
1

‖ω‖2
2

ĈRωω> − R + Γ
(
Ĉ
)

R

(
I− 1

‖ω‖2
2

ωω>
))∥∥∥∥2

F
. (7)

This looks like the usual direct solution (2) except that an extra ‘corrective’ term Γ
(
Ĉ
)

R
(
I− 1

‖ω‖22
ωω>

)
is added

to the residual matrix 1
‖ω‖22

ĈRωω> − R.



4 Proofs for the Multiple Scaled Measurement Sets Case

The solution to minx E2
MSM(x). We start by deriving the solution x̄ in equation (5). This equation means that x̄

is the ω weighted average of the solutions for each set of measurements. It is derived by rewriting the cost function

(4) as:

E2
MSM(x) =

1
m
‖ω ⊗ Cx− r‖2

2, (8)

where r = vect(R) is the column-wise vectorization of R, and ⊗ is the Kronecker product. From this rewriting, we

obtain:

x̄ = (ω ⊗ C)†r,

which rewrites as:

x̄ =
1

‖ω‖2
2

(
ω> ⊗ C†

)
r =

1
‖ω‖2

2

C†Rω.

The non-iterative press formula P2
MSM. The next step is to derive the non-iterative press formula (7). The

proof follows similar steps as the proof for the basic non-iterative press formula. We start from the press definition

(6). Defining ej as a zero vector with one at the j-th element and Dj
def= I −∆(ej), where ∆ constructs a diagonal

matrix from a vector, we have:

x̄(j)
def= arg min

x
‖DjCxω> − DjR‖2

F .

Note that matrix Dj has the properties:

DjDj = Dj

D>j = Dj

I− Dj = ∆(ej).

Similarly as for the solution (5), we get:

x̄(j) =
1

‖ω‖2
2

(DjC)†DjRω. (9)

The lemma we demonstrate in the next paragraph states that:

x̄(j) =
1

‖ω‖2
2

C†R̃jω, (10)

with R̃j the measurement matrix R with the j-th row replaced by its prediction c>j x̄(j)ω
>:

R̃j
def= DjR + (I− Dj)Cx̄(j)ω

>. (11)



We note that:

(I− Dj)Cx̄(j)ω
> = ∆(ej)Cx̄(j)ω

> = ejc>j x̄(j)ω
>.

The prediction of the j-th data with the global model x̄ is c>j x̄ω>. By substituting x̄ from equation (5), we get:

c>j x̄ω> =
1

‖ω‖2
2

c>j C†Rωω> =
1

‖ω‖2
2

ĉ>j Rωω>, (12)

where ĉj is the j-th row of the hat matrix Ĉ = CC†. Similarly, we rewrite the prediction of the j-th data with the

partial model x̄(j) from equation (10) as:

c>j x̄(j)ω
> =

1
‖ω‖2

2

ĉ>j R̃(j)ωω>. (13)

Taking the difference between the two predictions as rewritten in equations (12) and (13), and factorizing gives:

1
‖ω‖2

2

ĉ>j Rωω> − 1
‖ω‖2

2

ĉ>j R̃jωω> =
1

‖ω‖2
2

ĉ>j
(
R− R̃j

)
ωω>.

Using (11), we substitute R̃j = DjR + ejc>j x̄(j)ω
> which gives:

1
‖ω‖2

2

ĉ>j
(
R− DjR− ejc>j x̄(j)ω

>
)

ωω>,

which, simplifying R− DjR = ejr>j and since ω>ω = ‖ω‖2
2, transforms to:

1
‖ω‖2

2

ĉ>j
(
ejr>j ω − ‖ω‖2

2ejc>j x̄(j)

)
ω> =

1
‖ω‖2

2

ĉj,j

(
r>j ω − ‖ω‖2

2c
>
j x̄(j)

)
ω>,

where ĉj,j is the j-th diagonal element of the hat matrix Ĉ. We thus have rewritten the original prediction difference

as follows:

c>j x̄ω> − c>j x̄(j)ω
> =

1
‖ω‖2

2

ĉj,j

(
r>j ω − ‖ω‖2

2c
>
j x̄(j)

)
ω>.

Rearranging the terms gives:

c>j x̄ω> =
1

‖ω‖2
2

ĉj,jr>j ωω> + (1− ĉj,j) c>j x̄(j)ω
>.

Adding r>j
(
ĉj,jI− I− 1

‖ω‖22
ĉj,jωω>

)
on both sides gives:

c>j x̄ω> + r>j

(
ĉj,jI− I− 1

‖ω‖2
2

ĉj,jωω>
)

= (1− ĉj,j)
(
c>j x̄(j)ω

> − r>j
)

,



from which:

c>j x̄(j)ω
> − r>j =

1
1− ĉj,j

(
c>j x̄ω> − r>j + r>j ĉj,j

(
I− 1

‖ω‖2
2

ωω>
))

.

We observe that c>j x̄ω> − r>j is the residual vector for the j-th measurement. Replacing x̄ from equation (5) and

summing the squared norm over j, we get the non-iterative press formula:

P2
MSM =

1
m

∥∥∥∥Γ(I− Ĉ
)−1

(
1

‖ω‖2
2

ĈRωω> − R + Γ
(
Ĉ
)

R

(
I− 1

‖ω‖2
2

ωω>
))∥∥∥∥2

F
.

The lemma. We want to show that x̄(j) as defined by equation (9) is given by equation (10). We start by expanding

the right-hand side of equation (10) by substituting R̃j from (11), giving:

1
‖ω‖2

2

C†R̃jω =
1

‖ω‖2
2

C†DjRω +
1

‖ω‖2
2

C†(I− Dj)Cx̄(j)ω
>ω

=
1

‖ω‖2
2

C†DjRω + C†Cx̄(j) − C†DjCx̄(j),

since ω>ω = ‖ω‖2
2. The second term reduces to x̄(j) since C†C = I. By replacing x̄(j) by its expression (9), the third

term expands as:

C†DjCx̄(j) =
1

‖ω‖2
2

(
C>C

)−1
C>DjC

(
C>DjC

)−1
C>DjRω

=
1

‖ω‖2
2

C†DjRω,

and the overall expression simplifies to:

1
‖ω‖2

2

C†R̃jω = x̄(j).

5 Application to Estimating Rigid Affine Thin-Plate Spline Warps

A warp is a geometric R2 → R2 transformation matching corresponding pixels between two images. Estimating a

warp from point correspondences in two images is one of the most important problems in fields such as computer

vision, medical image analysis, photogrammetry and augmented reality. The warp is often parameterized by some

smooth transformation driven by deformation centres. This section shows an application of the non-iterative press

formula for multiple scaled measurement sets to the problem of assessing the quality of an image warp called the

Rigid Affine Thin-Plate Spline Warp (RA-Warp), that we originally proposed in [3]. We show that the number of

deformation centres can be selected by minimizing the press, which corresponds to maximizing the predictivity of

the warp. The fact that the RA-Warp is an empirical model of the image flow field implies that the fitting residuals



do not follow a simple parametric noise model, which rules out ‘classical’ model selection techniques such aic, bic

and mdl [7]. In our previous work [2], we showed how leave-one-out cross-validation (as described in §2 i.e., for a

single parameter set and a single measurement set) can be used to select the regularization parameter of a deformable

affine warp.

5.1 The RA-Warp and its press

A warp is an R2 to R2 function that models the deformation or flow field between two images. The RA-Warp

is dedicated to the case of two images of a rigid smooth surface, and models the cameras as affine i.e., parallel,

projections. An example is shown in figure 1.

Figure 1: The two example images we use, overlaid with the m = 70 point correspondences and corresponding
epipolar lines. These two images show a bed sheet wrapped around a chair. They were taken while strongly zooming,
making the camera close to affine. The bed sheet remained still between the two snapshots and thus only the relative
position and orientation of the camera changed. The epipolar lines depend on this relative camera motion which is
computed from the point correspondences.

Let q ∈ R2 be the coordinates of a point in the first image. The RA-Warp depends on a parameter vector δ ∈ Rl

and writes as:

W(q; δ) def= Sq̃ + τ(q; δ)s with q̃> =
(
q> 1

)
,

where τ is an R2 to R Thin-Plate Spline as derived by Duchon [5], and (S; s) are camera parameters4 that we estimate

from image point correspondences as detailed in appendix A. Note that s is the direction of the epipolar lines in
4These are related to the parameters of the second camera matrix in the canonical basis of the 3D space for which the first camera

matrix is (I 0). More specifically, S is an affine transformation between the two images related to some arbitrary reference plane, and s
is the epipole in the second image, lying at infinity.



the second image. Without loss of generality, we normalize it using ‖s‖2
2 = 1. This warp guarantees that the points

move along epipolar lines. Other types of smooth functions could be used for τ , such as a tensor-product of spline

functions.

The parameter vector δ of the Thin-Plate Spline τ contains the depths of some l deformation centres. The

Thin-Plate Spline is written τ(q; δ) = `>qYδ, where Y is a constant matrix depending on the deformation centres in

the first image, and `q is a nonlinear lifting function depending on point q. Details on the derivation of τ are given

in appendix B.

Given m point correspondences qj ↔ q′j , the camera parameters (S; s) and the deformation centres in Y, we

estimate the parameter vector δ by minimizing the following cost function, measuring the euclidean distance between

the points in the second image and those transferred by the warp from the first image:

E2
RA(δ) def=

1
m

m∑
j=1

‖W(qj , δ)− q′j‖2
2 =

1
m

m∑
j=1

‖Sq̃j + τ(qj ; δ)s− q′j‖2
2. (14)

Substituting the expression of the Thin-Plate Spline τ , we get:

E2
RA(δ) =

1
m

m∑
j=1

∥∥∥Sq̃j +
(
`>qj
Yδ
)
s− q′j

∥∥∥2

2
.

Transposing and gathering all the measurements in matrices Q̃ and Q′ whose rows are q̃j and q′j respectively, and

using the vectors `qj for the rows of matrix M, gives:

E2
RA(δ) =

1
m

∥∥∥Q̃S> +MYδs> −Q′
∥∥∥2

F
.

We identify this as a multiple scaled measurement sets linear least squares problem, as defined by equation (4). We

get the solution from equation (5) as:

δ̄ = (MY)†
(
Q′ − Q̃S>

)
s, (15)

since ‖s‖2
2 = 1. Using the non-iterative press formula (7), we obtain the press statistic for the RA-Warp as:

P2
RA

def=
1
m

∥∥∥∥Γ(I− M̂Y
)−1 (

M̂Y
(
Q′ − Q̃S>

)
ss> −Q′ + Q̃S> + Γ

(
M̂Y

)(
Q′ − Q̃S>

)(
I− ss>

))∥∥∥∥2

F
. (16)

5.2 Estimation Algorithm

In practice, we are given a set of point correspondences from which we can estimate the camera parameters (S; s).

We do not however know how many deformation centres l are needed, and where to place them in the first image.

A sensible choice, though heuristic, is to choose as deformation centres the vertices of a regular, square grid located

in the vicinity of the data points. Choosing the number of deformation centres is more critical: underestimating l



makes the warp too constrained to explain the measurements, while overestimating l makes it too flexible, possibly ill-

conditioned, with bad predictivity. We propose to use the press statistic in order to choose the number of deformation

centres. We start with a coarse square control grid of, say, lmin = 22 = 4 deformation centres, and subdivide it while

monitoring the press, until the maximum possible number of deformation centres lmax = b
√

m− 1c2 is reached

(which guarantees that the design matrix in the linear least squares systems is not rank deficient). Note that there

is no guarantee for the press to be a convex function of l, even though it very often is, in practice.

5.3 Experimental Results

For the example data shown in figure 1, we have m = 70 point correspondences. We thus try to fit the warp driven

by grids of lmin = 4, 9, 16, 25, 36, 49, 64 = lmax deformation centres. The fitting Root Mean Square Residual (rmsr)

and press as functions of the number of deformation centres5 are shown in figure 2. They were computed using all

the 70 point correspondences.
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Figure 2: The fitting residual (rmsr, thin curve) and prediction sum of squares (press, thick curve) as functions of
the number of deformation centres. The vertical line shows the selected number of deformation centres corresponding
to the minimum press. The two graphs are similar: the right one is a zoom on the left one.

We observe that the residual rmsr decreases as the number of deformation centres increases. This is to be expected

since the most parameters in the model the least the fitting error. The press decreases until 16 deformation centres

are reached, and then grows as the number of deformation centres increases beyond 16. This is explained as follows:

for less than 16 deformation centres, the warp is not flexible enough to model the actual image deformations, while

for more than 16 deformation centres, the warp is too flexible and is less and less well constrained by the point

correspondences. In both cases, it fails to accurately capture the deformation, and thus does not interpolate well the

data leading to a bad predictivity.
5The rmsr ERA(δ̄) is given by evaluating the transfer error of equation (14) at the optimal solution δ̄ given by equation (15). The

press PRA is given by equation (16).



The so-called flow field is the set of displacement vectors for each pixel in one of the two images. The flow field

sub-sampled to 1
202 pixels is shown in figure 3 for different numbers of deformation centres. Noticeable differences can

9 deformation centres 16 deformation centres 25 deformation centres

Figure 3: The estimated flow field for different numbers l of deformation centres. The solution minimizing the press
is with l = 16 deformation centres.

be seen, though it is difficult to visually figure out which solution is the best one. This is better seen by observing

the color discrepancy image, computed by warping the second image onto the first one and taking the absolute value

of their difference. This is shown in figure 4 over a region of interest defined as the area covered by the bed sheet

in the source image. The color discrepancy, computed as the Root Mean Square of the color discrepancy image, is

9 deformation centres 16 deformation centres 25 deformation centres
color discrepancy: 67.02 color discrepancy: 59.90 color discrepancy: 63.84

Figure 4: The color discrepancy images for different numbers l of deformation centres. Black indicates low discrepancy,
and white indicates high discrepancy. The solution minimizing the press is with l = 16 deformation centres.

lower for 16 deformation centres than for 9 and 25. It also is visually seen that for 16 deformation centres, only the

area under the arm of the chair shows high discrepancy, while the rest of the bed sheet area is correctly registered,



which is not the case for 9 and 25 deformation centres.

Finally, we report an experiment illustrating to which extent the press statistic is influenced by the number of

data points. We drew random subsets of m′ = 5, . . . , 70 data points. For each subset, we computed the ‘best’ number

of deformation centres, chosen in {4, 9, . . . , b
√

m′ − 1c2}. Average values over 1,000 different subsets for each value

of m′ were computed. They are plotted on the graph shown in figure 5, along with the standard deviation.
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Figure 5: This graph shows the average and standard deviation of the number of selected deformation centres based
on the prediction sum of squares (press) as a function of the number of data points.

We observe that as the number of data points increases, the number of selected deformation centres increases.

The slight decrease as m′ → m is due to the fact that the total number of data points is approached. What can be

first noticed is that for m′ ≥ 40 the selected number of deformation centres is consistent, always being l = 16. For

16 < m′ < 40, the selected number of deformation centres grows from 4 to 9 (m′ > 16 is a necessary condition to

select 16 deformation centres) For 4 < m′ ≤ 16, we consistently get l = 4 deformation centres. This makes sense

since it is difficult to infer the full image warp from such a limited amount of data, and we thus expect the selected

warp to have a low complexity. Overall, this result shows that the press selected number of centres is quite robust to

variations in the number of data points, since the same result is consistently obtained for 40 ≤ m′ ≤ 70 data points.

6 Conclusion

We derived non-iterative formulae for the Prediction Sum of Squares (press) statistic for linear least squares with

multiple parameter or measurement sets. As an application, we showed that this can be used to assess the quality of

an image warp. It also allows one to select its complexity by varying the number of deformation centres and shows

to be consistent with the color discrepancy image.

There are some open research directions with the formulae we propose. The first one is to extend them to the

case of restricted least squares, as was done in [11] for standard linear least squares. The second one is to investigate



how they can be used to select a regularization parameter for damped least squares, by replacing the hat matrix

by the influence matrix. Finally, we assumed for the warp estimation application that the deformation centres were

placed on a regular grid. A ‘stochastic deformation centre placement’ procedure could be imagined, whereby one

would draw random sets of deformation centres, and keep the one minimizing the press statistic.

A Computing the Camera Parameters

The camera parameters are extracted from the affine fundamental matrix A that can easily be estimated from point

correspondences, and which represents an implicit reconstruction of the two cameras. The affine fundamental matrix

is partitioned as:

A def=


0 0

ı
0 0

>

 with >
def= (c d e) and ı>

def= (a b). (17)

Estimating the affine fundamental matrix. We give a simple procedure for estimating the affine fundamental

matrix by minimizing the transfer error i.e., the sum of squared distances between the epipolar lines and the data

points in the second image. Even though there exist a maximum likelihood algorithm as described in e.g. [8], we

prefer to minimize the transfer error for the sake of consistency with the cost function (14) used next to estimate the

RA-Warp. The problem can be written:

min
A

m∑
j=1

d2
⊥(q′j ,Aq̃j).

Expanding the point to line orthogonal distance d⊥ by its expression and replacing A by its expression (17), we get:

min
ı,

1
‖ı‖2

m∑
j=1

(>q̃j + ı>q′j)
2.

This is not the most common minimization problems one meets. The difficulty stems from the leading factor. In

order to get rid of it, we fix the arbitrary scale of the fundamental matrix using ‖ı‖2 = 1. This makes sense since

‖ı‖2 cannot vanish for otherwise A would become rank one. The problem turns into a constrained homogeneous

linear least squares minimization:

min
ı,

m∑
j=1

(>q̃j + ı>q′j)
2 s.t. ‖ı‖2 = 1.

We rewrite the problem in matrix form:

min
ı,

‖Q′ı + Q̃‖2 s.t. ‖ı‖2 = 1,



where the rows of matrices Q̃ and Q′ are q̃j and q′j respectively. Setting  = −Q̃†Q′ı, substituting in the previous

equation and factorizing gives:

min
ı
‖(I− Q̃Q̃†)Q′ı‖2 s.t. ‖ı‖2 = 1,

that we solve using the standard method based on the Singular Value Decomposition, as described for instance in [8,

A5.3].

Extracting the camera parameters. We follow the canonical realization framework of [9] for perspective cam-

eras. The canonical camera for the first image is (I 0). The canonical camera for the second image is ([ẽ′]×A ẽ′)

where ẽ′ is the epipole in the second image. In the affine case, ẽ′> def= (−b a 0), and we observe that ‖ẽ′‖ = ‖ı‖ = 1.

The camera parameters (S; s) for the second image are thus obtained as:

S def=

1 0 0

0 1 0

[ẽ′]×A = ı> and s def= e′ = (−b a)>.

B The Thin-Plate Spline

The Thin-Plate Spline is an R2 → R function driven by assigning target values αk to 2D deformation centres pk and

enforcing several conditions: the Thin-Plate Spline is the Radial Basis Function (RBF) that minimizes the integral

bending energy. The idea of using the Thin-Plate equation as an interpolation map is due to Duchon [5]. Note that

the standard R2 → R2 Thin-Plate Spline Warp of [4] (or Deformable Affine Thin-Plate Spline Warp with our naming

conventions) is obtained by stacking two Thin-Plate Splines sharing their deformation centres.

Standard parameterization. Given the l deformation centres pk in the first image, the Thin-Plate Spline is

usually parameterized by an l + 3 coefficient vector h> = ( w> f>) and a regularization parameter λ ∈ R+. These

coefficients can be computed from the target vector α. There are l coefficients in w and three coefficients in f . The

Thin-Plate Spline is given by:

η(q;h) def=

(
l∑

k=1

wk ρ(d2(q,pk))

)
+ f>q̃, (18)

where ρ(d) = d log(d) is the Thin-Plate Spline kernel function for the squared distance. The coefficients in w must

satisfie P̃>w = 0, where the rows of P̃ are the p̃k. These three ‘side-conditions’ ensure that the Thin-Plate Spline

has square integrable second derivatives. It is convenient to define the (l + 3)-vector `q as:

`>q
def= (ρ(d2(q,p1)) · · · ρ(d2(q,pl)) q̃>),



allowing the Thin-Plate Spline (18) to be rewritten as a dot product:

η(q;h) = `>q h. (19)

Interpolating the αk. Applying the Thin-Plate Spline (18) to the centre pr with target value αr gives:

(
l∑

k=1

wk ρ(d2(pr,pk))

)
+ f>p̃r = αr.

Combining the equations obtained for all the l centres with the side-conditions P̃>w = 0 in a single matrix equation

gives:


K P̃

P̃> 0


︸ ︷︷ ︸

D


w

f


︸ ︷︷ ︸

h

=


α

0


with Kr,k =

 λ r = k

ρ(d2(pr,pk)) otherwise

Adding λI to the leading block K of the design matrix D acts as a regularizer. Solving for h by inverting D is the

classical linear method for estimating the Thin-Plate Spline coefficients due to Bookstein [4]. The coefficient vector

h is thus a nonlinear function of the regularization parameter λ and a linear function of the target vector α.

A feature-driven parameterization. We express h as a linear ‘back-projection’ of the target vector α. This is

modeled by the matrix Y, nonlinearly depending on λ, given by the l leading columns of D−1:

h = Yα with Y def=

K−1

(
I− P̃

(
P̃>K−1P̃

)−1
P̃>K−1

)
(
P̃>K−1P̃

)−1
P̃>K−1

 . (20)

This parameterization has the advantages to separate λ and α and introduces units6. The side-conditions are

naturally enforced by this parameterization.

Incorporating the parameterization (20) into the Thin-Plate Spline (19) we obtain what we call the feature-driven

parameterization τ(q;α) = η(q;h) for the Thin-Plate Spline:

τ(q;α) def= `>qYα.

6While h has no obvious unit, α in general has (e.g. pixels, meters).
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