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Abstract

Bundle Adjustment is based on nonlinear least squares minimization techniques, such
as Levenberg-Marquardt and Gauss-Newton. It iteratively computes local parameter in-
crements. Line Search techniques aim at providing an efficient magnitude for these in-
crements, called the step length. In this paper, a new ad hoc Line Search technique for
solving bundle adjustment is proposed. The main idea is to determine an efficient step
length using an approximation of the cost function based on an algebraic distance. We use
the Wolfe conditions to show that our Line Search preserves the convergence properties
of the original algorithm. Our method is compared to different nonlinear optimization
algorithms and Line Search techniques under several conditions, on real and synthetic
data. The method improves the minimization process, decreasing the reprojection error
significantly faster than the other techniques.

1 Introduction

The Computer Vision community has devoted a great interest to the SfM (Structure-from-
Motion) problem for decades. Recovering the 3D scene structure and the camera motion is
an important step in a wide range of applications, such as visual SLAM (Simultaneous Lo-
calization And Mapping, e.g. [3, 14, 26]). This technique recovers the structure of the scene
and simultaneously localizes the camera in the generated map. Bundle adjustment is a non-
linear optimization process generally employed in SfM problems to refine an initial model.
The optimization is performed over a set of parameters that represents the 3D structure (3D
primitives) and the cameras. Classically, Gauss-Newton type minimization algorithms, such
as Levenberg-Marquardt [9, 12], are used to minimize the reprojection error. This criterion
is defined as the geometric distance between detected features and reprojected ones [25]. In
recent years, strategies have been developed to make this nonlinear minimization process
fast and effective. It is now even possible to use local bundle adjustment in real-time ap-
plications [14]. We propose a novel strategy to obtain a faster convergence to the minimum
(less iterations) thanks to an effective Line Search technique.
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One drawback of the LM (Levenberg-Marquardt) method is that it only calculates a di-
rection in the parameter space, but does not necessarily provide the best magnitude, called the
step length. The aim of Line Search techniques is to find an efficient displacement length for
a given direction. Many Line Search methods have been proposed, such as [1, 4, 10, 13, 18].
These techniques are hardly ever used in SfM [8, 19] since they are iterative and usually
increase the computational time compared to using a unit step length.

We propose a new Line Search technique that we call ALS (Algebraic Line Search).
It can easily be plugged in existing bundle adjustment implementations (like the general
framework described in [8]).

Thanks to an approximation of the reprojection error using an algebraic distance, we can
calculate analytically an efficient step length for each parameter increment. Algebraic dis-
tances are typically used for initialization purposes. Since better results are obtained with
a geometric reprojection error, we use an algebraic distance in one Line Search technique
only and minimize the “true” geometric reprojection error. We present two variants of our
method: Global and Two-way ALS. The former determines a single step length for all pa-
rameters, given by solving analytically a degree 3 polynomial. The latter variant defines two
step lengths: one for the cameras and one for the 3D points. It requires one to solve a de-
gree 5 polynomial. The proposed routines are low cost, efficient and can be used for visual
SLAM problems, pose estimation and any problem requiring one to minimize the reprojec-
tion error. We have experimented ALS with Levenberg-Marquardt and Dogleg Trust Region
algorithms, for calibrated and uncalibrated Batch SfM refinements. Results show that this
dynamic selection of the step length, optimal for the algebraic reprojection error, provides a
good step length for the geometric reprojection error.

Paper organization. Section 2 introduces the SfM problem and bundle adjustment. We
describe our new approach, ALS (Algebraic Line Search) in section 3. Finally, the last sec-
tion reports experimental results on both real and synthetic data. A supplementary material
describes the resolution of our Two-way ALS.

Notation. Scalars are in italics (e.g. x), vectors in bold (e.g. p), and matrices in sans-serif
(e.g. M). Ir is the r× r identity matrix. d(q,q′) is the Euclidean distance, nonlinear in ho-

mogeneous coordinates since d2(q,q′) = ‖Ψ(q)−Ψ(q′)‖2 with Ψ(q) = 1
q3

(
q1
q2

)
. Function

vect creates a vector by stacking row-wise the elements of a matrix.

2 Background and Previous Work
We consider the problem of recovering the geometry of 3D scenes from multiple 2D images
through SfM. The process is usually composed of an initial coarse reconstruction which is
later refined with Bundle Adjustment.

2.1 Structure-from-Motion Initialization

The 3D reconstruction problem aims at recovering a model of all camera poses and all the m
3D points Q j=1..m of a scene from multiple views. Camera projections are written as 3× 4
matrices Pi=1..n and can be decomposed in some metric coordinate frame, as Pi = Ki(Ri|ti),
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where Ki encodes the intrinsic parameters and (Ri, ti) represents the orientation and position
of the camera in a world coordinate frame.

There exist two main approaches to obtain an initiale estimate of the structure and mo-
tion: Incremental and Batch SfM. In this paper we use Batch SfM.

Batch Factorization SfM is based on an SVD (Singular Value Decomposition) of the
measurement matrix [21, 23]. Initial factorization techniques ([21, 23]) were affected by
missing data or outliers. Hierarchical [16] and Closure Constraints Factorizations [22, 24]
are more robust. They consider relevant sub-blocks of the measurement matrix to recover
the scene structure. These methods provide projective or affine reconstructions. To recover
a metric shape, we either do self-calibration, and find intrinsic camera parameters Ki and
the plane at infinity π∞, or only find π∞ if the Ki are already known. More details on the
procedure can be found in [8].

2.2 Bundle Adjustment
Bundle Adjustment (BA) is based on nonlinear least squares minimization in order to refine
the initial structure and camera motion. The parameter vector x to refine is composed in the
uncalibrated case, of Q j and Pi : x> =

(
p>1 , · · · ,p>n ,Q>1 , · · · ,Q>m

)
with pi = vect(Pi). For

calibrated reconstructions, we suppose that the intrinsic matrices Ki = K are equal, constant
and known. So pi is replaced by ri and ti, where Ri = R(ri) and R(θ) transforms the three
angle vector θ to a rotation matrix. We can also consider self-calibrating bundle adjustement,
that also estimate some of the intrinsics, such as the focal lengths fi.

2.2.1 The reprojection Error

In SfM, the objective function to refine is generally is the reprojection error ε(x). This
function is the sum of the squares of the distance between 2D observations (measurements
in the images) and reprojections:

ε(x) = ∑
i, j

vi j d2 (qi j,PiQ j) , (1)

where qi j is the observation of point Q j in image (camera) Pi, and vi j = 1 if the observation
exists and 0 otherwise.The algebraic distance d̃ is defined by:

d̃(q,q′) =
∥∥S[q]×q′

∥∥ , (2)

with S =
(

1 0 0
0 1 0

)
and [q]× is the matrix representation of the vector cross product. It is

agreed [7, 8] that under an appropriate normalization, cost functions based on this distance
give satisfying results, even if this distance is not geometrically or statistically meaningful.
The algebraic cost function is written as:

ε̃(x) = ∑
i, j

vi j
∥∥S[qi j]×PiQ j

∥∥2
. (3)

2.2.2 Nonlinear Least Squares Optimization

We consider the least squares optimization:

min
x∈Rp

ν(x), where ν(x) =
1
2
‖D(x)‖2 and D(x) =

 · · ·
qi j−Ψ(PiQ j)

· · ·

 (4)
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D stacks the reprojection residuals of every observation qi j (where vi j = 1) in a 1× l vector
(l < nm), ν : Rp→ R is a nonconvex and twice continuously differentiable function. We try
to find an optimum x∗ of ν for which:

∇ν(x∗) = 0. (5)

The problem is usually solved by an iterative minimization algorithm which generates a
series of displacements x0,x1, . . .xk. Under certain conditions, which depend on the algo-
rithm, the series converges to a stationary point (local or global minimizer) x∗: xk→∞→ x∗.
The sequence of xk is commonly determined by:

xk+1 = xk +αkδ k, (6)

where δ k ∈Rp is the parameter displacement given by the constrained or unconstrained opti-
mization, and αk ∈R+∗ the step length. Many strategies have been proposed to compute the
δ k, including Gradient Descent, (quasi-)Newton methods [10], Gauss-Newton, Levenberg-
Marquardt [8, 9, 15], Trust-Region such as Powell’s dogleg [11, 18, 20].

2.3 Line Search
Most of the above mentioned algorithms do not guarantee to provide the best step length in
the chosen direction δ k (in the parameter space). Line Search techniques try to determine an
efficient step length along this direction. Exact Line Search optimizes this criterion:

αk = arg min
αk>0

ε(xk +αkδ k). (7)

Unfortunately, common problems have a nonlinear cost function. Equation (7) is thus
not easy to solve. Inexact Line Search is more interesting in this case. Most of the Inexact
LS techniques start with an initial step length and refine it iteratively such that it verifies the
Wolfe or Goldstein conditions [17].

2.3.1 The Wolfe conditions

The Wolfe conditions are usually employed together with iterative displacements to ensure
the convergence to a minimum. Since along a descent displacement δ k, multiple valid step
lengths exist, the Wolfe conditions permit to select those that decrease sufficiently the cost
function. The first Wolfe condition, also known as Armijo criterion, guaranties that the
current step provides a sufficient decrease of the cost function:

ν(xk+1)≤ ν(xk)+ω1αkg>k δ k (8)

where gk = J>k D(xk) with jacobian Jk = ∂D
∂xk

(xk) and 0 < ω1 < 1. This condition constrains
huge descent displacements to decrease even more the cost function, and thus avoid to choose
long steps which provide a limited decrease (adjustable with ω1).

The second Wolfe condition (known as the curvature condition) coerces the LS algorithm
to choose at each iteration, a step which minimizes the curvature of the function:∣∣∣g>k+1δ k

∣∣∣≤−ω2g>k δ k (9)

with 0 < ω1 < ω2 < 1. These two user-specified parameters characterize the enhancement
that each step length guess has to realize to be selected.
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Zoutendijk theorem [17] defines that under the Wolfe conditions, Gauss-Newton tech-
niques are guaranteed to converge (to a stationary point), since limk→∞ ‖∇ν(xk)‖ = 0. One
can also prove the convergence of Levenberg-Marquardt under special restrictions on the
initial damping parameter. However, these restrictions are not generally used since better
performances (speed) appear with user defined damping values.

2.3.2 Backtracking Based Line Search Techniques

The Backtracking algorithm is one of the most employed Line Search strategies. Initialized
on a first step length, it generates and evaluates iteratively a series of step length guesses and
returns the one which has the lowest error.

A number of Line Search algorithms, such as [1, 4, 13, 18], derive from the backtracking
Line Search technique. By reducing an interval, they try to find the best step length thanks
to different coefficient update rules. Frandsen et al. [4] propose two iterative Line Search
techniques (Exact and Soft LS) with quadratic interpolation of the cost function. These
methods are effective but very slow, even the soft ones. Liu and Nocedal [10] describe a
Line Search based on the Wolfe conditions in a Limited quasi-Newton algorithm (L-BFGS).
Again, Hager and Zhang in [5] study the convergence of a conjugate gradient method with
a Line Search based on Wolfe conditions. An overview on classical Line Search techniques
employed in nonlinear optimization is given in [17, chap 3]. To summarize, all these Line
Search methods are recursive or iterative. They are time consuming since they evaluate the
error function at each iteration.

We describe our contribution in the following section: a low cost Line Search technique
which can be used to decrease computation time when minimizing a reprojection based cost
function.

3 Algebraic Line Search
Our idea is not to use the algebraic distance as the cost function of a bundle adjustment: we
keep the basic geometric distance for this. Our proposition is however to use the algebraic
distance to find an efficient step length, in a Line Search manner. We call this technique ALS
(Algebraic Line Search). We distinguish calibrated and uncalibrated bundle adjustment. The
main difference is the camera projection parametrization (either the position and orientation
of the cameras or elements of matrices Pi). A general SfM algorithm for the calibrated and
uncalibrated cases with ALS is given in Table 1.

Algebraic Line Search , expressed within the framework of Hartley and Zisserman’s
textbook [8, p.574]
Add the following substeps to step vii:
vii(1). Compute the coefficients of the Global ALS (equation (10)) or Two-way ALS (defined in the

Supplementary material) equation

vii(2). Solve the equation, check the Wolfe conditions on each solution and keep the best one (in-
cluding the basic unit step length)

vii(3). Multiply each incremental displacement subset δ = (δ>a ,δ>b ) by the selected step length

Table 1: Implementing our Algebraic Line Search within the Bundle Adjustment Levenberg-
Marquardt-based framework given in [8, p.574] (Algorithm A4.1).
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3.1 Uncalibrated Algebraic Line Search
We investigate two different approaches for ALS. The Global ALS is a Line Search technique
that aims at finding a global efficient step length for the whole parameter set (camera and
scene structure). In a different way, the Two-way ALS determines two distinct step lengths,
one for the cameras and the other for the scene structure.

3.1.1 Global Algebraic Line Search (G-ALS)

Once the optimization provides us with a step direction δ
> = (δ>P1

, · · · ,δ>Pn ,δ
>
Q1

, · · · ,δ>Qm),
with δ Pi = vect(∆Pi), we want to determine the step length α . Considering the update (6),
the algebraic reprojection error (3) becomes a function of α:

ε̃(x+αδ ) = ∑
i, j

vi j
∥∥S[qi j]×(Pi +α∆Pi)(Q j +αδ Q j)

∥∥2
. (10)

Since we search for the best step length α∗ that minimizes ε̃(x) in the previously computed
direction δ , the optimums are the real positive solutions of ∂ ε̃

∂α
= 0, given by inspecting the

roots of the polynomial:

∂ ε̃(x+αδ )
∂α

= aα
3 +bα

2 + cα +d (11)

with
a = ∑i, j vi j 2(S

[
qi j
]
×∆Pi δ Q j )

>(S
[
qi j
]
×∆Pi δ Q j )

b = ∑i, j vi j 3
(

S
[
qi j
]
× (∆Pi Q j +Piδ Q j )

)>
S
[
qi j
]
×∆Pi δ Q j

c = ∑i, j vi j

((
S
[
qi j
]
×PiQ j

)>
S
[
qi j
]
×∆Pi δ Q j +

(
S
[
qi j
]
× (∆Pi Q j +Piδ Q j )

)2
)

d = ∑i, j vi j

(
S
[
qi j
]
×PiQ j

)>
S
[
qi j
]
× (∆Pi Q j +Piδ Q j ).

The algebraic reprojection error simplifies the problem. We can now calculate the optimal
step length in closed-form. Equation (11) has three solutions and in most of our experi-
ments, only one solution was real. This Line-Search technique - optimal for the algebraic
cost function - is simple, fast and well approximates the geometric cost function. Most time
calculation of this method lies in the computation of the coefficients of equation (11). How-
ever, these coefficients are only composed of sums and multiplications and unlike classical
Line Search methods, no iterations are necessary.

3.1.2 Two-way Algebraic Line Search (T-ALS)

Since there are two different types of parameters to refine in common bundle adjustment (the
scene structure and the cameras), it sounds attractive to dissociate the step length for each
kind of parameters since they do not share the same units. We propose the Two-way ALS that
finds two step lengths α∗P and α∗Q, respectively for camera and scene structure displacements:

min
αP,αQ

∑
i, j

vi j
∥∥S [qi j]× (Pi +αP∆Pi)

(
Q j +αQδ Q j

)∥∥2
. (12)

The search for the global minimum (α∗P,α∗Q) can be performed in a fast way. Nullifying the
partial derivatives of equation (12) with respect to αP and αQ gives a system of two polyno-
mials in αP and αQ. This system can be solved using Gröbner basis with the Buchberger or
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Faugère algorithm, so that α∗P is the root of a degree 5 polynomial. α∗Q is then deduced from
α∗P. Details on the calculation are given as supplementary material.

It is important to note that T-ALS alters the direction of the displacement. This is not a
pure Line Search technique since it splits the displacement vector, for the cameras and the
structure, and searches the best algebraic step length for each one. Nevertheless, experiments
show that this modification often tends to improve the optimization speed, even sometimes
allowing the minimization engine to escape from local minima.

3.2 Calibrated Algebraic Line Search
In a metric context, the camera parameters are not defined by the whole matrix Pi but only
by orientation and translation parameters: δ

> =
(

δ
>
r1

,δ>t1 , · · · ,δ
>
rn ,δ

>
tn ,δ

>
Q1

, · · · ,δ>Qm

)
. We

use a local Euler angle parametrization for orientation displacements δ ri . Global camera
orientations are represented by rotation matrices Ri ∈ SO(3). Our update rule for the iteration
k +1 is thus Rk+1

i = Rk
i R(δ k

ri
). In this context, and to preserve the form of equation (10), we

approximate ∆k
Pi

by:

∆
k
Pi
≈ KRk

i ([δ
k
ri
]×|δ k

ti). (13)

Indeed, since

Pk+1
i = Pk

i

(
R(αδ

k
ri
) αδ

k
ti

0 1

)
= K(Rk

i R(αδ
k
ri
)|tk

i +αRk
i δ

k
ti).

Using R(θ)≈ I3 +[θ ]× to approximate a local rotation, we get:

Pk+1
i ≈ K(Rk

i +αRk
i [δ

k
ri
]×|tk

i +αRk
i δ

k
ti) = Pk

i +αKRk
i ([δ

k
ri
]×|δ k

ti).

This approximation of ∆k
Pi

allows us to preserve the form of equations (10) and (12) in the
calibrated case. We apply the same procedures to find the step length(s) as in the uncalibrated
adjustment, for Global and Two-way ALS.

3.3 Step Length Restriction
One drawback of the algebraic distance is that this error is only an approximation of the
Euclidean distance since:

d2(X,X′) =
d̃2(X,X′)

ww′
, (14)

with X> = (x,y,w) and X′> = (x′,y′,w′), two homogeneous image points. Consequently, the
minima of ε and ε̃ may not match. They are usually close under an appropriate normalization
[2]. This implies some restrictions on the step length given by the ALS: Since ALS is a Line
Search technique (or LS-like for G-ALS), we employ the Wolfe conditions [17, chap 3] to
ensure the decrease of the norm of the gradient: limk→∞ ‖∇ν(xk)‖ = 0, with ω1 = 10−4

and ω2 = 0.99. In the case that ALS provides several solutions (this is rare in practice) we
do an ascending sort of the step lengths. We then select the best step length which verifies
the Wolfe criteria. Besides, to avoid mistaken step lengths (since the Algebraic distance
is an approximation), we check whether a basic unit step length is not better than the one
provided by ALS. In this special case, we obtain the same displacement (and length) that the
one proposed by the minimization algorithm, i.e. without Line Search.
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We employ ALS with two different minimization techniques: Levenberg-Marquardt [8]
and Dogleg Trust Region [11]. It is important to note that when the Gauss-Newton part
is preponderant, which means that we are near a minimum, it is useless to perform a Line
Search since Gauss-Newton yet defines a displacement with a relatively appropriate step
length (depending on the approximation of the Hessian). This means that for LM minimiza-
tion, we only perform ALS in the first few iterations (5 in our experiments). We also present
an ALS employed in the dogleg step of a Dogleg Trust Region minimization.

4 Experimental Results

Experimental calculations were achieved in MATLAB. An isotropic normalization [6] was
performed on all images points, and later rectified to get an output in pixels. We define RMS
to be the Root Mean Square of the reprojection error. For each dataset, we compare our
Line Search methods (G-ALS and T-ALS from section 3) with two nonlinear optimization
algorithms (BA-LM [8], BA-DogLeg-Lourakis [11]) and state of the art Line Search
techniques (LS-FJNT-exact and LS-FJNT-soft1).

4.1 Synthetic Data

We randomly generate 1000 3D points in a cube with side length 6m, and 30 camera poses
positioned around the cube at a distance of 20m from the center. We assume that the camera
has constant intrinsic parameters (focal length: 1000 pixels, square pixels, and principal
point in the center of the (640× 480 pixels) images). Image points are corrupted by a
gaussian noise (σ = 1 pixel). A batch reconstruction is next performed (see section 2.1) to
obtain an initial vector of parameters x0, used by bundle adjustment algorithms.
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Figure 1: Evolution of the mean normalized (by the initial RMS) RMS of 20 simulations,
for calibrated 1(a) and uncalibrated 1(b) Bundle Adjustment.

In the calibrated tests (Fig.1(a)), we see that yet in the first iteration, our Algebraic Line
Search decreases the reprojection error better than without Line Search, for an LM-based BA
or with a Dog-Leg BA. Both methods are even better than soft LS-FJNT and are way faster
(see experiments on real data). For uncalibrated BA (Fig.1(b)), T-ALS appears to be more

1 www2.imm.dtu.dk/∼hbn/Software/linesearch.m
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efficient (in the first few iterations) than the classical exact LS-FJNT. G-ALS with LM-
based BA has good results: it even matches exact LS-FJNT, but does not improve Dog-Leg
BA in this configuration.

4.2 Real Data
We have experimented our ALS technique on several standard datasets2 (“dinosaur”, “cas-
tle”) and video sequences (“city”, see Figure 2(a)). An initial computation of camera poses
and 3D scene structure was performed by the batch projective factorization of [22] and rec-
tified to a metric scene (section 2.1).

#Imgs #Vars Init. RMS Final RMS (pixels) Exec. Time (s) / Iterations

Sequence (n) (6n+3m) (pixels) no LS G-ALS T-ALS no LS G-ALS T-ALS

“dinosaur” 12 4035 6.345 1.534 1.534 1.534 19.058/8 15.872/6 14.750/6

“castle” 9 3960 5.364 3.121 3.121 3.121 138.02/25 130.15/24 129.83/24

“city-long” 30 17136 2.642 0.668 0.668 0.668 39.93/8 34.98/7 35.17/7

“city-small” 6 2466 0.456 0.361 0.361 0.361 8.83/7 10.13/7 9.84/7

Table 2: Statistics for Euclidean BA using LM [8].
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Figure 2: Results of the “city” sequence (a). Figures (b) and (c) show the evolution of the
RMS (pixels) over time (top) and iterations (bottom), for 30 cameras (b) “city-long” and 6
cameras (c), “city-small”.

When the initial solution is imprecise (a few pixels: sequences “dinosaur”, “castle” and
“city-long”) BA with ALS is between 6 to 20% faster than classical BA using LM, depending
on the sequence used as benchmark. This computation time decrease can be explained by
comparing the number of iterations. BA with ALS often does less iterations to obtain the
same solution, except for the last line (Figure 2(c)), which is a small sequence, and where the
initial solution is already a good guess since the initial RMS is less than 0.5 pixels. This result
agrees with the remark made in section 3.3, regarding the efficiency of a LS technique (like
ALS) employed when the Gauss-Newton step well approximates the reprojection function.

2 We thank VGG for their datasets www.robots.ox.ac.uk/∼vgg/data/data-mview.html
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Figure 2 illustrates the results for BA over the “city-long” and “city-small” sequences.
In figure 2(b), at the third iteration, we see that BAs using LM+LS escape from a local
displacement fail. However our methods (G-ALS and T-ALS) are considerably faster than
exact or even soft LS-FJNT.

5 Conclusion
This paper introduces ALS (Algebraic Line Search), a new line search technique for Bun-
dle Adjustment. The idea is to substitute the geometric distance by the algebraic distance
only in the Line Search cost function. Experiments conducted on simulated and real data
showed that our ALS provides an efficient step length that minimizes the reprojection error
in a shorter time than with other minimization techniques. The method can be applied to any
problem minimizing a geometric error, such as camera pose estimation and point triangula-
tion. Results showed that the further away the initial solution is from the optimal one, the
greater the improvement provided by ALS (typically for RMS > 1 pixel). Future work will
consist in experimenting this approach in a real-time setup, within a hierarchical adjustment
for SLAM applications.
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