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Abstract

This paper deals with generalized procrustes analysis.

This is the problem of registering a set of shape data by esti-

mating a reference shape and a set of rigid transformations

given point correspondences. The transformed shape data

must align with the reference shape as best possible. This is

a difficult problem. The classical approach computes alter-

natively the reference shape, usually as the average of the

transformed shapes, and each transformation in turn.

We propose a global approach to generalized procrustes

analysis for two- and three-dimensional shapes. It uses

modern convex optimization based on the theory of Sum Of

Squares functions. We show how to convert the whole pro-

crustes problem, including missing data, into a semidefinite

program. Our approach is statistically grounded: it finds

the maximum likelihood estimate.

We provide results on synthetic and real datasets. Com-

pared to classical alternation our algorithm obtains lower

errors. The discrepancy is very high when similarities are

estimated or when the shape data have significant deforma-

tions.

1. Introduction

This paper deals with the problem of rigid registration

between different input shapes represented by point corre-

spondences. This is known as procrustes analysis in the

statistics and shape analysis literature [2, 4]. More pre-

cisely, it is called generalized procrustes analysis when

more than two shapes are to be registered. In this prob-

lem, one transformation per observed shape has to be com-

puted. The shape data are mapped to a reference shape

which is as well to be estimated. Let d be the dimension

of the shape data to be analyzed. The estimated transforma-

tions are similarities (scaling, rotation and translation) with
1

2
d(d + 1) + 1 degrees of freedom (dof) or euclidean trans-

formations (without scaling and 1

2
d(d + 1) dof.) Figure 1

illustrates the generalized procrustes analysis problem.

The classical approach to generalized procrustes analy-

Figure 1. The generalized procrustes analysis problem is, given n

input shape data (in blue and green), to compute a reference shape

S (in red) and n similarity or euclidean transformations (one per

input shape.) Minimizing the sum of squares of the discrepancies

between the registered input shapes and the reference shape points

yields the maximum likelihood estimate. Our proposed algorithms

find the global solution to this optimal generalized procrustes anal-

ysis statement in 2D and 3D, while the literature only provides

iterative local optimization methods such as the popular alterna-

tion [2, 4, 6, 15] (to cite just a few) and the recent stratification

approach [1].

sis [2, 4, 6, 15] selects one of the shape data as a refer-

ence shape and registers each of the other shapes to the

reference in turn by solving the absolute orientation prob-

lem [3, 5, 14]. It then alternates a re-estimation of the ref-

erence shape, as the average of the registered shapes, with

shape registration. We call this general paradigm the al-

ternation approach to generalized procrustes analysis. The

alternation approach is iterative and does not guarantee con-

vergence to the global minimum of the cost function. In [1]
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a stratified approach is proposed where procrustes analysis

is first solved with affine transformations. The solution is

then ‘upgraded’ to similarity or euclidean transformations.

The main advantage of the stratified approach is that, unlike

alternation, it obtains all transformations simultaneously. It

has better performance than the alternation approach but

still uses iterative Newton based optimization. It is thus not

guaranteed to find the global minimum of the cost function

either.

Our paper uses the optimal cost function (in the sense

of maximum likelihood) that involves all sought transfor-

mations and the unknown reference shape. We propose

an algorithm that, unlike the alternation and the strati-

fied approaches, always finds the global minimum. It is

based on the recent Sum Of Squares (SOS) theory [7, 10]

from algebraic geometry that allows one to find global

bounds of polynomials with both equality and inequality

constraints [9].

We first show how to express generalized procrustes

analysis for similarity and euclidean transformations in 2D

and 3D as a polynomial optimization problem, with poly-

nomial constraints. Based on the SOS theory, we then

show how to obtain the global minimum of the cost using

an SOS Program (SOSP) relaxation of the original prob-

lem [7], and its translation into a convex semidefinite pro-

gram (SDP) [13].

This paper is organized as follows. The problem state-

ment, state of the art on procrustes analysis and insights into

the SOS theory are given in §2. Our global and optimal ap-

proach to generalized procrustes analysis is presented in §3.
Experimental results on simulated and real data are reported

in §4 and conclusions drawn in §5. Finally, appendix A

gives details on the SOS theory and its use in optimization.

2. Preliminaries and Previous Work

2.1. Problem Statement

We define T , {R1, t1, α1, . . . , Rn, tn, αn} to be the

set of n similarities Ti : R
d → R

d where Ri ∈ SO(d) are
rotation matrices, ti ∈ R

d are translation vectors and αi >

0 are scale factors. Euclidean transformations are obtained

as a special case by setting α1 = · · · = αn = 1. The input
shapes are represented by n matrices D1, . . . ,Dn. Each

shape Di ∈ R
d×m is composed of m d-dimensional points:

Di =
(

Di,1 · · ·Di,m

)

Di,j ∈ R
d. (1)

The problem to be solved can be cast as the one of

finding the set of similarities T and the reference shape

S = (S1 · · ·Sm) ∈ R
d×m that minimize the cost function

E defined as:

E(T, S) =

n
∑

i=1

m
∑

j=1

vi,j ‖Sj − αiRiDi,j − ti‖2

2
, (2)

where ‖u‖2 =
√

u⊤u is the vector two-norm. The vari-

ables vi,j ∈ {0, 1} allow us to model missing data, the fact

that some points may not be observed in some shapes. The

cost function (2) is not gauge invariant. Some constraints

are thus needed to fix the reference frame. This cost is also

called reference-space model; it corresponds to the nega-

tive log-likelihood for i.i.d. gaussian noise (see [1] for more

details.) Equation (2) can also be written as:

E(T, S) =
n
∑

i=1

∥

∥(S − αiRiDi − ti1
⊤)Vi

∥

∥

2

F
, (3)

where ‖u‖F =
√

tr(u⊤u) is the Frobenius norm, 1 ∈
R

m×1 is an all-one vector and Vi ∈ R
m×m is the diagonal

matrix Vi = diag(vi,1, · · · , vi,m). The final problem state-

ment is obtained by adding the constraints that the transfor-

mations in T are similarities:

min
T,S

E(T, S) Ri ∈ SO(d) αi > 0 i = 1, · · · , n. (4)

2.2. Previous Work

Most procrustes analysis algorithms in the literature are
based on the idea of alternating the estimation of the trans-
formations and of the reference shape. One possible imple-
mentation is:

1. Initialize the transformations to identity (Ri = I, αi =
1, ti = 0; ∀i)

2. Compute the reference shape as the average of registered

shapes:

S =

n
X

i=1

“

αiRiDi + ti1
⊤

”

 

n
X

i=1

Vi

!−1

3. Compute each transformation in turn by solving the absolute

orientation problem (see below): for i = 1, · · · , n, compute

Ti from Di, S and Vi

4. Stop if the reference shape does not change else goto 2

Most of the implementations of the alternation approach

differ by how they solve the absolute orientation prob-

lem (both iterative [3] and algebraic closed-form solu-

tions [5, 14] were proposed) and how they bootstrap the al-

gorithm (for instance, one may replace step 1 by setting the

reference shape to one of the shape data.) Integrated alter-

nation solutions for multiple shapes using total least squares

have been recently proposed [6, 15].

A recent approach based on the concept of stratification

used in Structure-from-Motion has been proposed in [1].

Instead of alternating, the reference shape and the set of

transformations are computed simultaneously using a con-

vex cost function that approximates the negative log likeli-

hood. Affine transformations are computed first; they are

then upgraded to euclidean or similarity transformations.
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The result is global but suboptimal, and is finally refined

using Newton like minimization.

To summarize, the literature does not have any global

optimization solution to the optimal (maximum likelihood)

formulation of generalized procrustes analysis. We propose

such an approach, that deals with both similarity and eu-

clidean transformations in 2D and 3D, and reduces the prob-

lem to a simple SDP, by using the recent SOS theory.

2.3. Optimization and Sum of Squares Theory

We briefly describe how to convert a constrained poly-

nomial optimization problem into an SOSP. More details on

the SOS theory [7, 10] and its use in optimization [9, 11]

can be found in the literature.

Many optimization problems are to find bounds of mul-

tivariate polynomials under polynomial constraints:

min f(x) (5)

subject to gi(x) ≥ 0, i = 1, · · · ,M

hj(x) = 0, j = 1, · · · , N

This is an NP-Hard and non-convex problem for which a

global solution cannot be generally found. However, some

modern results in the field of algebraic geometry [7, 10]

have shown that one can find a computational relaxation

method that ‘converts’ a polynomial optimization problem

into an SDP in some cases. This is based on the SOS theory;

a polynomial f(x) is an SOS if f(x) =
∑n

i=1
f2

i (x). The
SOS condition is stricter than non-negativity and generally

more computationally tractable.

The SOS relaxation approach to solve the optimization

problem (5) first replaces inequalities with SOS conditions

and includes an scalar variable γ that represents the lower

bound of the polynomial f(x). Second, it uses auxiliary

variables (polynomials λi(x) and SOS polynomials σj(x))
in order to include all constraints in the cost. This tech-

nique is based on the so-called positivstellensatz property, a

central result in algebraic geometry, that converts the con-

strained optimization problem (5 )into the following general

SOSP:

min −γ (6)

subject to f(x) − γ − (σ0(x) +
P

j
λj(x)hj(x) +

P

i
σi(x)gi(x) + . . . ) is an SOS

σi(x) is an SOS i = 1, · · · , M

Every SOSP can be exactly converted to an equivalent

semidefinite program (SDP) and thus powerful convex opti-

mization tools such as SeDuMi [13] can be used to globally

solve any SOSP. [7, 8] give a comprehensive explanation

about the exact relationship between an SOSP and an SDP.

In fact, there are tools [9] available that solve any SOSP

using SDP solvers and do the conversion automatically.

The solution of the SOSP gives a lower bound γ of the

polynomial and the value of x for that bound. As it is com-

mented in [8], for some “rare” examples of polynomials, the

bound obtained can be useless and thus the SOS relaxation

is not near enough to the original problem.

3. Global Generalized Procrustes Analysis

We describe next our approach to the generalized pro-

crustes analysis problem. It is optimal in the sense of maxi-

mum likelihood: our approach is guaranteed to find a global

minimum of the negative log-likelihood function; it is based

on the SOS theory. We first show how the optimal unknown

translations and reference shape can be computed in closed-

form. The closed-forms are then substituted in the original

cost function.

We then examine the gauge properties of the reduced

cost function and show how to find the optimal rotations

and scale factors. Our approach is applicable in 2D and in

3D, the two cases of interest in shape analysis, and can be

used for euclidean and similarity transformations.

It is worth of note that at no time in the derivation below

we approximate the negative log likelihood: our algorithms

end up minimizing it exactly and globally in all cases.

3.1. The Translations and Reference Shape

We show how to convert the problem presented in equa-

tion (4) into a reduced one, where the set of unknowns

consists of scale factors α1, · · · , αn and rotation matrices

R1, · · · , Rn.

The translations. The optimal translations t1, · · · , tn are
first obtained from the cost function (3). By setting
∂E
∂ti

(T, S) = 0 we obtain:

ti =
1

mi

m
X

j=1

(Sj −αiRiDi,j)vi,j =
1

mi

(S−αiRiDi)Vi1, (7)

where mi =
∑m

j=1
vi,j is the number of visible points in

shapeDi. By introducing equation (7) into (3) the following
reduced cost is obtained:

E(T̄ , S) =

n
X

i=1

‚

‚

‚

‚

(S − αiRiDi)

„

I − Vi

11
⊤

mi

«

Vi

‚

‚

‚

‚

2

F

, (8)

where T̄ = {R1, α1, · · · , Rn, αn}, and I is the identity

matrix.

The reference shape. By differentiating the reduced cost

(8) as ∂E
∂S

(T̄ , S) = 0 we obtain:

SM =

n
∑

i=1

αiRiDiMi, (9)
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with Mi =
(

I − Vi11
⊤

mi

)

Vi and M =
∑n

i=1
Mi. Matrix

M must thus be inverted to compute S. It is an m × m

symmetric matrix having the following properties:

• Matrix M has, at least, a single zero eigenvalue. The

vector 1
⊤ is the basis of the left nullspace of M (i.e.

1
⊤M = 0⊤). The proof is straightforward; since

1
⊤Vi1 = mi:

Mi1 = 1
⊤ − 1

⊤
Vi11

⊤

mi

= 0; ∀i. (10)

• If a point j is missing in all shapes (i.e. vi,j = 1 ∀i),

the dimension of the left nullspace of M is larger than

one. The proof is also straightforward; since in the

case of a missing point j in all shapes, all matrices Vi

share the zero j-th row and column, and so does M . In

this case any all-zero vector with a non-zero constant

in its j-th position belongs to the left nullspace of M .

Assuming that all points are seen by at least one shape,

the nullspace of M accounts for the fact that the cost func-

tion is invariant to a constant offset in S → S + to1
⊤ and

ti → ti + to. An extra constraint is needed to solve equa-

tion (9) for an unique S, fixing to to a specific value. We

propose to force the reference shape’s centre of gravity to

lie at the origin:

S1 =
m
∑

j=1

Sj = 0. (11)

This means that SVi1 + S(I − Vi)1 = 0; ∀i and:

SVi1 = −S(I − Vi)1; ∀i. (12)

Taking into account equation (12), if S1 = 0 the following

equality holds:

SM = S

n
∑

i=1

(

I +
(I − Vi)11

⊤

mi

)

Vi = SM̃, (13)

Contrarily to matrix M , matrix M̃ is invertible if all shape

points are seen at least by one of the shapes. By introducing

equation (13) in (9), which implicitly imposes the constraint

S1 = 0, we can thus get S as:

S =

n
∑

i=1

(

αiRiD̂i

)

M̃−1, (14)

where D̂i = Di

(

I − Vi11
⊤

mi

)

Vi. By substituting S from

equation (14) in equation (8) a new reduced cost function is
obtained in terms of rotation matrices and scale factors:

E(T̄ ) =
n
X

i=1

‚

‚

‚

‚

‚

 

n
X

k=1

αkRkD̂k

!

M̃
−1

„

I −
Vi11

⊤

mi

«

Vi − αiRiD̂i

‚

‚

‚

‚

‚

2

F

.

(15)

For simplicity equation (15) is rewritten:

E(T̄ ) =

n
∑

i=1

∥

∥

∥

∥

∥

n
∑

k=1

αkRkD̃i
k − αiRiD̂i

∥

∥

∥

∥

∥

2

F

, (16)

where D̃i
k = D̂kM̃−1

(

I − Vi11
⊤

mi

)

Vi.

The main difficulty in obtaining the global minimum of

(16) comes from the SO(d) constraints for each matrix Ri.

Such constraints are nonlinear and nonconvex in the coef-

ficients of Ri and there is no linear parameterization that

could enforce it. Assuming an iterative and non-linear opti-

mization strategy (e.g. Sequential Quadratic Programming)

as a possible solution, the constraints can be iteratively im-

posed but it is not guaranteed that a global minimum is

reached, even if a proper initialization were provided.

3.2. Gauge Freedoms and Degeneracy

It is clear from equation (16) that the reduced cost func-

tion is invariant to a rotation Ro applied to the whole set of

rotation matrices R1, . . . , Rn (the set RoR1, . . . , RoRn is

equivalent.) For unicity we fix R1 = I .

Unlike the rotation, the cost function is not invariant to

a scale factor applied to the set of scales α1, . . . , αn: the

problem has a trivial solution with E = 0 if α1 = · · · =
αn = 0. To remove this degeneracy we set α1 = 1.

3.3. Rotations and Scales in 3D

Principle. The minimization of equation (16) for d = 3
can be rewritten as a multivariate minimization problem in

5n variables (where n is the number of shapes.) First, for

each rotation matrix Ri its equivalent unitary quaternion is

used qi =
(

qi,1 qi,2 qi,3 qi,4

)

. Each rotation matrixRi

is then expressed as a vector ri of polynomials in qi:

ri =





























q2

i,1 + q2

i,2 − q2

i,3 − q2

i,4

2qi,2qi,3 + 2qi,1qi,4

2qi,2qi,4 − 2qi,1qi,3

2qi,2qi,3 − 2qi,1qi,4

q2

i,1 + q2

i,3 − q2

i,2 − q2

i,4

2qi,3qi,4 + 2qi,2qi,1

2qi,2qi,4 + 2qi,1qi,3

2qi,3qi,4 − 2qi,1qi,2

q2

i,1 + q2

i,4 − q2

i,2 − q2

i,3





























. (17)

Equation (16) can be expressed as:

E(T̄ ) =
n
∑

i=1

m
∑

j=1

∥

∥

∥

∥

∥

(

n
∑

k=1

αkRkD̃i
k,j − αiRiD̂i,j

)∥

∥

∥

∥

∥

2

.

(18)

By using the quaternion parameterization we get:

E(T̄ ) =

n
∑

i=1

m
∑

j=1

∥

∥

∥

∥

∥

1

n

n
∑

k=1

Ãi
k,jαkrk − Âi,jαiri

∥

∥

∥

∥

∥

2

, (19)
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where:

Ãi
k,j =













(

D̃i
k,j

)⊤

01×3 01×3

01×3

(

D̃i
k,j

)⊤

01×3

01×3 01×3

(

D̃i
k,j

)⊤













,

and:

Âi,j =







D̂⊤
i,j 01×3 01×3

01×3 D̂⊤
i,j 01×3

01×3 01×3 D̂⊤
i,j






,

By naming r̄ the following 9n vector:

r̄ =







α1r1

...

αnrn






, (20)

equation (19) is rewritten as:

E(T̄ ) = r̄⊤





m
∑

j=1

A⊤

j Aj



 r̄ = r̄⊤Lr̄, (21)

where Aj ∈ R
3n×9n:

Aj =











Â1,j − Ã1

1,j −Ã1

2,j · · · −Ã1

n,j

−Ã2

1,j Â2,j − Ã2

2,j · · · −Ã2

n,j

...
...

. . .
...

−Ãn
1,j −Ãn

2,j · · · Ân,j − Ãn
n,j











.

The uniqueness and non-degeneracy constraints R1 = I3×3

and α1 = 1 could be imposed directly in the SOSP as regu-

lar equalities. However it is more efficient to modify equa-

tion (21) and remove the first quaternion and scale. Let r̃ be

defined as:

r̄⊤ =
(

1, 0, 0, 0, 1, 0, 0, 0, 0, 1, r̃⊤
)

, (22)

the cost function becomes:

E(T̄ ) = r̃⊤L̃r̃ + Lcr̃ + Lcc, (23)

where matrices L̃, Lc and Lcc are easily derived from ma-

trix L. It is important to note that the size of L, and con-

sequently of L̃, Lc and Lcc is not dependent on the number

of points m but on the number n of shapes. Moreover, the

structure of matrix L allows us to compute it with complex-

ity linear in m and so this step is at worst O(n2m). Since
matrix L has a fixed size independent of m it implies that

the resulting SDP has a fixed complexity.

The cost function (23) is a multivariate polynomial in the

quaternion coefficients and scales. Its bound can be thus

obtained using an SOSP relaxation.

Rotations only. So as to compute euclidean transforma-

tions we set the scales to α1 = · · · = αn = 1. Therefore,
for each quaternion to represent a valid SO(3) matrix, its

norm must be one (‖qi‖ = 1) and qi,1 ≥ 0 in order to re-

solve the ambiguities (i.e. qi and −qi represent the same

rotation.) Problem (16) can finally be written as:

min r̃⊤L̃r̃ + Lcr̃ + Lcc (24)

subject to qi,1 ≥ 0 i = 2, · · · , n

‖qi‖2 = 1 i = 2, · · · , n

The cost function (24) can be minimized as an SOSP with

the positivstellensatz formulation.

Rotations and scales. For similarities, we include the

scales and simply impose the constraints αi > 0 for all

scales. This can be done in an efficient way by noticing that

each vector ri has terms composed of second order mono-

mials in the entries of qi It easily follows that αiri = r̂i,

where r̂i is given by the non-unitary quaternion:

q̂i =
√

αiqi. (25)

Using non-unitary quaternions the problem becomes:

min r̃⊤L̃r̃ + Lcr̃ + Lcc (26)

subject to q̂i,1 ≥ 0 i = 2, · · · , n,

After optimization the scales are obtained as α1 = 1 and

αi = ‖q̂i‖ for i = 2, . . . , n.

3.4. Rotations and Scales in 2D

Principle. The cost function (16) for d = 2 is simpler

than in 3D as in 2D rotation matrices can be easily parame-

terized by unitary vectors qi = (qi,1, qi,2):

ri =
(

qi,1 qi,2 −qi,2 qi,1

)⊤
. (27)

Equation (19) remains similar to the 3D case using:

Ã
i
k,j =

0

@

“

D̃i
k,j

”⊤

01×2

01×2

“

D̃i
k,j

”⊤

1

A and Âi,j =

„

D̂⊤

i,j 01×2

01×2 D̂⊤

i,j

«

.

The vector r̄ has now size 2n × 1 and is identical to (20).

The optimization problem is equally cast as the quadratic

equation (23) in vector r̃, resulting from removing the first

scale and rotation from vector r̄.

Rotations only. The euclidean version of the problem in-

cludes unitary constraints:

min r̃⊤L̃r̃ + Lcr̃ + Lcc (28)

subject to ||qi||2 = 1 i = 2, · · · , n
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Rotations and scales. In the similarity version we again

use non-unitary vectors q̂i = αiqi giving the following un-

constrained problem:

min r̃⊤L̃r̃ + Lcr̃ + Lcc (29)

The scales are obtained after optimization as in the 3D case.

4. Experimental Results

We tested our algorithms with both simulated and real

data. In all cases we tested the euclidean (EUC-SOS) and

the similarity (SIM-SOS) versions of our algorithms in 2D

and 3D. We compared our algorithmed to classical alterna-

tion (EUC-ALT and SIM-ALT for euclidean and similar-

ity respectively.) We used the alternation algorithm drafted

in §2.2 using the solution of [5] to the absolute orientation

problem. As in our algorithm we fix R1 = I and α1 = 1
in alternation algorithms. In all experiments we compared

the value of the cost function (3) between the different al-

gorithms; this reflects the accuracy that is reached since this

cost is the negative log likelihood. SOSP are solved using

SeDuMi and the SOSTools package [9].

4.1. Simulated Data

Data generation. The reference shape is generated by

drawing m = 50 points in an origin-centered hyper-sphere

of unit radius. Each of the n = 5 affine transformations is

randomly generated by selecting d+1 control points into the
unit hypersphere. Euclidean transformations are obtained

as the orthonormal part of each affine transformation using

QR factorization and ensuring positiveness of the determi-

nant. The generated shapes are obtained by applying the

n transformations to the m reference points. Non-rigidity

and noise are both modeled by an additive gaussian process

with variance σ2 = 1. Missing data are obtained by erasing

points with τ = 0.5 (50% missing data.)

Experiments. Each experiment is run 100 times and we

report average (RMS) values. The ranges are the following:

σ2 = 0 . . . 2 ; n = 2, . . . , 5 ; m = 10, . . . , 50 ; d = 2, 3 ;

τ = 0 . . . 7.
As can be seen in figure 2 both EUC-ALT and EUC-

SOS achieve the same level of accuracy in all experiments.

Surprisingly the alternation approach is performing very

well for euclidean transformations. This is however not the

case when scales are incorporated to the problem. In those

cases the alternation approach gets stuck in a local mini-

mum in almost all experiments while SIM-SOS reduces

the error considerably.

4.2. Real Data

We tried our algorithms on two real datasets. The first

dataset contains n = 5 2D shapes with m = 40 2D points

that represent a human face with different poses in front of a

camera. This dataset includes missing data (τ ≈ 0.1) when
the face turns, as it suffers from self-occlusion.

In figure 3a to 3d the reference shape is shown in thick

in front of the set of transformed shapes αiRiDi + ti for

all methods. This gives an idea of the error in the refer-

ence frame. Below each figure the error is given. As was

expected SIM-SOS outperforms the other methods. The

computational times of this experiment are shown below

figure 3. The proposed methods are slower than alternation.

The second dataset corresponds to 3D point coordinates

given by Motion Capture (MOCAP) sensors, available from

the HumanEVA [12] database. The dataset has n = 5
shapes corresponding to a walking person. As in the face

dataset, we show in figure 3e to 3h the reference shape and

the set of transformed shapes for each method.

The same conclusions are obtained from this experiment;

SIM-SOS achieves the lowest error. The processing time

in this case increases compared to the 2D case.

5. Conclusions

We have proposed a global solution to the optimal (max-

imum likelihood) generalized procrustes analysis problem.

Our algorithms are the first in the literature that feature these

characteristics. Experimental results show that the popular

alternation approach falls in local minima when similarities

are estimated, while the global minimum is at a significantly

lower cost, as our algorithms show. Our algorithms use the

SOS theory and reduce the problem at hand to simple SDP,

then solved using SeDuMi.

One possible improvement on which we are currently

working concerns the computational time required by our

algorithms. They are more computationally expensive than

simple alternation, taking seconds to register a couple of

shapes in our Matlab implementation.
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