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Abstract. We present a method to automatically select the regulariza-
tion parameter in the two-term compound cost function used in image
registration. Our method is called CFS (Constant Flow Sampling). It
samples the regularization parameter using the constraint that the warp-
induced image flow be of constant magnitude on average. Compared to
other methods, CFS provably provides a global solution at a specified
precision and within a finite number of steps. CFS can be embedded
within any algorithm minimizing a two-term compound cost function
depending on a regularization parameter. We report experimental re-
sults on the registration of several datasets of laparoscopic images.

1 Introduction

A warp W is a parametric function that allows one to register a source to a
target image. We here write q' = W(q;x) € R? the image of a point q € 2 by
the warp W with x € R? the warp’s parameter vector and 2 C R2? the warp’s
domain. The optimal warp parameters x* € RP are computed by minimizing a
cost function containing a data term £; and a regularization term &, as:

x*(\) = arg )1(161]11& Ea(x) + A (%), (1)

where A € RT is the regularization parameter, specifying the amount of regu-
larization. Automatically choosing an optimal value for A is a difficult problem
which has not yet received a commonly agreed solution in the scientific commu-
nity. On the one hand, if the chosen A is ‘too low’ the data term will prevail
and the warp will overfit the data, including the noise. Consequently, portions
of the warp with fewer data will not capture the true deformation. On the other
hand, if the chosen A is ‘too large’ the warp will be too smooth and will underfit
the data.

The general approach to automatically select A is to construct some test cost
function &, : RT — R, A\ — &,,(\) whose value approximates the difference
between the warp estimate at A and the true image deformation, and minimize:

A= in &, (N). 2
arg min (A (2)



This raises two difficult problems: (i) constructing the test cost function from
a limited set of data and (7) finding the global minimimum of the test cost
function. While problem (i) has been well-studied in the literature, problem
(ii) still lags behind. For instance, the test cost function can be constructed
from the paradigm of CV (Cross-Validation) [11] or by combining landmarks
and dense intensity-based error measurements [5]. In any case, the test cost
function is always nonlinear and nonconvex, making problem (ii) extremely dif-
ficult to solve efficiently and with guarantees of optimality on the estimated
solution. Current approaches use general purpose nonlinear optimization meth-
ods such as golden-section search and gradient descent, which cannot cope with
the extremely nonlinear behaviour of test cost functions such as Ordinary-CV.

We propose CFS (Constant Flow Sampling), a novel approach to the problem
of finding A by optimizing &,,. The key idea is to sample values of A over the
range of admissible values. The difficulties are obviously to find an upper bound
Ainit and to sample in such a way that the test cost function’s global minimum
is not overlooked. Defining an a priori sampling scheme, with regular spacing
within the space of A is not relevant, since &, is typically almost constant for
‘large’ values of A, and may oscillate for ‘small’ values of \. CFS proceeds
as follows. We first compute an initial value Ajp;; of A large enough so that
the corresponding warp be the A — oo asymptotically regularized warp that
minimizes the regularization term. We then sample A between this initial value
Ainit and 0. Our key contribution is to sample A regularly with respect to the
magnitude of the flow induced by the warp. More specifically, we select the
decrease § such that the average magnitude of the flow between the warp at A
and at A — ¢ be some fixed constant 7 € RT. The value of 7 is expressed in
number of pixels and is thus easily fixed. We typically choose 7 = 1 pixel. With
CFS, X\ undergoes large decreases at the early steps since &,,’s graph is typically
flat, and smaller decreases around the global minimum of &,,. Our algorithm
is thus guaranteed to sample the range of admissible values of A evenly and in
a finite number of steps. The global minimum is found, assuming that the test
cost function is convex within a small region, the size of which being related to
the chosen flow magnitude constant 7.

Paper organization. We review the state of the art in §2. We present our CFS
method and algorithm in §3. We give experimental results in §4. We finally
conclude in §5.

2 State of the Art

The hyperparameter \ is often manually selected by trial and error [3,6]. Here
we will describe some methods used to select it automatically.



2.1 Defining the Test Cost Function

The problem of constructing the test cost function &, from a limited set of data
has been well studied and several criteria have been proposed. The input is a
set of n point matches {qxr <> qi.},_;

The first three criteria are featu}eibased; they are applicable only when
‘enough’ point matches are available. The fourth criterion is pixel-based; it
uses all the raw information available from the images.

Training/Test Splitting (TTS). TTS is the simplest criterion. It consists in
splitting the dataset into a training set used for the optimization of the warp
parameters given A and a test set used for the optimization of A. It is a classical
approach in statistical learning [8]. Let {ry «>rj.},_, be points matches
forming the test set (a subset of the input point matches) and x7..,;,,(\) the warp
parameters obtained using the training set. The TTS score £L7% is defined by:

Ntest

z Irh = W (Tk; Xfain W) (3)
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Ordinary-CV (OCV). OCV is also based on a partition of the dataset. Each
point is used in turn as a test set while the others form the training set. For a
given regularization parameter A, let Xz‘k) (M) be the warp parameters estimated

from the data with the k-th point left out. The OCV score E9CY is defined by:
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This score has been used in [1,7]. Its computation time is low thanks to a
closed-form solution [11].

V-fold CV (VCV). An alternative to the OCV score is the VCV score. It consists
in splitting the dataset into V' subsets of nearly equal size, each of them being
used alternatively as a test set while the others form the training set. Let XFU] N
be the warp parameters obtained from the data with the v-th group left out, m,,
the number of point correspondences in the v-th group and q, ; < d,, , the k-th

correspondance of the v-th group. The VCV score £Y¢V is defined by:

m
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q;,k -w (%,k%xrv] ()\)) H2 (5)

This score has been used in [2].

Photometric Error Criterion (PEC). In this criterion, the point correspondences
are used as the training set and the photometric information as the test set.
Given a regularization parameter A\ and the corresponding warp parameters
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x*(\) estimated from the point correspondences, the PEC score is de-

fined by:
EPEC(N) = L3 [IS(a) = TOW (aix* ()1, (6)

qEB

where B is the set of pixels in the region of interest, S is the source image and
T is the target image.

2.2 Minimizing the Test Cost Function

The algorithm used to minimize the test cost function is often neglected in the
literature. Only a few articles mention the minimization algorithm they use,
which can be golden-section search, exhaustive search or downhill simplex [1,5].
We assume that other nonlinear optimization methods, like gradient descent,
may have been used. Each of these methods have one or both of the following
limitations: the region where to search the minimum is user-defined and the
local minimization does not guarantee that the global minimum is found.

3 CFS — Constant Flow Sampling

This section introduces our CFS method and algorithm. We first give general
points, then study how to find a constant average flow magnitude decrease § of
A and how to find an upper bound A,y on A. We finally discuss some charac-
teristics of CFS.

3.1 General Points and Algorithm

Our CFS is meant to be used with any test cost function &, and method to
train the warp (or more generally the model) parameters. We thus assume that,
given some value of the regularization parameter A, the corresponding warp
parameters x*(\) can be found by solving problem (1), and that the test cost
function is given. Our goal is here to solve problem (2) with a sampling strategy
over \. The CFS algorithm is as follows:

Inputs: test cost function &,, : Rt — R, tolerance on the flow 7 € R™
— Choose an upper bound Aip;; € RT (see §3.3)
— Set A Ainit and A* < At
— While A > 0 do
e Choose the decrease § € RT such that the average flow magnitude be-
tween the warp with parameters x*(\) and x*(A — J) equals 7 (see §3.2)
o If &, (N=10) < &En(A*), Set \* «+— A —0
e Set A\«—A—9¢
Outputs: regularization parameter \*, warp parameters x*(\*)



3.2 Sampling at a Constant Flow Magnitude

Our algorithm samples A from its upper bound ;¢ to 0. For each sample value
A we thus have to compute the next value A — § such that the displacement of
the warp is constant. We now describe how to compute the flow magnitude at a
single point q € {2 between the warps with parameters x*(\) and x*(A—dq). For
a decrease 04 of the regularization parameter A, the flow difference constraint
between the two parameter vectors is:

IW(a,x* (X)) = W(q,x"(A = dq))[| =,

where we recall that 7 € RT is the specified tolerance on the flow difference
magnitude. We here make the assumption that the warp model being used is
linear in its parameter vector (but not necessarily in the point coordinates). This
is a common requirement, satisfied by most classical warps such as the Thin-
Plate Spline [11], the Free-Form Deformation [10] and others such as Moving

Least Squares [9]. The training cost function £4(x) + A&, (x) of problem (1) can

thus be assumed to be of the form £q4(x) Lf |Ax — b and &.(x) Lf |Kx]|?.

Consequently, we obtain:

x*(A) = (ATA+ AKTK) " ATb.
We define aqg € RP to be the lifted coordinates of point q € 2, such that
W(q,x) = agx. The flow difference can thus be rewritten as:

Hagx*()\) - agx*()\ — 8y =T

This is a high order polynomial in 4. We use Taylor expansion of x* around A
to get:

* * nzoolan*/\ n
XA bg) =x" (V) + 3 T g

n=1

S+ S (ATAEAKTK) ((KTK) (ATA+2KTK) ™) ATb 6.
n=1

An approximate solution is obtained by truncating the above expansion to first
order, leading to the following constraint on the flow magnitude difference:

Ha(—lr (ATA+AKTK) " (KTK) (ATA+AKTK) "ATb 5qH —r

This allows us to obtain the following expression for dq as a function of the
current A and flow magnitude tolerance 7:

N T

[ad (ATA+AKTK) ™! (KTK) (ATA + AKTK) "' ATD||

dg =

Note that the denominator represents the flow rate with respect to A. It it of
course possible to truncate the Taylor expansion to a higher order. This would



lead to a polynomial root-finding problem in a single variable, d4, which can be
very easily solved numerically.

In practice, we evaluate the flow for a dense set of points B C {2 (we use
every pixels). Different strategies can be used to select 4. First, the minimum
value over all points can be used. This option is the safest by producing a large
amount of samples, but still guaranteeing convergence in a finite number of steps.
Second, the maximum value over all points can be used. This option will produce
fewer samples, and will trade accuracy of the solution for runtime. Third, the
average value over all points can be used: this option is a reasonable compromise
between accuracy and runtime. Using this third strategy the decrease ¢ will be:

1 ~
6= size(B) (126236’;1.

3.3 Finding an Upper Bound

When the algorithm begins, A\ gen-

erally has a very large value, corre-
sponding to an asymptotic regulariza-

tion. The corresponding rate of dis- )
placement will thus be approximately
zero, and will lead to § > A, caus-
ing the algorithm to immediately ter-
minate. We thus have to compute an P
upper bound Ajni¢ on A such that the Anie A
rate of displacement is large enough

to yield a suitable decrease § in A.

To do this we choose i such that Fig-1. Ainic is chosen so that Omin <
0(Ainit) lies between two bounds: dpmin (Xinic) < Omax-

and Opax. This will ensure that both

the rate of displacement of the warp

and ¢ are large enough. We proceed in two steps. First, we start from a high
value Apax for A that we know to be in the asymptotic case (e.g. Amax = 1019).
We then iteratively decrease A by dividing it by 10 and compute ¢ at each step.

6max (/\)

6min (/\

We stop when ¢ is lower than dpmax (€.9. Omax = 5). This gives a lower bound

AMow for Apit- Second, we check if §joy is greater than S, (€.g. Omin = g) If
this holds we stop and set Ainit < Alow. If not, we take Apjgh = 10A16w and run a
simple bisection search to find Ain;¢ such that dmin < 0(Ainit) < dmax, as we can
see in figure 1.

3.4 Discussion

CF'S has several advantages. First, it guarantees that the estimated A* matches
the global minimum of &,, provided that the global minimum is not too sharp
for the user defined tolerance 7 on the warp-induced flow (e.g. 7 = 1 pixel).



Second, it guarantees that the precision of A\* with respect to the true global
minimum corresponds to the tolerance 7. The trade-off between runtime (less
samples) and accuracy (more samples) can be easily specified by changing the
value of 7.

4 Experimental Results

4.1 Implementation

In our implementation we use a B-spline warp, also known as the FFD warp [10].
The domain £2 C R? of this warp is a rectangle and the warp’s shape is controlled
by a set of control points which form the warp’s parameters.

We present experimental results on two datasets extracted from laparoscopic
sequences, with manually-selected point correspondences. For both datasets we
tested the TTS and PEC cost functions using the same training set.

4.2 Human Uterus

The first dataset shows a human uterus and has 35 point correspondences, as
can be seen in figure 2.

Fig. 2. The uterus image pair with 35 point correspondences.

Figure 3 shows the photometric error obtained using PEC. We can see that
the photometric error function has several local minima, and that the part cor-
responding to ‘small’ values of A (which is not visible on the linear scale) has
many sharp variations that cannot be handled by traditionnal nonlinear opti-
mization methods. Figure 3 also shows the test error obtained using TTS. We
found A5 po = 1.256 x 10% and Nypg = 0.968 x 103 and the corresponding train-
ing errors: ELEC = 3.787px and ELTS = 3.657px. The average flow difference
between the corresponding warps is 1.54 pixels.

We can see in figure 4 the target points and the warped source points. The
difference we can observe is mainly due to the fact that the B-spline warp has
difficulties to deal with strong perspective effects like with this couple of images.
We could probably obtain better results by using a NURBS warp which has
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Fig.3. PEC and TTS scores for the uterus dataset.

been proved to model perspective better than the B-spline warp [4]. However,
the NURBS warp is not linear and would need CFS to be extended to handle

that case.

Fig. 4. The deformation grid of the warp, left: TTS criterion, right: PEC criterion,
dots: warped source points, crosses: target points, red: training set, black: test set.

4.3 Pig Intestines

The second dataset shows pig intestines and has 54 correspondences, as we can
see in figure 5. We can see the test error and the photometric error obtained



with both tested methods in figure 6. In this particular case, the photometric
error seems to be smoother than with the uterus dataset.

Fig. 5. The intestines image pair with 54 point correspondences.
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Fig.6. TTS score (left) and PEC score (right) for the pig intestines dataset.

We can see in figure 7 the target points and the warped source points which
are really close to each other. On this example we have A%z = 0.186 x 10% and
hrg = 0.413 x 103, with the corresponding training errors: 5555 = 0.3972px
and LTS = 0.379px. The difference between these values can be explained
by the fact that the photometric error does not vary much near the optimum
(optimum: b g = 0.413x 103, EFFC = 13.02; next sample evaluated: A\ppc =

0.141 x 103, ELEC = 13.03).

5 Conclusion

We have presented the CFS (Constant Flow Sampling) method that allows one
to find the optimal regularization parameter \* of a warp with respect to a given
test cost function. It proceeds by sampling the values of A such that the flow of
the warp between two consecutive values is kept approximatively constant. CFS
guarantees that the global minimum is found within a user-defined tolerance,



Fig. 7. The deformation grid of the warp, left: TTS criterion, right: PEC criterion,
dots: warped source points, crosses: target points, red: training set, black: test set.

under mild constraints on the test cost function. We have successfully tested
this method with the photometric error criterion and with the training/test
splitting, but it can also be used with any criterion such Ordinary-CV or V-fold
CV. A further step will be to implement our method for nonlinear warps, by
finding a way to approximate the flow of the warp with respect to .
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