
PIZARRO, BARTOLI, COLLINS: ISOWARP AND CONWARP 1

Isowarp and Conwarp: Warps that Exactly
Comply with Weak-Perspective Projection of
Deforming Objects
Daniel Pizarro
dani.pizarro@gmail.com

Adrien Bartoli
adrien.bartoli@gmail.com

Toby Collins
toby.collins@gmail.com

ISIT-UMR 6284 CNRS
Universite d’Auvergne
Clermont Ferrand, France

Abstract

This paper studies the problem of surface reconstruction from a single image, given
a template of the surface. We investigate the variational structure of the reconstruction
problem for isometric and conformal deformations and weak-perspective camera projec-
tions. We give analytical solutions for the surface shape given that the registration warp
between the template and the input image meets specific differential constraints. We
explore those constraints, giving an optimization strategy to compute warps that com-
ply with isometric and conformal deformations under weak-perspective projection. We
study the performance of the proposed algorithms with synthetic and real datasets. The
experiments show that surface reconstruction with weak-perspective is accurate when
using cameras with large focal lengths and improves state of the art methods.

1 Introduction
Deformable surface reconstruction from monocular views has been intensively studied dur-
ing the last few years [2, 10]. In the template-based case, the goal is to obtain the 3D shape of
the deformed template from a single image. This problem is ill-posed without constraints on
how the surface deforms. Template-based surface reconstruction involves two problems: i)
deformable image registration (e.g. from point correspondences, contours or image texture).
ii) surface 3D shape inference from deformation constraints and the camera projection.

Image matching and registration of deformable surfaces counts with several contribu-
tions [8, 9, 10] that make this process highly automatic and robust. Shape inference methods
have been proposed for a variety of constraints: low-rank shape priors [5, 10], temporal de-
formation smoothness [11], isometric deformations [2, 3, 7] and conformal deformations [2].
Isometric and conformal constraints accurately model deformations in many real cases and
they are described with simple differential constraints. Isometric reconstruction from per-
spective camera views has attracted much of the attention. Early approaches relax the non-
convex isometric constraints to inextensibility with the so-called maximum depth heuris-
tic [7, 10]. The idea is to maximize point depths so that the Euclidean distance between
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every pair of points is upper bounded by its geodesic distance, computed in the template.
This problem is convex and, although a relaxation of the original problem, gives accurate
reconstructions. Very recently [2] provides analytical solutions for isometric and conformal
deformations by posing it as a system of Partial Differential Equations (PDEs).

We study surface reconstruction with isometric and conformal deformations and weak-
perspective projection. There are few works studying the reconstruction problem for weak-
perspective [4, 13] and orthographic projections [6]. In affine projection conditions the max-
imum depth heuristic [7, 10] and current analytical solutions [2] do not apply. In real scenar-
ios, cameras with large focal lengths and shallow scene depth produce images close to affine
projection conditions. This paper gives analytical solutions and shows that the registration
between the template and the input image is not independent of the reconstruction. We de-
fine registration warps that comply with the weak-perspective projection of isometric and
conformal surfaces, ensuring analytical solutions to compute surface’s shape. We show that
this method is more accurate than state-of-art methods based on perspective models, when
the camera conditions are close to affine. In §2 we present the definitions and the mathemat-
ical modelling of the reconstruction problem in form of PDE. In §3 and §4 we present the
analytical solutions for isometric and conformal deformations. In §5 we give insight about
the reconstruction algorithm based on the solutions. We present the experimental results in
§6.

2 Mathematical Modeling

Figure (1) shows the different functional relationships between the template and the de-
formed surface. The template is represented as a surface T ⊂ R3 embedded in 3D. We
assume that T has disk topology, admitting a 2D parameterization with conformal flatten-
ing [12]. The flat template is denoted as P ⊂ R2. We denote the flattening as the invertible
mapping function ∆⊂ C1.

The input image I shows the projection of the deformed template S ⊂ R3. The camera
model Π is a weak-perspective projection. A point Q ∈ S is projected on the point p ∈ I
according to the following linear equation:

q = Π(Q) = s
(
I2×20

)
Q = s

(
QxQy

)>
, (1)

where s = 1
dz

and dz is the average scene depth. Considering s = 1 implies an orthographic
camera model. We assume that the camera is calibrated and the image coordinates q are
normalized (i.e. q = A−1q̂, with A the intrinsic camera matrix and q̂ expressed in pixels). We
define η ∈C1 as the warp mapping a point p∈P in the flattened template to a corresponding
point q = η(p) ∈ I in the image. Function ψ ∈ C1 models deformations between the tem-
plate T and the deformed surface S. Conformal and isometric deformations are described
with conditions on the first derivatives of ψ , namely Jψ :

J>ψ Jψ = µI3×3, where µ =

{
1 Isometric
µ ∈ C1 unknown Conformal.

(2)

We define ϕ = (ψ ◦∆) ∈ C1 which maps points p ∈ P in the 2D template to points Q =
ϕ(p) ∈ S in the deformed surface. Using the properties of the conformal flattening and the
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conditions (2), the following differential properties are derived:

J>ϕ Jϕ = λ I2×2, where λ =

{√
det(J>

∆
J∆) Isometric

λ ∈ C1 unknown Conformal.
(3)

p
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Figure 1: General model of template-based 3D reconstruction

3 Reconstruction with Isometric Deformation

3.1 Differential Formulation
Surface reconstruction under isometric deformation constraints can be posed as:

Find ϕ ∈ C1 s ∈ R s.t.

{
η = Π◦ϕ Reprojection constraint
J>ϕ Jϕ = λ I2×2 Isometry constraint,

(4)

where function λ is given by equation (3) and the warp η is obtained from the registration
between the input image and the flattened template. We show in this section that problem
(4) can be expressed as a nonlinear system of PDEs.

We first define η = (ηx,ηy)
> and ϕ = (ϕx,ϕy,ϕz)

> by their scalar components. Follow-
ing the projection constraint we have:

η = s(ϕx,ϕy)
> ⇒ ηx = sϕx ηy = sϕy. (5)

The isometric deformation constraint is rewritten as:

J>ϕ Jϕ = λ I2×2 Jϕ =


1
s

∂η

∂x
1
s

∂η

∂y

∂ϕz

∂x
∂ϕz

∂y

 . (6)

From equation (6), the following nonlinear system of PDEs is derived:
χx + s2

(
∂ϕz

∂x

)2

= χy + s2
(

∂ϕz

∂y

)2

= λ s2

ξ + s2
(

∂ϕz

∂x

)(
∂ϕz

∂y

)
= 0,

(7)
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where:

χx =
∂η

∂x

>
∂η

∂x
χy =

∂η

∂y

>
∂η

∂y
ξ =

∂η

∂x

>
∂η

∂y
. (8)

Finding the solution of system (7) in terms of the derivatives of ϕz and s allows us to
reconstruct all components of ϕ up to an additive constant in ϕz.

3.2 Analytical Solution
The derivatives of ϕz are given by the first two equations of (7):

Γx =
∂ϕz

∂x
= δ1

√
s2λ −χx Γy =

∂ϕz

∂y
= δ2

√
s2λ −χy, (9)

where δ1 and δ2 are piecewise constant functions maping to {−1;1}. By substitution of
equalities (9) in the last equation of system (7) we find the following condition involving η ,
s and functions δ1 and δ2:

ξ = δ1δ2

√
s2λ −χx

√
s2λ −χy δ1δ2 = sign(ξ ). (10)

As ϕz ∈ C1, each region of the template enclosed by the zero-level set of ξ gives 2 possible
solutions to the pair (δ1,δ2) and thus to Γx and Γy. By squaring terms in (10) we get the
following differential condition in η and s

(s2
λ −χx)(s2

λ −χy)−ξ
2 = 0. (11)

The value of the scalar s can be obtained from (11), evaluated at any point p∈P . It results in
a second order polynomial in s2 with two solutions. We select the solution s2 that guarantees
that Γx and Γy are real numbers. It always corresponds to the following:

s2 =
1

2λ (p)

(
χx(p)+χy(p)+

√
(χx(p)−χy(p))2 +ξ (p)2

)
(12)

We can then obtain ϕz by integration of Γx or Γy (up to an unknown constant). The system
(7) is thus redundant when η complies exactly with (11).

3.3 The Isowarp η

When η contains errors, the solutions of equations (9) and (12) do not guarantee neither that
Γx and Γy share a primitive nor that they are exact solutions of system (7). In fact, with errors
in η , equation (12) varies in function of p, not being a constant scalar for all points in P .

We define the isowarp as a function η that represents the weak-perspective projection
of an isometric deforming surface. If η is an isowarp, system (7) has an exact solution and
directly solves the isometric reconstruction problem (4). An isowarp η satisfies the following
system of PDEs:

(s2
λ −χx(s2

λ −χy)−ξ
2 = 0

(s2
λ −χy)

(
s2 ∂λ

∂y
− ∂ χx

∂y

)2

− (s2
λ −χx)

(
s2 ∂λ

∂x
−

∂ χy

∂x

)2

= 0, (13)
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where s ∈ R+. Equation (13) ensures that system (7) has solutions with s constant for any
p∈P . Condition (13) ensures that Γx and Γy share a primitive by imposing ∂Γx

∂y =
∂Γy
∂x . Con-

ditions (13) and (13) can be plugged into the registration problem as optimization constraints,
forcing η to be an isowarp.

4 Reconstruction with Conformal Deformations

4.1 Differential Formulation
Surface reconstruction under conformal deformation constraints can be posed as:

Find ϕ ∈ C1 λ ∈ C1 s ∈ R s.t.

{
η = Π◦ϕ Rerojection constraint
J>ϕ Jϕ = λ I2×2 Isometric constraint,

(14)

Problem (14) is expressed as the same system of PDEs described in (7) for isometric defor-
mations, with λ an unknown function.

In the conformal case we find the following solutions to (7):

{
Γx = δ1δ2

√
s2λ −χx Γy = δ1δ2

√
s2λ −χy with δ1δ2 = sign(ξ )

λ = 1
2s2

(
χx +χy +

√
(χx−χy)2 +ξ 2

)
,

(15)

where we highlight that s2 cancels by substitution of λ in Γx and Γy. The solution to ϕ is
thus defined up to a scale factor for conformal deformations and up to an additive constant
in ϕz due to integration. In addition, as in the isometric case, for each region where the sign
of ξ changes we obtain multiple solutions for Γx and Γy.

4.2 Conwarp
In the conformal case the fact that λ is an unknown function removes the first constraint (11)
on η we found for isometric deformations. Even with errors in η we can always find Γx and
Γy that are exact solutions of all equations in (7). However, we still need to ensure they share
a primitive ϕz.

We define the conwarp as a function where the integrability condition of ∂Γx
∂x =

∂Γy
∂y is

met. A conwarps satisfies the following PDE:

(s2
λ −χy)

(
s2 ∂λ

∂y
− ∂ χx

∂y

)2

− (s2
λ −χx)

(
s2 ∂λ

∂x
−

∂ χy

∂x

)2

= 0, (16)

where λ is given by (15).

5 Reconstruction Algorithm
This sections gives insights about how to convert the analytical solutions obtained in the
last section into algorithms. Whether it is conformal or isometric reconstruction the main
algorithm has two steps: 1) Compute η (and additionally s for isometric deformations) using
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image information (e.g. feature matching) and the constraints described in equations (13)
and (13). 2) Compute ϕz by numerical integration of Γx and Γy, obtained from equations (9)
and (15) for the isometric and conformal deformation models respectively.

5.1 Computing Isowarps and Conwarps
The following constrained optimization problem is proposed to find η and s:

min
η ,s

Ed s.t.

{
c1(p) = 0
c2(p) = 0

∀p ∈ P︸ ︷︷ ︸
Isometric

min
η

Ed s.t. c1(p) = 0 ∀p ∈ P︸ ︷︷ ︸
Conformal

(17)

where Ed is a data functional measuring registration error. In case of feature-based methods
Ed is usually the mean transport error between features in the template and input image.
The set of constraints c1(p) and c2(p) correspond to equations (13) and (13) respectively at
point p ∈ P . Problem (17) is non-convex. We propose a Lagrangian relaxation to include
constraints and we use unconstrained nonlinear optimization (i.e. Levenberg-Marquardt) to
reach the minimum:

min
η ,µ

(
Ed +

M

∑
j=1

(
γ1c2

1(p j)+ γ2c2
2(p j)

)
+ γsEs

)

where {p}M
j=1 is a discrete uniform grid of P . γ1 and γ2 are hyper-parameters that have to

be tuned empirically. The functional Es helps to find a smooth η in areas of P where the
solution is not constrained enough (e.g. at the boundaries of a surface without features). We
use the bending energy [1] to impose smoothness.

To get an accurate initial guess for η , we remove the c1 and c2 functionals, solving the
remaining convex problem. In the case of isometric deformations we initialize s by using the
median of the set {s j}M

j , where:

s j =

√
1

2λ (p j)

(
χx(p j)+χy(p j)+

√
(χx(p j)−χy(p))2 +ξ (p j)2

)
(18)

5.2 Computing ϕ

As it is clear from the previous section, the solution to ϕ is not unique neither for isometric
nor conformal deformations. The number of solutions for Γx and Γy is given by the amount
of regions of P where the sign of ξ changes. For Nr regions we have 2Nr solutions for Γx and
Γy. For each of these solutions, ϕz is obtained by integration up to a depth ambiguity ϕz+zc.
If the camera projection is very close to orthographic, more information is needed to resolve
the ambiguity, such as shading [13] or temporal smoothing [4]. However, if the projection is
perspective we know from [2] that we have a single solution for isometric deformations and
a discrete set of them for conformal deformations (up to scale). In this paper we propose a
simple strategy to select a single solution when the projection is not exactly orthographic.
For each solution ϕ we obtain the value of zc that minimizes the following cost:

ε
2
c =

N

∑
j=1

(
ϕx(p j)

ϕz(p j)+ zc
− x j

)2

+

(
ϕy(p j)

ϕz(p j)+ zc
− y j

)2

. (19)
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Synthetic generated images for f = 500px

Experiments
(a) Normal error vs f (b) Depth error vs f (c) Normal error vs σ (d) Depth error vs σ
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Figure 2: Synthetic generated images and experimental results

We finally keep the solution with the smallest ε2
c .

6 Experimental Validation

The name of algorithms that we evaluate with datasets are encoded with the following
acronyms: P-A is the perspective, analytical reconstruction [2]. P-R is P-A followed by
nonlinear refinement [3]. WP-CF-A is the weak-perspective model using closed form solu-
tion for η (removing c1 and c2) and then obtaining ϕ directly using closed-form integration.
WP-CF-R is WP-CF-A followed by nonlinear refinement. WP-R-A uses non-linear re-
finement to get an isowarp (or conwarp ) η . WP-R-R is WP-R-A followed by nonlinear
refinement. Finally SALZ is isometric reconstruction based on the maximum depth heuris-
tic [10].

6.1 Synthetic dataset

We use ruled surfaces to simulate isometric deformations of a flat template of size 640 mm×
480 mm. We generate synthetic images using a pin-hole camera with varying focal lengths
f ∈ [400,500,700,800,1000,2000,3000,4000] px. On top of figure 2 we show 5 deforma-
tions used for the experiments. We randomly generate sets of N = 100 point correspon-
dences between the template and the images. We use two performance indicators: ε is the
error (in mm) between 3D points in the ground-truth surface and their correspondences in
reconstructed shape. εn is the error (in degrees) between the ground-truth normals and the
normals recovered with the model in a regular grid of 100×100 points. To compute εn for
WP-CF-A and WP-R-A we select the normal that is closest to the ground-truth so that we
remove the effect of selecting the wrong solution which does appear in ε . We test the algo-
rithm against varying focal length f (see figure 2.(a) and 2.(b) ) and noise variance σ (figure
2.(c) and 2.(d)) . The defaults are f = 1000 px and σ = 0.5 px. We can see from figure 2 that
the WP analytical solutions improve P-A and SALZ when f is large. We can also conclude
from figure 2.(c) and 2.(d) that WP-CF-A is more unstable for recovering the correct shape
when σ increases, even if εn is accurate. The solution based on isowarps is the most stable
and accurate given all indicators.
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6.2 Real Data

In this section we propose experiments to test the proposed methods on real surfaces. For the
isometric case we select a bending sheet of paper. In the conformal case we use a balloon
with two levels of air volume inside. The inflation of the balloon produce deformations that
approximate conformal deformations. In all the experiments we use a commercial DSLR
camera with variable zoom optics. Image resolution is 2304×3456 px.

Bending paper dataset. The bending paper dataset is composed of two basic shapes (shape
1 and 2) projected with different viewpoints and 4 different focal lengths. The ground
truth surface of the paper in camera reference is obtained using commercial Structure-from-
Motion software. We show results with shape 1 and f = 12166 px in figures 3.(a-h) and with
shape 2 and f = 7924 px in figures 3.(i-p). We visualize η as a mesh overlaid onto the input
images in figures 3.(a,c,i,k) for smooth and isowarp (WP-R) constraints. In figures 3.(b,d,j,l)
we show the flat template overlaid with the different regions where the sign of ξ changes.
The shape obtained with the different methods is shown in figures 3.(f,g,h) and 3.(n,o,p).
Finally in the bottom part of figure 3 we show a table with the depth error ε and normal
error εn for all input images used in the experiment, including those detailed in the top part
of figure 3 (i.e. shaded cells). It is interesting to see that methods based on isowarps obtain
accurate results on most of the cases and focal lengths. In many cases WP-R-A reaches a
solution near the same minimum obtained after refinement . The methods based on smooth
warps (WP-CF) fail to find the correct solution in most of the cases. As we expected, the
perspective method P-A is accurate with short-focal lengths. For bigger f we found for one
case that the P-R solution is stuck in a local minimum while WP-R-R method is able to get
a better solution.

Balloon dataset . The balloon dataset shows the performance of the proposed method with
conformal deformations. The template is obtained using a commercial SfM software. The
flat template is obtained using conformal flattening. In the conformal case the solution is
obtained up to a scale ambiguity and a discrete amount of solutions, both in the WP and P
cases. We obtain the solution and the scale that best fit the ground-truth data. We provide
depth error ε for all methods. Last row of figure 4 clearly shows that weak perspective
methods are very accurate. In this case WP-CF and WP-R methods show the same behavior
which means that conwarps and smooth warps are similar in this dataset.

7 Conclusions

This paper proposed analytical solutions for the template-based reconstruction of surfaces
from weak-perspective monocular views. We showed that the weak-perspective model is
especially useful for cameras with large focal lengths. We developed the tools and the theo-
retical background to obtain surface deformations for isometric and conformal surfaces. We
also developed conditions on the registration warp so that it complies with the reconstruc-
tion problem, defining the isowarp and the conwarp. The experiments demonstrate that the
algorithms developed in this paper give accurate and stable results with real images under
several conditions of focal length, deformations and noise.
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Shape 1 f = 12166 px

(a) Smooth warp (b) WP-CF regions (c) WP-R Isowarp (d) WP-R regions

(e) Template (f) WP-CF 3D shape (g) WP-R 3D shape (h) Other methods
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Shape 2 f = 7942 px

(i) Smooth warp (j) WP-CF regions k) WP-R Isowarp (l) WP-R regions

(m) Template (n) WP-CF 3D shape (o) WP-R 3D shape (p) Other methods
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Focal Length Shape 1 Shape 2

f = 2719 px
WP-CF-A WP-CF-R WP-R-A WP-R-R P-A P-R SALZ

ε 65.44 62.54 14.11 4.56 8.56 6.13 20.58
εn 76.97 77.68 22.20 6.96 19.95 6.96 13.19

WP-CF-A WP-CF-R WP-R-A WP-R-R P-A P-R SALZ
ε 59.55 66.01 12.28 8.49 16.11 8.47 63.36
εn 69.20 75.67 23.94 8.16 34.19 8.16 28.27

f = 5865 px ε 13.45 8.68 9.65 8.68 14.90 8.68 38.93
εn 8.12 3.68 6.17 3.68 43.63 3.68 35.89

ε 28.45 30.26 5.30 6.89 11.15 10.67 70.57
εn 62.53 63.38 18.62 18.69 29.47 18.69 30.20

f = 7942 px ε 59.09 61.07 9.94 7.78 16.91 7.78 68.60
εn 79.31 80.73 13.63 3.73 41.18 3.73 49.38

ε 46.76 51.83 10.79 10.74 29.83 10.61 62.31
εn 59.25 58.54 11.89 5.65 37.38 5.65 21.73

f = 12166 px ε 64.52 65.05 8.36 7.47 15.25 7.47 146.48
εn 72.55 73.35 15.68 12.05 27.38 12.05 51.80

ε 80.69 79.01 5.02 5.26 39.10 11.32 123.80
εn 61.26 60.62 8.40 10.21 40.90 10.21 42.16

Figure 3: Experiments on the paper dataset

Template Input f=3913 px Input f=5673 px Input f=3613 px

Focal (px)/RMS (mm) P-A P-R WP-CF-A WP-CF-R WP-R-A WP-R-R
7666.8 2.88 2.23 2.088 2.072 2.088 2.072
5673.5 2.41 1.53 4.26 2.47 4.26 2.47
3613.9 3.23 1.37 5.83 4.10 5.83 4.10

Figure 4: Experiments with the balloon dataset
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