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Abstract Estimating the pose of a plane given a set of

point correspondences is a core problem in computer vi-

sion with many applications including Augmented Re-

ality (AR), camera calibration and 3D scene reconstruc-

tion and interpretation. Despite much progress over re-

cent years there is still the need for a more efficient and

more accurate solution, particularly in mobile applica-

tions where the run-time budget is critical. We present a

new analytic solution to the problem which is far faster

than current methods based on solving Pose from n

Points (PnP) and is in most cases more accurate. Our

approach involves a new way to exploit redundancy in

the homography coefficients. This uses the fact that

when the homography is noisy it will estimate the true

transform between the model plane and the image bet-

ter at some regions on the plane than at others. Our
method is based on locating a point where the trans-

form is well estimated, and using only the local trans-

formation at that point to constrain pose. This involves

solving pose with a local non-redundant 1st-order PDE.

We call this framework Infinitesimal Plane-based Pose

Estimation (IPPE), because one can think of it as solv-

ing pose using the transform about an infinitesimally

small region on the plane. We show experimentally that

IPPE leads to very accurate pose estimates. Because

IPPE is analytic it is both extremely fast and allows us

to fully characterise the method in terms of degenera-
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cies, number of returned solutions, and the geometric

relationship of these solutions. This characterisation is

not possible with state-of-the-art PnP methods since

they solve pose via numerical root-finding.
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1 Introduction

Plane-based Pose Estimation (PPE) is a fundamental

problem in computer vision and is the basis for many

important applications. At its core PPE means recov-

ering the relative pose of a model plane with respect

to a camera’s 3D coordinate frame from a single im-

age of that plane. Applications include estimating the

pose of textured planar surfaces visible in an image
or using planar markers to perform AR [22,29]. An-

other important application is camera calibration us-

ing views of a planar calibration target [2,40,35,13]. In

the classic pipeline, first the camera’s intrinsics are es-

timated, then PPE is performed to obtain the camera’s

extrinsics, which is followed by joint intrinsic/extrinsic

refinement. Other important applications of PPE in-

clude camera/projector calibration [4] and Shape-from-

Texture [6,19,26,25].

There exist already many methods for solving PPE.

These can be broken down into two main categories.

The first category solves PPE by decomposing the as-

sociated plane-to-view homography [40,35,6,30]. These

methods are known as Homography Decomposition

(HD) methods. The second category treats PPE as a

special case of the general rigid pose estimation problem

from point correspondences. When the camera is per-

spective, this is known as the PnP problem where n de-

notes the number of correspondences. We use the term

Planar-PnP to be a general PnP method which can
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handle the plane as a special case. HD works using the

fact that the transform induced by perspective or affine

projection of a plane is a homography. Once estimated

the homography can be factored very efficiently to give

a pose estimate. Solutions to HD exist for perspective

cameras [40,35] and for weak-perspective cameras [6,

30]. We call these PHD methods and WPHD methods

respectively. PnP methods work by optimising pose us-

ing a cost function related to the correspondence trans-

fer error. This is the error in the predicted positions of

point correspondences compared with their measured

positions. Research on PnP has either focused on the

special cases of n = 3 and n = 4 [7,10,11,15,33,14,21],

or for solving the problem with arbitrary n [33,9,1,24,

23,28,30,20,34,18].

There are two main differences between PHD and

Planar-PnP. Firstly state-of-the-art Planar-PnP meth-

ods significantly outperform PHD methods with respect

to noise. Secondly, PHD methods return only a single

solution. This means they can fail badly under certain

imaging conditions. For example, when the homogra-

phy is affine PPE is not solvable uniquely [34]. When

in weak-perspective conditions there exists a rotation

ambiguity that corresponds to an unknown reflection of

the plane about the camera’s z-axis [30]. This can hap-

pen when imaging small planes, or planes at a distance

significantly larger than the camera’s focal length. In

these conditions the reprojection error of the two solu-

tions can both be explained by noise, and so the single

PHD solution can be far from the true solution about

50% of the time. By contrast most recent Planar-PnP

methods can return multiple solutions which are min-

ima of their associated cost functions. Ideally one of

these corresponds to the true solution.

Approach, motivation and overview. The current ap-

proach to achieve high-accuracy PPE is to first obtain

an initial estimate using a non-iterative PHD or Planar-

PnP method, and then iteratively refine it by optimis-

ing the reprojection error. The refined solution gives

the Maximum Likelihood (ML) estimate with a Gaus-

sian IID noise model for the correspondences. If the

initialisation method returns multiple solutions (which

correspond to the minima of some cost function), then

each of these are refined and the one with the lowest

reprojection error is usually used as the pose estimate.

There is an ongoing demand for developing a more ef-

ficient initialisation method. Ideally one that returns

few solutions, and ultimately be sufficiently accurate to

eliminate the need for refinement altogether. Achieving

this is particularly important for mobile or embedded

applications where reducing the runtime cost is impera-

tive. Given that PHD is significantly faster than Planar-

PnP methods, we aim to find a solution that performs

as quickly as PHD, but with similar or better accuracy

than Planar-PnP methods.

PHD uses an 8-DoF homography matrix to estimate

the 6-DoF pose. Therefore the problem involves redun-

dant constraints. PHD deals with this redundancy by

solving for the best-fitting pose via an algebraic least-

squares cost. This assumes that the noise of the homog-

raphy is IID Gaussian, which is usually not a good ap-

proximation [5]. We propose an alternative method that

uses the redundancy in the homography coefficients to

provide far better pose estimates. Our method is based

on the fact that when the homography has been esti-

mated from noisy correspondences, the accuracy of this

transform is spatially-varying. That is, the homography

will predict the transformation better at some points on

the model plane than others. Our method is based on

identifying a point on the model plane where the trans-

form is best predicted, and then solving pose with a

non-redundant, local system using motion information

only at that point. We use 1st-order error propagation

to find this point, which turns out to be well approxi-

mated by the centroid of the points on the model plane.

Our main theoretical contribution is to show how

pose can be solved exactly via a PDE using 0th and

1st-order transform information at a point on the model

plane. We call our approach Infinitesimal Plane-based

Pose Estimation (IPPE). We use this name because it

can be thought of as solving pose using transform in-

formation within an infinitesimally-small region about

a single point on the model plane. To solve IPPE we use

the fact that the PPE problem can be cast as a varia-

tional problem where we equate two functions. The first

function is the composition of 3D rigid embedding and

camera projection. The second function is the trans-

form of the plane onto the camera’s image, estimated by

the homography. These two functions should be equiv-

alent up to noise. The technique we use is to equate

these functions by equating their Taylor series repre-

sentations. By truncating the Taylor series at 1st-order,

we form a local 1st-order PDE giving six constraints on

pose. We show that these constraints boil down to a uni-

variate quadratic equation whose solution is equivalent

to finding the largest singular value of a 2×2 matrix. It

is important to note that IPPE is not the same as solv-

ing PPE by linearising the projection equations with a

Taylor approximation (as is done when the perspective

camera is replaced with an affine approximation [30,

20]). That is, IPPE does not involve any linearisation

because is uses an exact representation of the projection

equations via the PDE.

There is also an important connection between

IPPE and the P3P problem. Specifically, IPPE is the
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solution to the P3P problem when the three points are

non-colinear and their mutual separation becomes in-

finitesimally small. A formal study of P3P for infinites-

imally separated points has not been presented in the

literature before, so our analysis of IPPE contributes to

the understanding of P3P.

IPPE takes as inputs the coefficients of a homogra-

phy, and so it requires a minimum of four point corre-

spondences. Unlike PHD, IPPE does not break down

if the homography is affine. Empirically we show that

IPPE performs very well through extensive simulation

and real experiments. It consistently performs better

than PHD, and in most cases outperforms competitive

Planar-PnP methods, whilst being far faster because

it solves pose analytically. Furthermore its analytic so-

lution permits a full characterisation of the method.

Specifically, we give answers to the following core ques-

tions:

Q1 For what inputs does IPPE guarantee to return at

least one physically valid solution? Answer: All ho-

mography matrices with rank greater than 1. This

includes affine homographies.

Q2 How many physically valid solutions does IPPE re-

turn? Answer: One or two.

Q3 What is the geometric relationship between the re-

turned solutions of IPPE? Answer: They corre-

spond to a reflection of the plane about a single

viewing ray.

Q4 For what inputs does IPPE estimate translation

uniquely? Answer: All homographies whose rank is

greater than 1.

Q5 For what inputs does IPPE estimate rotation

uniquely? Answer: When the plane is tangential
to a 3D sphere centred at the camera’s centre-of-

projection.

Q6 Does IPPE introduce any artificial degeneracies?

Answer: It does not.

Understanding whether a method introduces artificial

degeneracies is important. When solving PPE with a

particular method two types of degeneracies can occur.

The first type are called generic degeneracies. These

occur when the geometric configuration of the camera,

plane and point correspondences are such that PPE

cannot be solved uniquely. No method can estimate

the plane’s pose in these cases. The second type are

called artificial degeneracies. These occur when the

PPE problem is well-posed, but the method fails to

return the correct solution due to the geometric con-

figuration. For example, PHD introduces at least one

artificial degeneracy which is when the homography’s

perspective terms are negligible. Competitive Planar-

PnP methods do not solve pose analytically, and so it

is virtually impossible to have complete answers to the

above six core questions. They can usually give upper

bounds on question 1, but questions 2-6 are left unan-

swered. For instance [24,23] can give between zero and

four solutions with no theoretical guarantees that the

solutions will be geometrically valid.

Paper structure. In §2 we review current state-of-the-

art PPE methods. In §3 we present IPPE, its solution

and proofs for the six core questions above. In §4 we

evaluate IPPE against state-of-the art methods using

a large range of simulation experiments. In §5 we eval-

uate IPPE in three common applications; estimating

the pose of a textured planar surface from sparse key-

point correspondences, estimating the pose of a planar

checkerboard target and estimating the pose of planar

AR markers from four corner correspondences. Finally

in §6 we present our conclusions and directions for fu-

ture work.

Background and notation. Vectors are given in lower-

case bold and matrices in upper-case bold. Scalars are

given in regular italic. For a 2D matrix M, Mij denote

the element in M at row i, column j. For a vector v,

vi denotes its ith element. We use Mij to denote the

top-left i × j submatrix of M. We use SS2×2 to de-

note the 2 × 2 sub-Stiefel manifold in SO3 (i.e. M is

in SS2×2 if it is a 2 × 2 submatrix of some 3 × 3 rota-

tion matrix). ‖M‖F denotes the Frobenius norm of a

matrix and ‖v‖2 denotes the L2 norm of a vector. Ik
denotes the k× k identity matrix. We use M̂ to denote

a noisy measurement of M. We define the model plane

in world coordinates on the plane z = 0. We denote

the rigid transform mapping a point in world coordi-

nates to the camera’s coordinate frame by the rotation

R ∈ SO3 and translation t ∈ R3. We use s>i to be

the ith row of R and ri to be the ith column of R. We

assume that the camera is calibrated, and any distor-

tion effects have been undone as a pre-processing step.

For perspective cameras the projection of a point in the

camera’s coordinate frame onto the image is determined

by the camera’s intrinsic calibration matrix K:

K =

 fx s cx
0 fy cy
0 0 1

 (1)

where fx and fy denotes the camera’s effective focal

length along the x and y axes (in pixels), c = [cx, cy]>

denote the camera’s principal point and s denotes the

camera’s skew. We use the function π([x, y, z]>) =

z−1[x, y]> to convert a point [x, y, z]> in homogeneous
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3D coordinates to inhomogeneous 2D coordinates. Per-

spective projection of a 3D point x in camera coordi-

nates is thus given by π(Kx). For a point q in the cam-

era’s image we use q̃ to be its position in normalised

coordinates:

q̃ = K−122 (q− c) (2)

We define {qi}, with i ∈ {1, 2, ...n} to be the set of

n correspondences where ui ∈ R2 is a point’s posi-

tion on the model plane and qi ∈ R2 is its position

in the image. Without loss of generality we assume

{ui} is zero-centred:
∑n
i=1 ui = 0. For a homography

matrix H we define ΩH ⊂ R2 to be the subspace of

R2 that does not map via H to the line at infinity:

u ∈ ΩH iff [H31H32H33]
[
u>1

]> 6= 0.

2 Related Work

2.1 Homography Decomposition (HD)

The first main approach to PPE involves estimating the

homography associated with the model-to-image trans-

form. This is followed by HD which gives an analytic

solution to pose [40,35,6].

2.1.1 Perspective Homography Decomposition (PHD)

The transform from a point u ∈ R2 on the model plane

to the image of a perspective camera is described by

the following homogeneous system:[
q̃

1

]
∝ [I3 0]

[
R t

0> 1

]u

0

1

 ∝ H

[
u

1

]
(3)

Points q̃ and u are related by a 3 × 3 matrix H

known as the model-to-view homography. This is given

by λH =
[
r1 r2 t

]
for some λ ∈ R. We assume H has

been estimated up to noise:

Ĥ
def
= H + εH = λ−1[r1 r2 t] + εH (4)

where εH denotes a 3 × 3 measurement noise matrix.

In the absence of noise the columns of Ĥ give r1, r2
and t uniquely. Denoting ĥj to be the jth column of

Ĥ, λ is given trivially by λ̂ = ‖ĥ1‖−12 = ‖ĥ2‖−12 . r1,

r2 and t are then given by the columns of λ̂Ĥ. From

r1 and r2 the full rotation matrix is recovered with

R = [r1 r2 r1 × r2]. With noise, pose can be estimated

in a least squares sense as proposed by Zhang [40] and

Sturm [35]. Zhang’s method works by first relaxing or-

thonormality between r1 and r2. This gives the esti-

mates r̂j = λ̂jĥj , j ∈ {1, 2} with λ̂j = ‖ĥj‖−12 . λ and

t are estimated with λ̂ = (λ̂1 + λ̂2)/2, and t̂ = λ̂ĥ3.

r3 is then estimated with r̂3 = r̂1 × r̂2. The matrix

[r̂1, r̂2, r̂3] is then projected onto the closest member of

SO3 (in the Frobenius sense) to give a valid rotation

matrix using Singular Value Decomposition (SVD).

Sturm’s method differs in that it does not first relax

orthonormality. Instead εH is assumed to be IID Gaus-

sian and the ML solution is found by solving the least

squares problem:

min
λ,r1,r2,t

∥∥∥λĤ−
[
r1 r2 t

]∥∥∥2
2

s.t. [r1 r2]>[r1 r2] = I2 (5)

This can be solved very efficiently by taking the SVD of

the left 3×2 submatrix of Ĥ. Zhang and Sturm’s meth-

ods have been shown empirically to perform similarly

and are very fast.

2.1.2 Weak-Perspective Homography Decomposition

(WPHD)

HD has also been applied to estimate pose with weak-

perspective cameras [6,30]. Weak-perspective projec-

tion is a linear projection that comes by linearising

perspective projection about a point on the camera’s

optical axis [8,20]. The transform from a point u ∈ R2

on the model plane to the image of a weak-perspective

camera is described by the following homogeneous sys-

tem:

q̃ = α [I2|0]

(
R

[
u

0

]
+ t

)
+ εwp ⇔[

q̃

1

]
= Awp

[
u

1

]
+

[
εwp
1

]
Awp

def
= α

R22

[
t1
t2

]
0> 1


(6)

εwp ∈ R2 denotes modelling error introduced

by approximating perspective projection with weak-

perspective projection. εwp becomes smaller when the

variation of the model’s depth is small compared to

its average depth (i.e. the plane is small and/or its tilt

angle is small), and when it projects closely to the cam-

era’s principal point [20]. α is the inverse depth of the

plane along the optical axis. Given an estimate of Awp,

when εwp is neglected we obtain a unique estimate for

α and two estimates for R. These correspond to a two-

fold solution ambiguity that are equivalent to reflect-

ing the model in camera coordinates about the plane

z = 0 [30]. For either estimate of R, t can be computed

uniquely. If the camera’s intrinsics are known up to its

focal length, the two solutions to R can be computed,

but t cannot be computed [6].
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2.1.3 Comparing Perspective and Weak-Perspective

Homography Decomposition

PHD and WPHD are different in three main respects.

Firstly in WPHD the system is not redundant, because

Awp gives 6 equations for pose, whereas H gives 8 equa-

tions. Thus noise must be neglected in WPHD to have

a well-posed problem (because it is exact). Secondly, in

WPHD the solution to R is always two-fold ambigu-

ous, except in the special case when the plane is fronto-

parallel to the camera [6]. In PHD it is always unique.

However PHD fails when there is a small amount of

noise and H tends towards being affine [34]. Thirdly,

WPHD tends to return worse solutions when H is not

affine due to the modelling error induced by linearising

perspective projection.

2.2 Pose Estimation from n Point Correspondences

(PnP)

The second main approach to PPE is to solve R and

t directly from point correspondences. These solve the

PnP problem and treat planar models as a special case.

PnP methods can be broadly divided into those which

solve for small, fixed n, or those which handle the gen-

eral case. The P3P problem has been studied exten-

sively [7,10,11,15,33,14] and yields up to four solu-

tions when the points are non-colinear. Thus, additional

points are required in general to solve pose uniquely

[10,39]. For planes, P4P has a unique solution when

no 3 points are colinear [21]. Methods which solve the

general PnP problem aim to exploit the redundancy of

more correspondences to achieve higher accuracy. Gen-

eral PnP methods can be broadly divided into whether

they are non-iterative [33,9,1,24,23] or iterative [28,30,

20,34]. Early non-iterative PnP methods were either

computationally expensive and did not scale well for

large n [33,1], or cheap but quite sensitive to noise [9].

The earliest practical solutions to PnP when n

is large involved iteratively approximating perspective

projection with an affine camera, using either the weak-

perspective camera [30] or the para-perspective camera

[20]. Both [30] and [20] solved the problem in a simi-

lar way. First pose was computed with the affine cam-

era. Next the error induced by the affine camera ap-

proximation was estimated, and this error was fed back

into the system to adjust the constraints on pose. Pose

was then re-computed with this adjusted system. The

process then iterated between estimating the affine ap-

proximation error, adjusting the pose constraints and

estimating pose. For planar models the pose estimates

at each iteration are two-fold ambiguous. To prevent

the solution space exploding two-fold with each itera-

tion [30] and [20] pruned the solutions. Two solutions

were maintained in [30], with one being eliminated if its

perspective reprojection error was large relative to the

other. In [20] both solutions were retained in the first

iteration. These initialised two search branches, and for

each branch only one solution was picked at each iter-

ation (that which had the smallest reprojection error).

Finally the single solution was chosen with smallest re-

projection error. The major limitation of these meth-

ods is that they are rather slow and neither conver-

gence nor optimality can be guaranteed. It also becomes

hard to distinguish the correct pose when either noise

is large, or the error in the perspective approximation

is large. We note here that [30] and [20] are related

to our proposed framework in one sense. IPPE instan-

tiated with the para-perspective and weak-perspective

cameras give the same solution as the first iteration of

[30] and [20] respectively. Where IPPE differs is in being

able to properly handle the perspective camera exactly

and non-iteratively.

Lu et al. [28] proposed an accurate iterative PnP

method called RPP that does not make an affine cam-

era approximation. The method is provably convergent

and remains one of the best performing PnP methods

to date. It was later extended by Schweighofer and Pinz

[34] to handle ambiguous cases for planes. In [34] first a

pose is estimated using [28], and then a second solution

is found corresponding to a local minimum of the re-

projection error with respect to a 1-DoF rotation. Thus

two solutions are returned and if their reprojection er-

rors are similar it indicates an ambiguous configura-

tion. This method is called RPP-SP. The shortcomings

of RPP-SP are that if the solution provided by [28] is

poor, it is not likely to find a good second solution. Sec-

ondly, it is relatively slow as it relies on [28] to estimate

the first pose. Thirdly, it is very difficult to geomet-

rically characterise the pose ambiguity, as the second

solution is found from the roots of a 4th order polyno-

mial (two of which are guaranteed to be imaginary).

More recently efficient non-iterative PnP methods

have been proposed which are significantly faster than

iterative ones. EPnP [23] solves the problem numeri-

cally in O(n) by re-representing the 3D points using a

weighted sum of four virtual control points. This means

the problem size does not grow with n and so scales well

for hundreds of points. A Direct Least Squares (DLS)

approach was presented in [18]. Very recently RPnP

has been proposed [24]. This is another non-iterative

O(n) solution which solves PnP by grouping the points

into subsets of size three. Each subset corresponds to a

P3P problems that is solvable with a 4th-order polyno-

mial. These polynomials are combined in a least-squares
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manner to form a 7th order polynomial whose roots

each give a solution to pose. The accuracy of RPnP ri-

vals [28], yet is far faster to compute. However, RPnP

makes no guarantees on the number of returned solu-

tions. Furthermore a geometric characterisation of its

solutions is impossible.

3 Infinitesimal Plane-based Pose Estimation

(IPPE)

We now present IPPE. We start by showing that given

Ĥ, we can constrain pose using a local 1st-order PDE.

This PDE involves estimates of the 0th and 1st-order

terms of the model-to-image transform function at a

single point on the model plane. These terms are com-

puted analytically from Ĥ. When Ĥ contains errors,

the PDE will have error-in-variables. The advantage of

this PDE being local is that we are free to apply it any-

where on the model plane. Thus we can apply it at the

point where we expect to have the best local estimate

of the transform. This leads to a reduction of the error-

in-variables in the PDE, and leads to a more accurate

pose estimate.

3.1 Local Constraints on Pose with a 1st-order PDE

The variational system that describes the rigid embed-

ding and perspective projection of the model plane is

simple. We use s(u) = R[u>, 0]> + t : R2 → R3 to de-

note the true (but unknown) embedding from world to

camera coordinates. s is then composed with the pro-

jection function π to give the plane-to-image transform

w:

w(u)
def
= π

(
H
(
[u>, 1]>

))
= (π ◦ s) (u) (7)

H is the noise-free homography that transforms the

model plane to normalised image coordinates. Consider

a single point u0 ∈ ΩH that does not map via H to the

line at infinity. Eq. (7) provides us with two 0th-order

constraints on s with:

w(u0) = π
(
H
(
[u>0 , 1]>

))
= (π ◦ s)(u0), w(u0) ∈ R2

(8)

Because π is smooth and s is a linear transform, w

is also smooth. Thus by differentiating Eq. (7) we can

obtain four 1st-order constraints on s via the product

rule:

Jw(u0) = (Jπ ◦ s)(u0)Js(u0) , Jw(u0) ∈ R2×2 (9)

where Jf denotes the function that computes the Ja-

cobian matrix of f . Because s is a rigid transform

Js(u0) = R32 so:

Js(u0)>Js(u0) = I2 (10)

Our goal is to estimate t and R by first estimating s(u0)

and Js(u0) by solving a 1st-order PDE using Eq. (8),

Eq. (9) and Eq. (10). Because Eq. (8) and Eq. (9) give

us six constraints (which is the minimal number of con-

straints needed to estimate pose), we can solve this

PDE pointwise. That is, for a given u0 we estimate

s(u0) and Js(u0), and from these we can recover t and

R.

We write this problem using the unknown vector

x = s(u0) ∈ R3, which is the 3D position of u0 in the

camera’s 3D coordinate frame, and the unknown matrix

R32 = Js(u0). Substituting these into Eq. (8), Eq. (9)

and Eq. (10) gives what we call the IPPE Problem. This

writes as follows:

find x,R s.t.
π(x) = w(u0) (a)

Jπ(x)R32 = Jw(u0) (b)

R>32R32 = I2 (c)

x3 > 0 (d)

(11)

The additional constraint (11-d) enforces that for u0

to be visible in the image it must lie in front of the

camera. The constraints in Problem (11) only involve

R32. Given a solution to R32 the third column of R

is recovered uniquely by the cross-product of the two

columns in R32. To recover t from x and R we use the

definition of x: x = s(u0) = R [u0 0]
>

+ t. Thus given

a solution to Problem (11) pose is given by:

R =

[
R32 | R32

[
1

0

]
×R32

[
0

1

]]
t = x−R

[
u0

0

] (12)

In practice we do not have access to the noise-free ho-

mography H. Instead we have access to a noisy estimate

Ĥ computed from the point correspondences {ui} and

{q̃i}. We therefore must work with noisy estimates of

w(u0) and Jw(u0), which we denote by v ∈ R2 and

J ∈ R2×2 respectively. We assume that Ĥ33 = 1 (which

can be ensured by rescaling Ĥ), and so v and J are

given by:

v
def
= π(Ĥ[u0

>1]>) ≈ w(u0) (13)
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J
def
= (1 + uxĤ31 + uyĤ32)−2

[
J11 J12
J21 J22

]
≈ Jw(u0)

[ux, uy]>
def
= u0

J11
def
= Ĥ11 − Ĥ31Ĥ13 + ux(Ĥ11Ĥ32 − Ĥ31Ĥ12)

J12
def
= Ĥ12 − Ĥ32Ĥ13 + uy(Ĥ12Ĥ31 − Ĥ32Ĥ11)

J21
def
= Ĥ21 − Ĥ31Ĥ23 + ux(Ĥ21Ĥ32 − Ĥ31Ĥ22)

J22
def
= Ĥ22 − Ĥ32Ĥ23 + uy(Ĥ22Ĥ31 − Ĥ32Ĥ21)

(14)

v and J can be defined for any u0 ∈ ΩĤ.

Eq. (11-a) gives estimates for x1 and x2 in terms

of x3 via [x1, x2]
>

= x3v. Substituting this into Jπ(x)

gives:

Jπ(x) ≈ Jπ(x3[v>1]>) = x−13

[
I2 | − v

]
(15)

Thus Problem (11) is reduced to one in x3 and R. To

simplify further we make a change of variables γ
def
= x−13

to give Problem (11) in terms of γ and R:

find γ,R s.t.
γ [I2| − v] R32 = J (a)

R>32R32 = I2 (b)

γ > 0 (c)

(16)

Given a solution to Problem (16) the plane’s pose is

given from Eq. (12) using x = γ−1
[
v>1

]>
.

One can also construct the PPE problem using al-

ternative camera projection models. We show in Ap-

pendix A that when we use weak-perspective or para-

perspective models we obtain a problem with exactly
the same form as Problem (16). The difference is that

the affine approximation made by these cameras lead

to different values for v and J. Therefore a solution to

Problem (16) is general because it handles perspective,

para-perspective and weak-perspective cameras as spe-

cial cases.

3.2 Statistical Motivation for IPPE and Choosing u0

We defer our solution to Problem (16) until the next

section. We first consider two important questions:

Q1 When there is noise in the correspondences (and

hence noise in Ĥ, v and J), how does changing u0

affect Problem (16)?

Q2 How can we choose u0 such that Problem (16) is

least affected by noise in the correspondences?

We have studied these questions based on a statistical

analysis of how errors in the correspondences propagate

through Ĥ to v and J. We then show how this propa-

gated error varies as a function of u0. The answers we

find to the above two questions provide the statistical

motivation for why IPPE is a very sensible approach

to PPE in the first place. This is because the error in

both v and J varies as a function of u0, and the er-

ror is approximately minimal at the centroid of {ui}.
By choosing u0 to be at the point where the error in v

and J is least, then IPPE solves pose using a system of

equations with the lowest error-in-variables. Note that

when there is no noise in Ĥ we have error-free estimates

of v and J for all u0. It would therefore make no differ-

ence where we positioned u0, because for any u0 γ and

R would be estimated without error.

Recall that IPPE can be thought of as solving PPE

using constraints from the motion of an infinitesimally

small region on the model plane (centred at u0). IPPE

might seem counter intuitive because when we think

about pose estimation we might imagine that using an

infinitesimally small region would lead to instability.

This is in fact the opposite. Note that if {ui} were to be

themselves infinitesimally separated then with a small

amount of noise the PPE problem itself would be totally

unstable. In IPPE however the motion at an infinites-

imal region about u0 is predicted from Ĥ via points

that are spatially separated.

We assume the correspondences {q̃i} in the image

are perturbed from their true positions by zero-mean

Gaussian IID noise. This model has been shown many

times to be a good approximation in practice [17]. We

denote q̂ ∈ R2n to be the vector that holds {q̃i} as a

single column vector. We use Σq̂ = σ2I2n to denote

the uncertainty covariance matrix of q̂, where σ2 is the

correspondence noise variance.

3.2.1 Uncertainty in v

We start by considering the uncertainty in v given noisy

correspondences and show how this varies as a function

of u0. We do this by modelling the 1st-order effects of

propagating errors in q̂ through Ĥ to v. Recall that

{ui} is zero-centred so that its centroid is at the origin.

We write the 2 × 2 uncertainty covariance matrix of

v as a function of u0 by Σv(u0) : R2 → S(2), where

S(2) is the space of 2× 2 covariance matrices. Because

Σv(u0) � 0 we can minimise the uncertainty in v by

finding u0 that minimises the trace of Σv(u0).

Theorem 1 The point that minimises trace (Σv(u0))

(the uncertainty in v) is given up to 1st-order by the

centroid of {ui}.

Proof
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The optimal 1st-order approximation of Ĥ is given by

the ML affine transform Ĥ ≈
[

ÂML t̂ML

0> 1

]
, which is

the least squares affine transform that maps {ui} to

{q̃i}. When we use the 1st-order approximation v ≈
ÂMLu + t̂ML, Σv(u0) is given by:

[Σv(u0)]ij ≈
{
σ
n + (u0 − 0)>(Ū>Ū)−1(u0 − 0) i = j

0 i 6= j

(17)

Ū is the 2×n matrix that holds {ui}. Ū>Ū � 0 is the

covariance matrix of {ui}. Eq. (17) is straightforward

to prove using 1st-order uncertainty propagation, and

we include a short derivation in Appendix B. Eq. (17)

tells us that to 1st-order the uncertainty in v induced

by noise in {q̃i} follows a Gaussian distribution with

isotropic variance and centred at the origin. Thus the

variance of v increases quadratically with respect to the

distance u0 is from the origin. The value û0 ∈ R2 that

minimises the uncertainty in v is that which minimises

trace(Σv(u0)). This is unique and given by û0 = 0 (i.e.

the centroid of {ui}). ut
Consequently a good strategy to reduce the uncer-

tainty in v is to position u0 at the centroid of {ui}.

3.2.2 Uncertainty in J

We also want u0 to reduce the uncertainty in J. This

is less simple than the uncertainty in v because it in-

volves studying the second-order properties of Ĥ (i.e.

the variation of its Jacobian with respect to u0). Re-

call that J is a function of both u0 and Ĥ, and Ĥ is

a function of q̂. Consider first q̂. The Taylor expansion
of vec(J) about q̂ is:

vec(J) = vec(J(q̂)) +
∂

∂q̂
vec(J)4q̂ +O2 (18)

We use ΣJ to denote the 4 × 4 covariance matrix of

vec(J). Because Σq̂ = σ2I2n, this is given to 1st-order

by:

ΣJ ≈ σ2 ∂

∂q̂
vec(J)

∂

∂q̂
vec(J)> (19)

We use ΣJ(u0) to denote explicitly the dependence of

ΣJ on u0. Our goal is to find the u0 that minimises

trace (ΣJ(u0)) (i.e. the uncertainty in J). This involves

an analysis of ∂
∂q̂vec(J), which depends on the algo-

rithm used to compute Ĥ (and hence J) from q̂. We

analyse the most well-established algorithm, which is

the normalised Direct Linear Transform (DLT) algo-

rithm [17]. Recall that normalisation means modifying

{ui} and {q̃i} so that the point sets are zero-centred

and the average distance of each point set to the origin

is
√

2. We use {u′i} and {q̃′i} to denote the normalised

point sets and Ĥ′ to be the homography that maps {u′i}
to {q̃′i} using the DLT algorithm.

Theorem 2 When the perspective terms in Ĥ′ (i.e.

Ĥ ′31 and Ĥ ′32) are negligible a point that minimises

trace (ΣJ(u0)) (the uncertainty in J) is the centroid of

{ui}.

Theorem 2 depends on the following lemmas:

Lemma 1 A point that minimises trace (ΣJ(u0)) is

given to 1st-order by a point where a change in {q̃i}
induces the smallest change in J.

Lemma 2 When the perspective terms of Ĥ′ (i.e. Ĥ ′31
and Ĥ ′32) are small the minimisation of trace (ΣJ(u0))

is a convex quadratic problem.

The proofs of Theorem 2 and these lemmas are based

on [5] which shows how the error in q̂ propagates to Ĥ′.

We give the proofs in Appendix C.

When the perspective terms in Ĥ′ are

small but non-negligible, an optimal solution to

arg min
u0

[trace (ΣJ(u0))] can be found easily, since

Lemma 2 tells us it is a convex quadratic problem.

When the perspective terms in Ĥ′ are non-negligible

an optimal solution is not guaranteed to be precisely at

the centroid of {ui}. However Theorem 1 and Lemma

2 tell us that as the perspective terms in Ĥ′ become

smaller then an optimal solution tends towards the

centroid of {ui}. In real imaging conditions usually the

perspective terms in Ĥ′ are small and we have found

that the centroid of {ui} is very close to the optimal

solution. In practice it can therefore be used as an

approximate minimiser of trace (ΣJ(u0)).

Summary. We have provided answers to the two ques-

tions at the beginning of this section with a statistical

analysis of how the uncertainty in the point correspon-

dences propagates through Ĥ to v and J. The uncer-

tainty is a function of u0. The uncertainty in v is min-

imised to 1st order by setting u0 to be the centroid of

{ui}. Assuming that the perspective terms in the nor-

malised homography Ĥ′ are small (which is usually the

case in common imaging conditions), the uncertainty in

J is minimised by solving a convex quadratic problem.

This is also approximately minimised by setting u0 to

be the centroid of {ui}. Recall that u0 must be in ΩĤ.

This is always satisfied by the centroid of {ui} because

it is at the origin, and this never maps to the line at

infinity:
[
Ĥ31 Ĥ32 1

] [
0> 1

]>
= 1 6= 0.
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3.3 Solving IPPE

Our solution to Problem (16) does not require u0 to be

positioned at the centroid of {ui}. In practice this is

where we position it to reduce error-in-variables. The

main results in this section is the analytic solution to

Problem (16) and proofs of the following theorems:

Theorem 3 (Solution existence and uniqueness
in γ). When u0 ∈ ΩĤ, J 6= 0 the solution to γ in

Problem (16) always exists and is unique.

Theorem 4 (Two-fold ambiguity in R). When

u0 ∈ ΩĤ, J 6= 0 a solution to R in Problem (16)

always exists and there are at most two solutions to

R. These correspond to reflecting the model plane in

camera coordinates about a plane whose normal points

along the line-of-sight [v>1]>. R has a unique solution

iff the model plane in camera coordinates is tangential

to a sphere centred at the optical axis.

3.3.1 Input Bounds

Problem (16) can be setup using any u0 ∈ ΩĤ (since if

u0 /∈ ΩĤ then J is undefined).

Theorem 5 (Generic Degeneracy). If there exists

u0 ∈ ΩĤ such that J = 0 then Ĥ is rank-1 and no

algorithm can solve pose from Ĥ.

Proof

It is simple to show from Eq. (14) that J = 0 ⇔ Ĥ =

[Ĥ13 Ĥ23 1]>[Ĥ13 Ĥ23 1]. Therefore J = 0⇒ rank(Ĥ) =

1 and all points on the model plane map in the image

to a single point (which is at [Ĥ13 Ĥ23]>). This is a

degenerate configuration that occurs when the model

plane is infinitely far from the camera. In this case no

algorithm can recover its pose. ut
We therefore restrict solving Eq. (16) to when u0 ∈

ΩĤ and J 6= 0. The solution we now present gives a

physically valid solution for all these inputs. This means

our solution does not introduce any artificial degenera-

cies.

3.3.2 Simplification

We rewrite the left side of Eq. (16-a) as follows:

γ [I2| − v] R32 = γ [I2| − v] RvR
>
v R32 (20)

We define Rv ∈ SO3 as a rotation that rotates [I2| − v]

such that for some B ∈ R2×2, [I2| − v] Rv = [B|0]. B

is rank-2 because [I2| − v] and Rv are rank-2 and rank-

3 respectively. We solve Problem (16) in terms of the

rotation matrix R̃
def
= R>v R, and then recover R with

R = RvR̃. Eq. (16-a) becomes:

γ [I2| − v] R32 = J ⇔
γ [B|0] R̃23 = J ⇔
γR̃22 = A, A

def
= B−1J

(21)

Because J is at least rank-1 A is at least rank-1. There-

fore we have reduced Problem (16) to the decomposi-

tion of a 2× 2 matrix A (which is at least rank-1) into

a positive scale term (γ) and a 2 × 2 sub-Stiefel ma-

trix (R̃22). Once decomposed we then reconstruct the

original rotation matrix R from R̃22.

3.3.3 Analytic Solution to Problem (16)

The solution to γ is:

γ = σA1 = 1
2

(
au + aw +

√
(au − aw)2 + 4a2v

)[
au av
av aw

]
def
= AA>

(22)

where σA1 is the largest singular value of A. We denote

the third column of Rv by rv3. Because [I2| − v] Rv =

[B|0], [I2| − v] rv3 = 0 and so by rearrangement rv3 ∝
[v>1]>. Thus Rv is any rotation which aligns the z-axis

to [v>1]>. We define Rv uniquely by using the smallest

rotation that aligns the z-axis to [v>1]>. This is given

by Rodrigues’ formula:

Rv = I3 + sinθ[k]× + (1− cosθ)[k]2×

t
def
= ‖v‖2

s
def
=
∥∥[v>1]>

∥∥
2

cosθ
def
= 1/s

sinθ
def
=
√

1− 1/s2

[k]×
def
= 1/t

[
0 v

−v> 0

]
(23)

R has two solutions which we denote by R1,R2 ∈ SO3.

These are:

R1 = RvR̃1, R2 = RvR̃2

R̃1
def
=

[
R̃22 +c

+b> a

]
R̃2

def
=

[
R̃22 −c

−b> a

]
R̃22 = γ−1A

b = rank1

(
I2 − R̃>22R̃22

)
=
[√
ru sign(rv)

√
rw
]>[

ru rv
rv rw

]
def
= I2 − R̃>22R̃22[

c

a

]
=

[
R̃22

b>

] [
1

0

]
×
[

R̃22

b>

] [
0

1

]
(24)
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3.3.4 Proof of Theorem 3

The decomposition γR̃22 = A has a simple solution

in γ because the largest singular value of a matrix in

SS2×2 is 1:

R̃22 ∈ SS2×2 ⇔ ∃U,V, σ s.t.U

[
1 0

0 σ

]
V> = R̃22

U>U = V>V = I2, 0 ≤ σ ≤ 1

(25)

We denote an SVD of A by A =

UA

[
diag(σA1 , σ

A
2 )
]
V>A , with σA1 > 0, σA1 ≥ σA2

and U>AUA = V>AVA = I2. Because a singular value

matrix is unique when the singular values are sorted

by magnitude, the solution to γ is unique:

γR̃22 = A ⇔

γU

[
1 0

0 σ

]
V> = UA

[
σA1 0

0 σA2

]
V>A ⇒

γ = σA1

(26)

Because σA1 > 0 Eq. (16-c) is satisfied by γ = σA1 .

Therefore when J 6= 0 the solution to γ in Problem

(16) always exists and is unique. ut

3.3.5 Proof of Theorem 4

Because γ has a unique solution when J 6= 0 then

R̃22 = γ−1A is a unique solution to R̃22. We then com-

plete the Stiefel matrix R̃32 using orthonormality con-

straints. Let b> denote the third row of R̃32. We have

R̃>32R̃32 = I2 ⇔ I2 − R̃>22R̃22 = b>b, so b is given by

the rank-1 decomposition of (I2− R̃>22R̃22). Let σd > 0

be the non-zero singular value of (I2 − R̃>22R̃22) and d

be a singular vector for σd. There exist two solutions

to b which are ±√σdd. Thus there exist two solutions

to R̃32 using either solution to b as its third row. We

then complete R̃ uniquely from either solution to R̃32

by forming its third column with the cross-product of

the two columns in R̃32. Therefore there exist two so-

lutions to R̃, and because R = RvR̃ there exist two

solutions to R.

Recall that v is the 2D point where u0 is located

in the image (in normalised coordinates). Therefore

[v>1]> is a line-of-sight starting at the camera’s op-

tic centre and passing through v. Eq. (24) factorises

the two solutions to R into two rotations. First the ro-

tation R̃ is applied (using either R̃1 or R̃2 and then the

rotation Rv is applied. From Eq. (24) the rotation of a

3D point [u>0]> on the model plane according to R̃1

or R̃2 is related by:

R̃2[u>0]> =

1 0 0

0 1 0

0 0 −1

 R̃1[u>0]> (27)

Therefore the difference between rotating the point by

either R̃1 or R̃2 corresponds to reflecting it about the

model plane’s z axis.

The two solutions to R are formed by first rotating

the model plane by either R̃1 or R̃2. These rotations are

equivalent up to a reflection in the model’s z-axis. This

is followed by a second rotation Rv which aligns the

model plane’s z-axis with the line-of-sight [v>1]>. The

combined effect is a two-fold solution corresponding to

a reflection of the model plane about a plane whose

normal (in camera coordinates) points along [v>1]>.

R has a single solution iff R̃1 = R̃2. From Eq. (24)

R̃1 = R̃2 ⇔ c = −c ⇔ c = 0 ⇔ b = 0 ⇔ a = 1.

Therefore R̃1 (and hence R̃2) is a within-plane rotation

that does not change the model plane’s normal. The

plane’s normal is therefore only changed by Rv which

rotates it to point along the line-of-sight [v>1]>. This

is equivalent to saying that R has a unique solution iff

the model plane in camera coordinates is tangential to

a sphere centred at the optical axis. ut

3.4 Disambiguation

Using Eq. (12) the two solutions to the plane’s pose are:(
R1, t1 = γ−1

[
v

1

]
−R1

[
u0

0

])
(

R2, t2 = γ−1
[

v

1

]
−R2

[
u0

0

]) (28)

It is possible to resolve which of these solutions is cor-

rect by inspecting their reprojection errors. We use the

fact that within the correspondences there must ex-

ist three correspondences that are not colinear (oth-

erwise a homography could not have been computed

uniquely [17]). Without loss of generality let these be

{u1,u2,u3}.

Lemma 3 (Disambiguation). Given three non-

colinear points u1,u2,u3 ∈ R2 on the model plane, for

any u0 ∈ ΩĤ the two pose solutions in Eq. (28) will, if

different, project either u1, u2 or u3 to two different

image points.

Lemma 3 is proved easily by contradiction in Appendix

D.

Lemma 3 tells us that in the absence of noise if

R1 6= R2 then the reprojection errors of {u1,u2,u3}
will all be zero only for the correct pose. With noise

we can robustly disambiguate pose by inspecting the

reprojection errors using all point correspondences. The

reprojection error for each pose is:

e(Rj , tj) =

n∑
i=1

∥∥∥∥π(Rj

[
ui
0

]
+ tj

)
− q̃i

∥∥∥∥2
2

, j ∈ {1, 2}
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(29)

We use (R∗, t∗) to denote the pose solution with low-

est e. We are then faced with accepting or rejecting

the second pose as an alternative hypothesis. Pose is

ambiguous if e1 and e2 are similar; specifically if the

reprojection error of either pose is indistinguishable to

noise. A decision can be made using a likelihood ratio

test however this involves selecting a confidence bound,

which is application specific. Instead we return both

solutions with their reprojection errors, and leave it up

to the end application to choose whether to reject the

alternative hypothesis.

3.5 The Front-facing Constraint

Problem (16) enforces the physical assumption that the

surface must lie in front of the camera for it to be im-

aged (i.e. γ > 0). However it does not enforce which

side the plane’s surface can be viewed from. When the

model is translucent, correspondences could come from

either side of the plane. When the model is opaque we

have an additional constraint on R because correspon-

dences can only come from the plane’s front-facing side.

Without loss of generality let the model plane’s normal

point away from its z axis. The front-facing constraint

is [v>1]r3 ≥ 0 (i.e. the cosine of the angle between the

surface normal in camera coordinates and the line-of-

sight
[
v>1

]>
must be non-negative). The IPPE prob-

lem with the front-facing constraint is:

find γ,R s.t.
γ [I2| − v] R32 = J (a)

R>32R32 = I2 (b)

γ > 0 (c)

[v>1]
(
R32[1 0]> ×R32[0 1]>

)
≥ 0 (d)

(30)

This includes the front-facing constraint (Eq. (30-d))

written in terms of R32.

Lemma 4 If det(J) < 0 then Problem (30) has no so-

lution.

Proof

It is simple to show by rearrangement:

[v>1]
(
R32[1 0]> ×R32[0 1]>

)
= det ([I2| − v] R32)

(31)

From Eq. (30-a) det ([I2| − v] R32) = det(γ−1J), so

Eq. (30-d) ⇔ det(γ−1J) ≥ 0 ⇔ γ−2det(J) ≥ 0. Be-

cause γ > 0, Eq. (30-d)⇔ det(J) ≥ 0 which contradicts

det(J) < 0. Therefore when det(J) < 0 Problem (30)

has no solution. ut

Conversely, if det(J) > 0 then Eq. (30-d) is redun-

dant, because Eq. (30-c) and det(J) > 0 ⇒ Eq. (30-

d). Therefore when det(J) > 0 the front-facing con-

straint adds nothing to the problem. To summarise,

when det(J) < 0 there is no front-facing solution to

the plane’s pose (from Lemma 4), but when det(J) ≥ 0

both solutions to its pose will be front-facing. There-

fore the front-facing constraint cannot be used to dis-

ambiguate the correct pose.

3.6 The Connection Between IPPE and P3P

To complete our analysis of IPPE we now give the con-

nection between IPPE and P3P. This connection comes

from the fact that J can be represented in two equiva-

lent ways. The first is to compute it by differentiating

Ĥ, as we have done in IPPE. The second is to compute

it from the motion of three non-colinear virtual points

that transform according to Ĥ, but which are sepa-

rated by an infinitesimal distance. By linearising the

P3P equations with respect to the points’ positions on

the model plane, in the limit as they tend to the same

point we arrive at the IPPE equations in Eq. (11). This

connection is important because Theorems 3 and 4 give

a full characterisation of what happens in P3P as the

points’ separation tends to zero.

In P3P there are three non-colinear model points

{u0,u1,u2}, ui ∈ R2 and we have estimates

{q̃0, q̃1, q̃2}, q̃i ∈ R2 of their position in the image in

normalised coordinates. Without loss of generality let

u0 = 0. The six P3P equations write as:

1
t3

[
t1
t2

]
= q̃0 (a)

1
t3+[R31 R32]u1

[
t1 + [R11R12]u1

t2 + [R21R22]u1

]
= q̃1 (b)

1
t3+[R31 R32]u2

[
t1 + [R11R12]u2

t2 + [R21R22]u2

]
= q̃2 (c)

(32)

Theorem 6 (Relationship between IPPE and
P3P). In the limit when the separation of the three

points in P3P tends to zero, the P3P problem becomes

the IPPE problem.

Proof of Theorem 6

When the separation of {u0,u1,u2} is small Eq. (32-

b,c) can be approximated to 1st-order with a Taylor

expansion of their left sides with respect to u1 and u2

about the model plane’s origin. After some simplifica-

tion the six equations become:

1
t3

[
t1
t2

]
= q̃0 (a)

1
t3

[
I2 − 1

t3

[
t1
t2

]]
R32U +O2 = Q (b)

(33)
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with:

Q
def
= [q̃1 q̃2] (a)

U
def
= [u1 u2] (b)

(34)

and O2 denoting terms beyond 1st-order. When O2 is

neglected Eq. (33) approximates the P3P equations and

this approximation becomes better as u1 and u2 ap-

proach the origin. We combine Eq. (33-a) and Eq. (33-

b) to give what we call the Infinitesimal P3P Problem:

find t3,R s.t.
1
t3

[
I2 −q̃0

]
R32 = QU−1 +O2 (a)

R>32R32 = I2 (b)

t3 > 0 (c)

(35)

Note that because {u0,u1,u2} are non-colinear then U

is rank-2 and so is invertible. Problem (16) and Problem

(35) clearly have identical structure.

The left sides of Eq. (16-a) and Eq. (35-a) are the

same by equating variable names. Because 1/t3 is the

inverse-depth of the point u0 in camera coordinates, it

is equal to γ. because q̃0 is the position of u0 in the

camera’s image, it is equal to v. This implies the right

sides of Eq. (16-a) and Eq. (35-a) are the same, which

implies J = QU−1 + O2. Therefore in the limit when

{u0,u1,u2} are infinitesimally separated, O2 = 0 and

J = QU−1, and so the P3P problem becomes the IPPE

problem. ut
Theorems 3 and 4 therefore give a full characterisa-

tion of what happens in P3P as the points’ separation

tends to zero. The characteristics are:

– As the separation of the 3 points tends to zero in the

limit the solution to translation becomes unique.

– As the separation of the 3 points tends to zero in

the limit the solution to rotation becomes two-fold

ambiguous.

– This rotation ambiguity corresponds to a reflection

of the points about a plane whose normal points

along a line-of-sight that passes through the points.

– There is no rotation ambiguity if the 3 points be-

come tangential to a sphere passing through the

line-of-sight.

IPPE can therefore be thought of as solving pose by

generating three infinitesimally separated virtual points

centered at u0 and recovering pose using their positions

in the image from Ĥ. Given this relationship between

IPPE and P3P, one might ask why do this when we

could generate three virtual points anywhere on the

model plane and solve pose using P3P. The answer is

that because Ĥ is noisy positioning the virtual corre-

spondences at different locations will cause P3P to re-

turn different results, and different numbers of results

(between zero and four). The question would then be

where is it best to position the points to ensure we

obtain an accurate and physically valid solution. This

question is interesting, but has not been studied previ-

ously in the literature. IPPE provides an answer to this

question. That is, they should be infinitesimally sepa-

rated and positioned at the centroid of the real corre-

spondences. This stems from the statistical analysis in

§3.2. We will show in §4.6 that IPPE performs signif-

icantly better than P3P using virtual correspondences

positioned at other locations.

3.7 IPPE Algorithm and Summary

We now summarise IPPE in pseudocode. We break this

down into two components. The first component is the

solution to Problem (16). This takes as inputs v and J,

and returns γ, R1 and R2. We give this in Algorithm 1.

Note that all steps involve only simple floating point op-

erations. It is therefore extremely fast to perform, fully

analytic and does not require any additional numerical

libraries (e.g. computing eigen decompositions or root

finding, as is required in most PnP approaches [24,23,

11,33,10,7,15,37,1]). We have proved that Algorithm

1 does not introduce any artificial degeneracies. That

is, it guarantees that a positive scale factor γ and two

rotation matrices R1 and R2 will be returned for all

v ∈ R2 and J 6= 0. This means that it may handle cases

such as when the plane is viewed obliquely (i.e. when

its normal is orthogonal to the line-of-sight, meaning J

is rank-1. Although this is not likely to occur in prac-

tice (because in such situation we would likely not be

able to compute correspondences) it does say that Al-

gorithm 1 will not induce instability as a result of the

way it estimates pose. Unlike PHD, Algorithm 1 can

be used when the homography is an affine transform

(since all that is required is J 6= 0). Therefore, unlike

PHD it will not encounter instability when the amount

of perspective distortion in the homography is small.

The second component involves taking as input a

set of point correspondences and the camera intrinsics,

constructing v and J, calling Algorithm 1, and return-

ing two pose estimates. This is given in Algorithm 2. In

the absence of noise we can estimate translation with-

out error from Eq. (28). With noise we have found that t

can be estimated slightly more accurately using the so-

lution to R and estimating it in a Linear Least Squares

sense. The cost function we use is as follows:

c(t; [r1 r2 r3], {ui}, {q̃i})
def
=∑n

i=1

∥∥∥∥[ r1r2
]

[u>i 0]> +

[
t1
t2

]
− (r3[u>i 0]> + t3)q̃i

∥∥∥∥2
2

(36)
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Eq. (36) is derived from the Maximum Likelihood cost

but is convex because we minimise the error in 3D

camera space rather than in 2D image space. Solving

Eq. (36) is very efficient, and is the solution to a Linear

Least Squares system of the form: ‖Wjtj − bj‖22. Wj

is a 2n× 3 matrix and bj is a 2n× 1 vector. Eq. (36) is

solved by tj = (W>
j Wj)

−1Wjbj . It is straightforward

to show that W must be rank-3, so the solution to tj
is a unique global minimum. The computational over-

head for computing tj in this way is very small because

W>
j Wj is a 3×3 matrix (and so its inverse is very fast

to compute).

Algorithm 1 IPPE: The solution to Problem (16)

Require: v ∈ R2 andJ ∈ R2×2,J 6= 0
1: function IPPE(v,J)
2: Compute Rv from v . (Eq. (23))
3: [B|0]← [I2| − v]Rv
4: A← B−1J
5: γ ← σA1 . the largest singular value of A (Eq. (22))

6: R̃22 ← γ−1A

7: b← rank1

(
I2 − R̃>22R̃22

)
. (Eq. (24))

8:

[
c
a

]
←
[
R̃22

b>

] [
1
0

]
×
[
R̃22

b>

] [
0
1

]
9: R1 ← Rv

[
R̃22 +c
+b> a

]
, R2 ← Rv

[
R̃22 −c
−b> a

]
10: return γ,R1,R2

Algorithm 2 Correspondence-based IPPE for Perspec-

tive Cameras
Require:
{u1,u2, ..,un}, ui ∈ R2 . A set of n points on the
model plane. These are zero centred:

∑
i ui = 0

{q1,q2, ..,qn}, qi ∈ R2 . The correspondences of each
point in the camera’s image
K . The camera intrinsics matrix

1: function IPPE({ui}, {qi},K)
2: [q̃>i 1]> ← K−1[q>i , 1]> . q̃i is qi in normalised

coordinates
3: H← homog ({ui}, {q̃i}) . Best fitting homography

between {ui} and {q̃i}, H33 = 1

4: J←
[
J11 J12
J21 J22

]
. J is the Jacobian of π(H[u0 1]>)

at u0 = 0
5: J11 ← H11 −H31H13

6: J12 ← H12 −H32H13

7: J21 ← H21 −H31H23

8: J22 ← H22 −H32H23

9: v← [H13, H23]> . v is π(H[u0 1]>) at u0 = 0
10: (γ,R1,R2)← IPPE(v,J)

11:
t1 ← (W>1 W1)−1W1b1

t2 ← (W>2 W2)−1W2b2
. Solution to (36)

12: return {R1, t1}, {R2, t2}

4 Experimental Evaluation with Simulated

Data

In this section we give a detailed comparison of the

performance of IPPE using simulation experiments. We

break this section into three parts. The first part com-

pares IPPE against PHD using five different methods

to estimate the homography. We have found IPPE com-

bined with Harker and O’Leary’s method [16] to per-

form the best. This performs marginally better than

when using the DLT and approximately the same

when using the ML estimate. We call this combination

IPPE+HO.

In the second section we compare IPPE+HO against

competitive state-of-the-art PnP methods. We give a

detailed breakdown of this comparison along two axes.

The first is the number of correspondences n, which we

break down into small n (i.e. between 4 and 10) and

medium-to-large n (i.e. between 8 and 50). The second

axis is broken down into simulations where the PPE

problem is unambiguous, and simulations where it is

ambiguous. When a simulation is ambiguous, it means

that there are multiple pose solutions that can reason-

ably explain the image data. In these cases we do not

force the methods to return a single solution, but in-

stead they can return multiple solutions. The best of

these solutions with respect to ground-truth is used to

measure the methods’ accuracy. By contrast in unam-

biguous cases, the methods are forced to return a single

solution as the one with smallest reprojection error, and

it is only this solution which is evaluated.

In the third section we compare IPPE against solv-

ing pose via P3P, using three virtual correspondences

estimated from the homography. The purpose of this

evaluation is to test whether IPPE performs better than

using some other strategies for positioning the virtual

correspondences.

4.1 Simulation Setup

We use a testing framework similar to [23,24]. A per-

spective camera is setup and a planar model is embed-

ded and projected into the camera’s image. The model

is a zero-centred square region on the plane z = 0 with

variable width w. The camera has width 640 and height

480 pixels and the intrinsic matrix is:

K =

 f 0 320

0 f 240

0 0 1

 (37)

with f being the focal length with a default f = 800 pix-

els. We then randomly sample from the space of rigid
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embeddings as follows. We uniformly sample a point

in the image p̂ and create the ray w = [p̂>1]>. We

then project this ray out to a random depth d. d is

uniformly drawn from the interval d ∼ U(f/2, 2f). We

then compute the translation component as t = dw.

The rotation R is determined as follows. We first cre-

ate an in-plane rotation R(θ), θ̂ ∼ U(0, 2π). This is

followed by an out-of-plane rotation R(ψ, qx, qy) with

axis r = 1/k[qx, qy, 0]>, k = ‖[qx, qy]‖2 and qx, qy ∼
U(−1,+1). The angle is ψ ∼ U(0, ψmax). ψmax denotes

the maximum angle in radians such that the plane’s tilt

angle with respect to the viewing ray is less than 80 de-

grees. The rotation is given by R = R(ψ, qx, qy)R(θ).

We then synthesise n point correspondences. Their po-

sitions in the model plane are {[ui, vi]>} with ui, vi ∼
U(−w/2,+w/2). These points are then projected in the

image via {K,R, t} to give their corresponding image

positions {[xi, yi]>}. To measure an algorithm’s sen-

sitivity to noise in the image we perturb each point

(xi, yi) with additive zero-mean Gaussian noise with

standard deviation σI . We also test sensitivity to noise

in the model view by perturbing each point (ui, vi) with

Gaussian noise with standard deviation σM . We keep

only those embeddings where all point correspondences

lie in front of the camera and project within the image.

We denote the tuple ({ui, vi}k, {xi, yi}k,Rk, tk) to be

the data for the kth test sample.

4.2 Well-Posed and Ill-Posed Conditions

In the special case when σI = σM = 0 planar pose

is recoverable uniquely. When σI > 0 and/or σM > 0

there may be instances when pose estimation is ambigu-

ous. That is, an alternative rigid hypothesis P2 exists

which projects the point set {ui, vi} close to {xi, yi}. It

is important to separate ambiguous from unambiguous

cases. In an ambiguous case a method returning a sin-

gle solution may pick an incorrect pose similar to P2.

In this case it is not the algorithm which is to blame

for these errors but the posedness of the problem. We

therefore measure performance for each algorithm in

two modes.

Mode 1 is where each algorithm returns one solu-

tion. HD methods always return one solution. IPPE,

and most PnP methods can return multiple solutions.

In Mode 1 we force these algorithms to return the so-

lution with lowest reprojection error. In order to ob-

tain meaningful statistics we must ensure that test

samples in Mode 1 are sufficiently unambiguous. In

§3.4 we have shown that pose is ambiguous iff an

affine homography can model the transformation be-

tween correspondences. To judge whether a test sam-

ple ({ui, vi}k, {xi, yi}k,Rk, tk) is ambiguous we mea-

sure how many times more likely the data is predicted

by a perspective homography Hp than an affine ho-

mography Ha. We compute Hp with the ground truth

transform (R, t) and refine with Gauss-Newton itera-

tions. We compute Ha with a least squares fit of the cor-

respondences (which is also the ML estimate for affine

projection). We then measure the log-likelihood ratio:

D = l ({xi, yi}k; {ui, vi}k, σI ,Hp)

−l ({xi, yi}k; {ui, vi}k, σI ,Ha)
(38)

l(·; ·, ·H) denotes the data log-likelihood given the

transform H. We judge a sample to be ambiguous if

D < τa. Only unambiguous samples are selected for

testing algorithms in Mode 1. A small τa means that

more samples are rejected as being ambiguous whereas

a larger τa means fewer. It is not critical for us to

finely tune τa, we merely wish to select a value which

eliminates cases which are clearly ambiguous to ensure

that algorithms tested in Mode 1 are tested in well-

conditioned cases. In mode 1 we use τa = 5.

Mode 2 is when we keep all samples, and allow al-

gorithms to return multiple solutions.

4.3 Summary of Experimental Parameters and Error

Metrics

In Table 1 we give a summary of the experimental free

parameters for the synthetic experiments. We denote

{R̂k, t̂k} to be the rotation and translation estimated

by a given algorithm given ({ui, vi}k, {xi, yi}k,Rk, tk).

Similarly to previous works [23,24] we measure error

with two metrics:

1. RE(R̂). The Rotational Error (in degrees). This is

the angle of the minimal rotation needed to align

R̂ to R. This is given by taking the angle of the

axis/angle representation of R̂>R.

2. TE(t̂). The Translational Error (%). This is the

relative error in translation, given by TE(t̂, t) =

‖t̂− t‖2/‖t‖2.

Parameter Meaning

f Focal length
w Model plane width
n Number of correspondences
σI Correspondence noise (image)
σM Correspondence noise (model)
Mode Either in Mode 1 or Mode 2 (§4.2)

Table 1 Free parameters in synthetic experiments.

For each error metric we measure three statistics; the

standard deviation, the mean and median error.
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4.4 IPPE versus Perspective Homography

Decomposition

We start by comparing IPPE against the two existing

PHD methods, which we denote by HDSt [35] HDZh

[40]. Because these return only a single solution we

perform the tests in Mode 1 (i.e. unambiguous cases).

We compare across 5 different Homography Estimation

(HE) methods. This is to (i) assess the sensitivity of

an algorithm with respect to the choice of HE method,

and (ii) to determine which HE method leads to best

pose estimates. The HE methods we test are as follows:

1. DLT (non iterative). The Direct Linear Transform

[17].

2. TAUB (non iterative). The Taubin estimate [36].

3. HO (non iterative). Harker and O’Leary [16] based

on Total Least Squares (TLS) with equilibration.

4. MLGN (iterative). ML minimiser using Gauss-

Newton iterations. MLGN is initialised with the

best non-iterative solution from 1,2 or 3.

5. STGN (iterative). Symmetric transfer error min-

imiser using Gauss-Newton iterations. STGN is ini-

tialised with the best non-iterative solution from 1,2

or 3. STGN is used in place of MLGN when σM > 0.

We have run a series of 5 experiments (E1 to E5) by

varying the parameters in Table 1 to cover a range of

imaging conditions. Note that there is redundancy in

scaling both f and w, therefore we keep f constant and

only vary w. The parameter instantiations for each ex-

periment are shown in Table 2. We present summary

statistics over 5,000 simulated poses in Tables 3-7. For

each HE method, we have highlighted in blue the pose

estimation method which gives the lowest average er-

ror. TAUB consistently performs the worst for HDZh,

HDSt and IPPE. We see that using the DLT gives low-

est errors for HDZh and HDSt. The best performing HE

method for IPPE is HO, which is very closely followed

by DLT. HO is also the fastest method; between 5-6

times faster to compute than the DLT [16]. We also see

that IPPE consistently outperforms HDZh and HDSt

for all HE methods. A visual comparison of methods is

shown in the graphs in Figure 1. The five rows corre-

spond to the five experiments, and the columns show

mean and median errors in rotation and translation. To

reduce clutter we plot results only with the best per-

forming HE method for HDZh and HDSt (the DLT).

We can see a clear improvement in performance for

IPPE in all error statistics, across all experiments. Also

it shows that IPPE is rather insensitive to the choice of

HD method.

E1 E2 E3 E4 E5

f 800 800 800 800 800
w 200 300 200→400 250 350
n 10 5→40 12 15 8
σI 0→6 2 3 3.5 3.5
σM 0 0 0 0→7 0→5

Mode 1 1 1 1 1

Table 2 Varying imaging conditions in synthetic experi-
ments E1-E5.
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E3 : σI = 3, σM = 0, n = 12, f = 800, w = 200→ 400
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E4 : σI = 3.5, σM = 0→ 7, n = 15, f = 800, w = 250
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E5 : σI = 3.5, σM = 0→ 5, n = 8, f = 800, w = 350
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Fig. 1 Synthetic experimental results: Comparing the pose estimation accuracy of IPPE with PHD (E1-E5).
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E1: RE TAUB DLT HO ML

σI IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh

0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0

0.632 1.06±2.44 6.76±6.68 6.87±6.8 1.11±2.89 6.83±6.92 6.93±7.07 0.949±2.09 6.43±6.57 6.53±6.68 0.948±2.09 6.43±6.55 6.53±6.67

1.58 2.52±5.69 12.5±10.8 12.6±11 2.63±6.8 12.7±11.6 12.8±11.8 2.23±5.2 11.9±10.6 12±10.7 2.23±5.2 11.9±10.5 12±10.7

2.21 3.28±8.03 14.2±12.6 14.4±12.9 3.22±7.79 13.7±12.4 13.9±12.7 2.99±7.82 13±11.9 13.2±12.2 2.93±7.48 13±11.8 13.2±12.1

3.16 4.05±7.6 15.8±13.2 16.1±13.7 4.33±9.18 15.2±13.4 15.6±14.1 3.66±7.66 14.3±12.4 14.7±13.1 3.79±8.39 14.1±12.1 14.5±12.7

3.79 4.7±8.85 16.3±12.7 16.6±12.9 4.84±10.3 15.9±13.3 16.2±13.7 4.07±8.73 14.9±12.2 15.2±12.4 4.07±8.73 14.9±12.1 15.1±12.3

E1: TE TAUB DLT HO ML

σI IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh

0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0

0.632 0.42±0.401 3.34±4.48 3.26±4.21 0.437±0.41 3.37±4.48 3.29±4.24 0.403±0.377 3.19±4.37 3.12±4.13 0.403±0.377 3.18±4.36 3.11±4.13

1.58 0.95±0.873 6.87±8.75 6.43±7.72 0.965±0.884 6.85±8.9 6.41±7.81 0.91±0.83 6.48±8.41 6.1±7.43 0.908±0.834 6.45±8.38 6.08±7.41

2.21 1.2±1.12 7.98±9.87 7.32±8.53 1.2±1.17 7.98±10.2 7.29±8.77 1.13±1.07 7.45±9.61 6.86±8.33 1.12±1.06 7.41±9.55 6.83±8.25

3.16 1.6±1.46 8.84±10.3 8.12±8.89 1.59±1.37 8.37±10.1 7.71±8.72 1.49±1.32 8.01±9.56 7.4±8.28 1.48±1.32 7.91±9.34 7.33±8.09

3.79 1.83±1.6 9.31±10.1 8.48±8.64 1.84±1.61 9.01±10.2 8.15±8.66 1.7±1.45 8.51±9.58 7.75±8.2 1.7±1.46 8.46±9.47 7.71±8.13

Table 3 IPPE versus Perspective Homography Decomposition: Experiment E1

E2: RE TAUB DLT HO ML

σI IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh

5 10.1±22.1 23.4±25.7 24.2±26.8 9.46±21 22.9±25 23.8±26.3 9.33±21.3 22.3±24.6 23.1±25.7 8.59±19.2 22±24.1 22.7±25.2

8.68 3.14±7.28 11.4±11.3 11.6±11.3 2.98±6.59 11.4±11.6 11.5±11.6 2.79±6.95 10.7±10.8 10.7±10.7 2.75±6.78 10.6±10.7 10.7±10.7

14.2 1.75±2.01 7.55±6.79 7.67±6.88 1.79±3.41 7.05±6.74 7.14±6.79 1.51±2.84 6.7±6.32 6.78±6.38 1.55±3.19 6.66±6.34 6.74±6.4

17.9 1.52±1.31 6.11±5.37 6.23±5.61 1.51±1.2 5.71±5.23 5.8±5.33 1.29±0.985 5.28±4.81 5.37±4.93 1.29±0.986 5.28±4.8 5.36±4.93

23.4 1.25±1.11 4.95±4.11 5.05±4.2 1.21±0.944 4.57±4.03 4.64±4.09 1.01±0.779 4.32±3.81 4.39±3.88 1.01±0.78 4.31±3.8 4.38±3.87

27.1 1.2±1.17 4.73±4.07 4.8±4.14 1.15±0.921 4.32±3.86 4.39±3.91 0.96±0.732 4.08±3.62 4.14±3.68 0.959±0.733 4.08±3.61 4.13±3.67

E2: TE TAUB DLT HO ML

σI IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh

5 3.23±10.4 16.1±21.1 14.4±19.1 3.01±10.1 15.5±20.5 13.8±18.5 2.91±9.18 15.2±20.2 13.6±18.2 2.49±6.62 14.6±19.2 13±17.1

8.68 1.14±1.25 7.85±9.83 7.22±9.01 1.15±1.22 6.07±8.63 5.65±7.49 1.07±1.13 5.67±8.23 5.26±7.14 1.07±1.14 5.62±8.07 5.23±7

14.2 0.785±0.688 3.64±4.54 3.56±4.26 0.765±0.674 3.56±4.61 3.47±4.3 0.72±0.61 3.34±4.27 3.26±4.03 0.719±0.611 3.31±4.24 3.24±4.01

17.9 0.669±0.581 3.05±3.73 2.99±3.51 0.663±0.601 2.83±3.48 2.77±3.28 0.61±0.541 2.66±3.3 2.62±3.13 0.61±0.54 2.64±3.3 2.6±3.12

23.4 0.533±0.458 2.45±2.81 2.42±2.71 0.518±0.466 2.19±2.67 2.18±2.6 0.488±0.43 2.11±2.57 2.1±2.5 0.487±0.43 2.1±2.55 2.08±2.48

27.1 0.515±0.438 2.28±2.69 2.26±2.62 0.512±0.437 2.19±2.57 2.18±2.53 0.469±0.397 2.06±2.43 2.06±2.39 0.468±0.397 2.05±2.43 2.04±2.39

Table 4 IPPE versus Perspective Homography Decomposition: Experiment E2

E3: RE TAUB DLT HO ML

σI IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh

200 3.07±4.36 13.5±10.5 13.7±10.8 3.27±5.9 13.1±10.5 13.4±11 2.7±4.19 12.3±9.92 12.5±10.2 2.7±4.18 12.2±9.84 12.5±10.2

228 3.12±5.19 12.5±10.5 12.8±10.9 2.96±4.06 11.9±10.1 12.2±10.5 2.61±4.12 11.2±9.83 11.5±10.2 2.6±4.11 11.2±9.67 11.5±10.1

269 2.94±4.11 11.2±9.66 11.5±10 2.91±5.7 10.8±10 11±10.2 2.51±4.05 10.1±9.2 10.3±9.49 2.51±4.05 10±9.02 10.2±9.3

297 2.77±4.72 10.6±9.33 10.8±9.44 2.75±5.33 10.1±9.28 10.2±9.4 2.33±4.59 9.5±8.71 9.63±8.79 2.32±4.59 9.49±8.81 9.64±8.9

338 2.73±4.01 9.22±8.51 9.36±8.67 2.61±4.34 8.52±8.39 8.6±8.47 2.28±3.62 8.1±7.82 8.2±7.94 2.28±3.62 8.13±7.94 8.22±8.06

366 2.39±3.08 8.38±7.54 8.52±7.57 2.26±3.24 7.88±7.47 8.01±7.59 1.95±2.6 7.3±6.77 7.42±6.84 1.95±2.61 7.29±6.8 7.4±6.85

E3: TE TAUB DLT HO ML

σI IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh

200 1.35±1.2 7.66±9.23 7.09±8.03 1.41±1.29 7.33±8.9 6.84±7.77 1.28±1.17 7.02±8.59 6.54±7.51 1.28±1.16 6.97±8.53 6.49±7.45

228 1.33±1.12 6.88±8.45 6.42±7.46 1.34±1.21 6.65±8.29 6.2±7.29 1.23±1.05 6.23±7.93 5.81±7.05 1.23±1.05 6.16±7.86 5.76±7

269 1.22±1.05 6.21±7.92 5.76±6.91 1.2±1.04 5.98±7.7 5.56±6.73 1.1±0.946 5.61±7.31 5.24±6.42 1.1±0.946 5.56±7.18 5.2±6.29

297 1.12±1.03 5.85±7.12 5.48±6.27 1.12±1.02 5.39±6.75 5.08±5.99 1.04±0.945 5.15±6.43 4.87±5.72 1.04±0.943 5.08±6.34 4.81±5.67

338 1.13±1.02 4.58±5.77 4.41±5.3 1.08±1 4.17±5.28 4.02±4.85 1.02±0.933 4.03±5.09 3.9±4.72 1.02±0.935 4±5.02 3.87±4.68

366 0.993±0.869 4.04±4.73 3.9±4.37 0.985±0.868 3.91±4.9 3.82±4.59 0.906±0.803 3.67±4.47 3.59±4.22 0.905±0.8 3.65±4.45 3.57±4.21

Table 5 IPPE versus Perspective Homography Decomposition: Experiment E3

E4: RE TAUB DLT HO ML

σI IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh

0 2.67±3.53 10.3±7.91 10.6±8.19 2.53±3.94 9.71±8.19 9.98±8.48 2.23±3.29 9.11±7.43 9.38±7.71 2.18±2.77 9.06±7.4 9.33±7.68

0.737 2.82±3.81 10.7±8.23 10.9±8.52 2.66±3.27 9.7±8.21 9.91±8.44 2.44±5.09 9.23±7.55 9.4±7.76 2.44±5.1 9.16±7.43 9.33±7.62

1.84 3±3.09 11.8±9.3 12±9.48 2.95±4.5 10.7±8.95 10.8±9.04 2.45±2.59 10.2±8.39 10.3±8.5 2.46±2.66 10.1±8.36 10.3±8.46

2.58 3.37±4.15 12.3±9.42 12.6±9.67 3.24±3.92 11.2±8.99 11.5±9.22 2.8±3.38 10.6±8.36 10.8±8.55 2.79±3.38 10.5±8.29 10.8±8.47

3.68 3.97±6.09 13.4±9.42 13.7±9.52 3.57±5.17 12.1±9.38 12.2±9.49 3.13±5.06 11.5±8.66 11.7±8.75 3.06±4.5 11.4±8.52 11.6±8.62

4.42 4.16±4.08 14.7±9.75 15±9.98 3.9±4.36 13±8.92 13.1±9.06 3.28±2.67 12.3±8.38 12.5±8.52 3.28±2.66 12.2±8.37 12.4±8.52

E4: TE TAUB DLT HO ML

σI IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh

0 1.22±1.06 5.85±6.91 5.54±6.16 1.19±1.06 5.26±6.47 5±5.85 1.11±0.954 5.01±6.19 4.79±5.63 1.11±0.948 5±6.14 4.78±5.57

0.737 1.21±1.09 5.69±7.06 5.39±6.36 1.19±1.03 5.22±6.38 4.94±5.71 1.1±0.942 4.99±6.21 4.75±5.6 1.1±0.943 4.96±6.12 4.73±5.52

1.84 1.38±1.12 6.28±7.32 5.94±6.56 1.38±1.17 5.63±6.51 5.37±5.82 1.26±1.05 5.35±6.24 5.09±5.61 1.26±1.05 5.32±6.14 5.05±5.54

2.58 1.47±1.19 6.81±7.65 6.38±6.75 1.47±1.21 6.22±7.33 5.85±6.43 1.37±1.08 5.88±6.9 5.54±6.1 1.37±1.08 5.83±6.83 5.5±6.05

3.68 1.75±1.71 7.52±8.22 7.03±7.29 1.66±1.33 6.56±7.29 6.2±6.46 1.55±1.23 6.4±7.14 6.05±6.38 1.55±1.25 6.31±7.02 5.98±6.28

4.42 1.9±1.52 8.07±8.66 7.46±7.59 1.82±1.49 7.24±8.13 6.73±7.1 1.69±1.32 6.88±7.76 6.41±6.8 1.69±1.32 6.74±7.63 6.3±6.7

Table 6 IPPE versus Perspective Homography Decomposition: Experiment E4

E5: RE TAUB DLT HO ML

σI IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh

0 4.49±9.32 13.8±13.4 14.1±13.8 4.54±10.4 13±13.4 13.2±13.7 3.83±8.71 12.4±12.6 12.6±13 3.79±8.54 12.3±12.5 12.5±12.8

0.526 4.73±9 14.5±13.7 14.7±14 4.78±9.8 13.8±13.2 14±13.5 4.41±9.69 13.3±13 13.4±13.2 4.36±9.57 13.1±13 13.3±13.2

1.32 4.86±9.02 14.2±13.3 14.4±13.5 4.81±10.2 13.7±13.4 13.9±13.6 4.47±9.79 13±12.8 13.1±13 4.47±9.81 12.9±12.5 13.1±12.7

1.84 5.26±10.1 15.7±14.6 15.9±14.8 5.4±11.5 15.1±15.6 15.3±15.9 4.68±9.86 14.3±14.4 14.4±14.6 4.72±10.3 14.2±14.4 14.4±14.6

2.63 5.59±10.9 15.6±13.2 15.9±13.6 5.57±11.6 14.9±12.8 15.2±13.2 4.78±9.91 14.3±12.7 14.6±13.2 4.93±10.6 14.1±12.4 14.4±13

3.16 5.85±10.8 16.3±13.8 16.7±14.3 5.89±12.1 15.5±14.2 15.9±14.8 5.08±10.3 14.8±13.4 15.2±14.1 5.26±11.1 14.8±13.4 15.2±14

E5: TE TAUB DLT HO ML

σI IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh IPPE HDSt HDZh

0 1.6±1.55 7.23±9.51 6.61±8.21 1.58±1.54 6.61±8.74 6.07±7.55 1.45±1.39 6.41±8.61 5.91±7.46 1.46±1.39 6.35±8.46 5.87±7.34

0.526 1.7±1.6 7.49±9.76 6.98±8.51 1.66±1.58 7.14±9.47 6.62±8.25 1.58±1.49 6.84±9.15 6.39±8 1.57±1.48 6.72±8.95 6.29±7.79

1.32 1.81±1.74 7.49±9.43 6.93±8.13 1.75±1.67 7.14±9.36 6.67±8.15 1.62±1.5 6.86±9.25 6.43±8.02 1.63±1.49 6.82±9.06 6.38±7.87

1.84 1.91±1.78 8.36±10.9 7.68±9.36 1.87±1.76 7.82±10.3 7.23±8.88 1.74±1.6 7.45±9.93 6.94±8.6 1.75±1.6 7.31±9.63 6.82±8.35

2.63 1.95±1.82 8.83±10.6 8.11±9.19 1.9±1.83 8.28±9.99 7.65±8.74 1.8±1.59 7.98±9.89 7.39±8.57 1.8±1.56 7.84±9.62 7.26±8.3

3.16 2.15±1.96 8.83±10.4 8.15±9.05 2.06±1.87 8.35±10.3 7.75±8.98 1.92±1.7 8±9.86 7.46±8.62 1.91±1.69 7.85±9.59 7.35±8.43

Table 7 IPPE versus Perspective Homography Decomposition: Experiment E5
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4.5 IPPE versus PnP methods

We now compare IPPE against state-of-the-art PnP

methods. We use HO for estimating the homography

between correspondences. The following names are used

for the compared methods:

– IPPE+HO (non iterative): Proposed method us-

ing homography estimated with [16].

– RPP-SP (non iterative): Schweighofer and Pinz

[34]. This is the extension of Lu et al. [28] to handle

ambiguities.

– EPnP (non iterative): Moreno-Noguer et al. [34].

– RPnP (non iterative): Li et al. [24].

– HDZh+DLT (non iterative): The best performing

HD method.

– GEOMREF (iterative): Iterative refinement using

a geometric criteria (see below).

GEOMREF is used as the gold standard. This is ini-

tialised using the compared method which gives the so-

lution with the lowest residual error, and refined with

Gauss-Newton iterations. When σM = 0 we use the ML

error as the geometric cost. When σM > 0 we use the

symmetric transfer error.

We start with a series of Mode 1 experiments. We

divided these into two parts. The first part measures

performance when the number of correspondences is

medium-to-large (n = 8 → 50). The second part mea-

sures performance when the number of correspondences

is small (n = 4 → 10). We make this division to assist

visualising results as methods perform far better with

larger n. The division also helps study two properties;

the accuracy of an algorithm with low numbers of cor-

respondences and how well an algorithm exploits corre-

spondence redundancy. In total we perform 12 experi-

ments (E6-E17). There are 6 for n = 4→ 10 (E6-E11)

and 6 for n = 8 → 50 (E12-E17). The experimental

parameters are shown in Table 8.

4.5.1 Medium to Large n

The results for experiments E6-E11 are shown in Fig-

ure 2. With respect to rotation we see that across all

conditions IPPE+HO is consistently the best perform-

ing method (excluding refinement with GEOMREF).

There is a clear improvement in performance with re-

spect to the next best non-iterative method (RPnP).

The performance of RPP-SP with respect to mean er-

ror remains larger than IPPE+HO. With respect to

median error, RPP-SP approaches but never exceeds

IPPE+HO for larger n. When n goes beyond 15 the

performance of IPPE+HO is very close to GEOMREF.

Turning to translation error we see a similar ranking of

E6 E7 E8 E9 E10 E11

f 800 800 800 800 800 800
w 300 300 300 300 300 300
n 8→50 8→50 8→50 8→50 8→50 8→50
σI 0.5 3 8 2 2 2
σM 0 0 0 0.5 3 8

Mode 1 1 1 1 1 1

E12 E13 E14 E15 E16 E17

f 800 800 800 800 800 800
w 300 300 300 300 300 300
n 4→10 4→10 4→10 4→10 4→10 4→10
σI 0.5 3 8 2 2 2
σM 0 0 0 0.5 3 8

Mode 1 1 1 1 1 1

Table 8 Varying imaging conditions in synthetic experi-
ments E6-E17.

methods. The difference between IPPE+HO and RPP-

SP is smaller than for rotation error. There is negligible

difference between IPPE+HO and RPP-SP in transla-

tion performance in experiments E9-E11 (when noise

increases in the model). The next best non-iterative

method (RPnP) performs behind IPPE+HO and RPP-

SP with respect to translation error for all experiments.

We can see that IPPE+HO is the best performing

non-iterative method in the range n = 8 → 50. We

also see that beyond n = 15 the performance gains in

refining the IPPE+HO solution with GEOMREF are

very small in all experiments. This is true when there

is correspondence noise in the image, model, or both.

The same cannot be said in all experiments for the other

methods. This has important practical implications as

it suggests that when speed is an important priority,

one can do away with iterative refinement and use the

IPPE+HO solution. A rule of thumb would be when

n > 15.

4.5.2 Small n

We now turn to the performance evaluation with n =

4 → 10. The results are shown in Figure 3. Here we

see that for n ≥ 6 IPPE+HO is the best performing

method (excluding GEOMREF) with respect to rota-

tion across all conditions. For n ≥ 6 IPPE+HO per-

forms as well as or better than the next best method

(RPP-SP) with respect to translation. For n = 4

IPPE+HO is outperformed by RPnP and RPP-SP.

RPnP does well for n = 4, although there is a clear per-

formance gap between RPnP and GEOMREF. This gap

is larger for larger σM , indicating RPnP has difficulty

with noise in the model. The performance of IPPE+HO

is significantly worse at n = 4 than n = 5. The reason

is two-fold. Firstly the homography is computed from
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4 point correspondences, and because of the lack of re-

dundancy the homography overfits. For n > 4 there is

redundancy and this leads to considerably lower error.

The second reason is that the configuration of corre-

spondences in the model affects the sensitivity of ho-

mography estimation to noise. Because the correspon-

dences are uniformly sampled on the model plane some

configurations can lead to a poorer conditioning of the

homography estimation problem. We refer the reader

to [5] where a detailed analysis is given on the stabil-

ity of homography estimation by 1st-order perturbation

theory.

Experiments E12-E17 suggest that IPPE+HO

should not be used when n < 6, as better results

would be obtained with RPnP. However in practical

applications this is not always true. We now study

the case when the model’s points are not drawn ran-

domly on the plane, but rather four are located on

corners of the square region: (u, v)1 = 1/2(w,w),

(u, v)2 = 1/2(w,−w), (u, v)3 = 1/2(−w,−w), (u, v)4 =

1/2(−w,w). This is typically the case in AR-based pla-

nar pose estimation. The remaining n − 4 points are

positioned with uniform probability within the region.

We then studied the algorithms’ performances in these

configurations. We ran six experiments (E18-E23) using

this new sampling scheme. The experimental parame-

ters are listed in Table 9. These are the same as experi-

ments E6-E11, but we have reduced the plane size from

300 to 100. The reason for this is that the new sampling

scheme means the correspondences span a larger region

on the model, and thus reduces the influence of noise.

The results for these experiments are shown in Fig-

ure 4. We see that now IPPE+HO significantly out-
performs RPnP with respect to rotation and transla-

tion for all n. This is in contrast to when the points

are located randomly on the model (Figure 3). The

next best performing method is RPP-SP. With respect

to rotation, RPP-SP is consistently outperformed by

IPPE+HO. With respect to translation IPPE+HO per-

forms at least as good as or better than RPP-SP.

E18 E19 E20 E21 E22 E23

f 800 800 800 800 800 800
w 100 100 100 100 100 100
n 4→10 4→10 4→10 4→10 4→10 4→10
σI 0.5 2 5 2 2 2
σM 0 0 0 0.5 1 3

Mode 1 1 1 1 1 1

Table 9 Varying imaging conditions in synthetic experi-
ments E18-E23. Correspondences are selected four of them
positioned on the corners of the plane.

4.5.3 Ambiguous Cases

In the final set of synthetic experiments we investigate

algorithm performance in Mode 2 (without excluding

ambiguous cases). Here algorithms are permitted to re-

turn multiple solutions, and we compute error with re-

spect to the closest solution to the ground truth. Am-

biguous cases occur when the amount of perspective

distortion is small, which can be controlled by reduc-

ing the plane’s size. We give the experimental parame-

ters in in Table 10 using the same selection method as

E18-E23 with at least four correspondences positioned

on the corners of the plane. Here we have reduced the

plane size to 50, which meant many ambiguous cases

were included. The performance graphs are shown in

Figure 5. Here we see a similar performance trend to

E18-E23. IPPE+HO consistently does very well. It is

the best performing method with respect to rotation

(excluding GEOMREF) in all conditions, with a very

small gap between IPPE+HO and GEOMREF. The

performance gap for smaller n becomes smaller, and

for n = 4 it is virtually indistinguishable. IPPE+HO

performs as well as or better than RPP-SP in trans-

lation. HDZh and EPnP performs rather worse than

IPPE+HO, RPnP and RPP-SP, and their errors are

beyond the axis range.

E24 E25 E26 E27 E28 E29

f 800 800 800 800 800 800
w 50 50 50 50 50 50
n 4→10 4→10 8→40 8→10 4→10 4→10
σI 0.5 1 2 1 1 1
σM 0 0 0 0.5 1 2

Mode 2 2 2 2 2 2

Table 10 Varying imaging conditions in synthetic experi-
ments E24-E29. These experiments tested algorithm perfor-
mance in Mode 2.
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E6 : σI = 0.5, σM = 0, n = 8→ 50, f = 800, w = 300
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E7 : σI = 3, σM = 0, n = 8→ 50, f = 800, w = 300
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E8 : σI = 8, σM = 0, n = 4→ 10, f = 800, w = 300
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E9 : σI = 2, σM = 0.5, n = 4→ 10, f = 800, w = 300
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E10 : σI = 2, σM = 3, n = 4→ 10, f = 800, w = 300
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E11 : σI = 2, σM = 8, n = 4→ 10, f = 800, w = 300
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Fig. 2 Synthetic experiments: Comparing pose accuracy of IPPE+HO with previous state-of-the-art methods (E6-E11)
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E12 : σI = 0.5, σM = 0, n = 4→ 10, f = 800, w = 300
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E13 : σI = 3, σM = 0, n = 4→ 10, f = 800, w = 300
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E14 : σI = 8, σM = 0, n = 4→ 10, f = 800, w = 300
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E15 : σI = 2, σM = 0.5, n = 4→ 10, f = 800, w = 300
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E16 : σI = 2, σM = 3, n = 8→ 50, f = 800, w = 300
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E17 : σI = 2, σM = 8, n = 8→ 50, f = 800, w = 300
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Fig. 3 Synthetic experiments: Comparing pose accuracy of IPPE+HO with previous state-of-the-art methods (E12-E17)
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E18 : σI = 0.5, σM = 0, n = 4→ 10, f = 800, w = 100
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E19 : σI = 2, σM = 0, n = 4→ 10, f = 800, w = 100
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E20 : σI = 5, σM = 0, n = 4→ 10, f = 800, w = 100
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E21 : σI = 2, σM = 0.5, n = 4→ 10, f = 800, w = 100
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E22 : σI = 2, σM = 1, n = 8→ 50, f = 800, w = 100

4 5 6 7 8 9 10
0

2

4

6

8

10

Number of correspondences

E
rr

or
 (

de
gr

ee
s)

Mean Rotation Error

4 5 6 7 8 9 10
0

1

2

3

4

Number of correspondences

E
rr

or
 (

de
gr

ee
s)

Median Rotation Error

4 5 6 7 8 9 10
0

0.5

1

1.5

2

Number of correspondences

E
rr

or
 (

pe
rc

en
t)

Mean Translation Error

4 5 6 7 8 9 10
0

0.5

1

1.5

2

Number of correspondences

E
rr

or
 (

pe
rc

en
t)

Median Translation Error

E23 : σI = 2, σM = 3, n = 8→ 50, f = 800, w = 100
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Fig. 4 Synthetic experiments: Comparing pose accuracy of IPPE+HO with previous state-of-the-art methods (E18-E23) The
corners of the planar region are used as four correspondences.
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E24 : σI = 0.5, σM = 0, n = 4→ 10, f = 800, w = 50
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E25 : σI = 1, σM = 0, n = 4→ 10, f = 800, w = 50
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E26 : σI = 2, σM = 0, n = 4→ 10, f = 800, w = 50
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E27 : σI = 2, σM = 0.5, n = 4→ 10, f = 800, w = 50
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E28 : σI = 2, σM = 1, n = 8→ 50, f = 800, w = 50
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E29 : σI = 2, σM = 2, n = 8→ 50, f = 800, w = 50

4 5 6 7 8 9 10
0

5

10

15

20

Number of correspondences

E
rr

or
 (

de
gr

ee
s)

Mean Rotation Error

4 5 6 7 8 9 10
0

5

10

15

Number of correspondences

E
rr

or
 (

de
gr

ee
s)

Median Rotation Error

4 5 6 7 8 9 10
0

1

2

3

4

5

6

Number of correspondences

E
rr

or
 (

pe
rc

en
t)

Mean Translation Error

4 5 6 7 8 9 10
0

1

2

3

4

Number of correspondences

E
rr

or
 (

pe
rc

en
t)

Median Translation Error

Fig. 5 Synthetic experiments: Comparing pose accuracy of IPPE+HO with previous state-of-the-art methods in Mode (E24-
E29). The corners of the planar region are used as four correspondences.
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E6 : σI = 0.5, σM = 0, n = 8→ 50, f = 800, w = 300
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E7 : σI = 3, σM = 0, n = 8→ 50, f = 800, w = 300
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E8 : σI = 8, σM = 0, n = 4→ 10, f = 800, w = 300
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E20 : σI = 5, σM = 0, n = 4→ 10, f = 800, w = 100
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E21 : σI = 2, σM = 0.5, n = 4→ 10, f = 800, w = 100
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E22 : σI = 2, σM = 1, n = 8→ 50, f = 800, w = 100
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Fig. 6 Synthetic experiments: Comparing pose accuracy of IPPE+HO with P3P performed on virtual point correspondences
computed from the homography.
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4.6 IPPE Versus P3P with Virtual Correspondences

In the final part of our simulation experiments we

compare IPPE against P3P using virtual point corre-

spondences. Specifically given an estimate of H, and

a virtual point u′j positioned on the model plane, we

compute its correspondence in the image with q′j =

h(H[u′>j , 1]>). We have tested three different choices

for positioning the u′j . These are as follows:

– P3P-Random: We compute the bounding box of

{ui} and position three points randomly within this

box.

– P3P-Regular: We compute the bounding box of

{ui} and position three points on the bottom-left,

top-left and top-right boundaries of this this box.

– RPnP-Virtual: We use the original set of points.

Pose is solved for P3P-Random and P3P-Regular us-

ing the method in [12]. Pose for RPnP-Virtual is solved

using RPnP (which splits the points into multiple P3P

problems), but using their positions in the image pre-

dicted by H, rather than the measured correspon-

dences. P3P-Random suffers from the problem that it

may return zero solutions. We have found that this oc-

curs in practice between 3-4% of the time depending

on noise. To make the comparison simple we compute

performance statistics for P3P-Random using only in-

stances where it returned at least one solution. By con-

trast because the points in P3P-Regular are at right-

angles, it is guaranteed to return at least one solution,

and at most two [12].

To maintain a fair comparison we compared P3P-

Random, P3P-Regular and RPnP-Virtual using the ho-

mography estimated using HO. We have found that

IPPE+HO consistently performs better than P3P-

Random, P3P-Regular and RPnP-Virtual across the

experiments presented earlier in this section. For

brevity we present the results for just for experiments

E6-E8 and E18-E20 for these methods. This is given in

Figure 6.

5 Experimental Evaluation with Real Data

In this section we evaluate the algorithms on three ap-

plications involving real images. The first is to estimate

the pose of a planar target from keypoint matches. The

second is to estimate the pose of a planar checker-board

target. The third is to estimate the pose of small planar

AR markers.

5.1 Planar Pose Estimation from Keypoint Matches

In this experiment a series of images of a 120 × 90mm

planar test surface was photographed in normal indoor

light conditions. The series comprises 28 images, three

of which are shown in Figure 7. The camera used is a

Nikon D3100 DSLR with image resolution 2304× 1536

pixels. The camera was calibrated with Bouguet’s cali-

bration toolbox [3] with focal length fx = 3204 pixels,

fy = 3220 pixels. A fronto-parallel model image was

constructed by undistorting and rectifying the first of

these images. We computed correspondences between

the model view and all input images using standard au-

tomatic methods. Specifically we used VLFeat’s SIFT

implementation [38] with putative matches computed

using Lowe’s ratio test [27] and performed RANSAC

to find inlier correspondences (an inlier threshold of

5 pixels was used). This resulted in between 250-400

correspondences found in each image. We then com-

puted gold standard pose estimates for each image using

all inlier correspondences by minimising the symmet-

ric transfer error with Gauss-Newton iterations. Given

the large number of correspondences all tested methods

perform quite well. We compute error statistics over all

28 images. In Table 11 we list accuracy with respect to

the gold standard. Here IPPE+HO is the most accurate

method with RPP-SP following in second.

R Error (degrees) t Error (%)

IPPE+HO 0.1249 0.0375
HDZh+DLT 2.8650 0.2691

RPP-SP 1.4951 1.0877
EPnP 1.9347 1.0496
RPnP 0.1850 0.2132

Table 11 Accuracy of algorithms on the ‘Game cover’
dataset using all correspondences. Accuracy is computed with
respect to the gold standard pose combined by GEOMREF.

We used this dataset to study the accuracy of

the algorithms as conditions become more challenging.

Specifically, when using smaller numbers of correspon-

dences drawn from sub-regions of the model. Conditions

become harder as the region becomes smaller because

(i) there are fewer correspondences and (ii) the problem

becomes ambiguous because the homography becomes

affine. Each image is processed as follows. For each

correspondence, we collect all correspondences that lie

within a circular window of radius rmm. If there are

less than 3 neighbouring correspondences we discard

the window. Otherwise we compute pose and measure

the error with respect to the gold standard pose (com-

puted using the entire surface). We varied r within the

range [5.22...50] mm. The results are shown in Figure
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8. The first and second rows show the error in rotation

and translation respectively as r varies from 5.22mm to

20.9mm. We also give n̄; the average number of corre-

spondences within each sub-window. These vary from

n̄ = 4.64 to n̄ = 23.8. The third and fourth rows show

errors in rotation and translation for larger windows;

r varying from 26.1mm to 41.1mm. In each graph we

plot cumulative error distributions. The distribution of

a method performing well will push towards the top left

of the axes. For the smallest window size r = 5.22mm all

methods perform poorly, including GEOMREF. This is

because at this small scale the problem is severely ill-

conditioned. As r increases all methods perform better.

IPPE+HO performs marginally worse than RPP-SP for

r = 5.22mm (n̄ = 4.64). However beyond r = 10.4mm

IPPE+HO consistently performs very close to GEOM-

REF, and consistently performs as well as or better

than the next-best method (RPP-SP). This agrees with

the synthetic experiments, where, for randomly posi-

tioned correspondences IPPE+HO starts to outperform

other methods for n ≥ 8. Beyond r = 20.9mm one can

see that IPPE+HO and GEOMREF can find the cor-

rect solution nearly all the time; 99.6% of samples have

a rotation error less than 10%.

5.2 Pose Estimation of a Planar Checker Pattern

The second set of real experiments involves estimating

the pose of a planar checkerboard pattern. We have

experimented with two datasets. The first is a series

of 20 images captured by a standard 720p smartphone

camera in normal indoor lighting conditions. We used a

checker surface comprising 21× 30 squares each of size

9.22mm. Figure 9 shows three example images in this

dataset. The second dataset is a publicly-available one

from the Matlab Calibration Toolbox. This comprises

20 images of a 12 × 12 checkerboard with square size

30mm.

We compute model-to-image correspondences using

the Matlab Calibration Toolbox. This involves manu-

ally clicking the four corners of the model in an image,

and the corresponding homography is used to initialise

all checker corners. These are then refined to sub-pixel

accuracy with gradient descent. For the first dataset

we have 628 correspondences per image. All methods

perform well using this amount of data. To differenti-

ate the methods we perform a similar experiment to

§5.1 to see how well they perform on smaller checker-

board. For each image, we draw all m×m checker sub-

patterns, where m was varied from 2 to the width of

the checkerboard. We then compute pose for each sub-

region and compare to the gold standard. Figure 10

shows the results for the first dataset. Here we see that

IPPE+HO and RPP-SP are virtually indistinguishable

from GEOMREF. However, as we will show from Table

12 IPPE+HO is between 50 and 70 times faster than

RPP-SP. HDZh and EPnP perform significantly worse.

We see a similar trend for the dataset from the Matlab

Calibration Toolbox in Figure 11.

5.3 Pose Estimation of Augmented Reality Markers

In the last set of experiments we evaluate performance

for estimating the pose of AR markers. This task typ-

ically involves the following processing pipeline: (i) to

detect the position of the marker approximately in the

input image. This involves finding image regions which

match a marker’s characteristic pattern. (ii) to refine

the four corner positions to sub-pixel accuracy. (iii) to

use the corners to estimate 3D pose. (iv) (optional) pose

refinement. Here we compare the accuracy of IPPE to

previous methods for solving (iii). Because n = 4 the

homography is computed exactly from the point corre-

spondences (i.e. there is no redundancy since the corre-

spondences provided 8 constraints on the homography).

When n = 4 the homography can be solved very effi-

ciently with an analytic solution.

We use the following experimental setup. The open

source library ArUcO [29] is used to generate 300

uniquely-identifiable markers each of width 7.90mm.

The markers were rotated by a random angle and dis-

tributed evenly over 9 A4 sheets of paper. These sheets

were printed using a high-precision laser printer, cor-

rected for anisotropic printer scaling. The papers were

then fixed to a large planar background surface, by

tiling them in a 3× 3 grid. We ran plane-based bundle-

adjustment to accurately determine the relative posi-

tions of each sheet of paper on the background. This

allowed us to have a composite planar model of all 300

AR markers.

We then captured two video sequences with a 720p

smartphone camera. The first one viewed the markers

at close range, with the average distance between sen-

sor and plane to be 52.1cm. The second was at mid-

range with the average distance of 102.2cm. We ran

ArUcO’s marker detector and rejected any video frames

where fewer than 10 markers were detected (typically

occurring when high motion blur is present). From the

remaining frames we randomly selected 30 from both

videos to comprise two test sets. Example frames from

the close and medium range sets are shown in the

top and bottom rows of Figure 12 respectively. We

then tested the performance of the algorithms for these

datasets. For each image in a dataset, a gold-standard

pose was computed using gradient-based refinement us-

ing the positions of all detected AR markers. The per-
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formance of an algorithm was measured by how close its

pose estimate using a single AR marker was to the gold

standard. We plot the results in Figure 13. We compute

rotation error, and also the error of the estimated depth

of the centre of the AR marker (in mm). Here we see

that IPPE, RPnP and RPP-SP are the best performing

methods and perform very close to GEOMREF. RPnP

performs very slightly worse for rotation than IPPE

and RPP-SP. There is a noticeable tail in rotation er-

ror for GEOMREF; approximately 5% of markers have

errors greater than 10 degrees. The reason for these

outliers is because of tracking errors; very occasionally

the corner predictions are far from their true positions

(e.g. greater than 5 pixels) when the gradient-based re-

finement gets trapped in an incorrect local minimum.

HDZh and EPnP are significantly worse at solving this

problem, and show a significant performance drop for

the mid-range dataset. Even though the accuracy of

IPPE, RPnP and RPP-SP is quite similar, IPPE is sig-

nificantly faster to compute. Because the homography

is computed analytically, IPPE computes pose entirely

analytically using only simple floating point operations

for this problem. This is in contrast to RPP-SP, which

is iterative, and RPnP, which involves numerical root

finding for a 7th order polynomial.

5.3.1 Timing Information

We have computed the time required to perform each of

the compared methods as a function of n. This has been

done on a standard Intel i7-3820 desktop PC running

64-bit Matlab 2012a. For all compared algorithms we

use the code provided by the authors. We use our own

Matlab implementation of IPPE. Note that these are

not the fastest implementations, and speedups would

be gained with for example C implementations. How-

ever benchmarking all methods with Matlab gives a fair

comparison and reveals how computation time scales

with n. For a given n we simulated 500 randomised

configurations using the simulation setup in §4.1. Fig-

ure 14 and Table 12 shows processing time as n varies

from 4 to 650. For IPPE and HDZh with n = 4, we use

an analytic formula to estimate the homography. This

requires approximately 50 floating-point operations and

is faster than solving with DLT and HO, yet yields

the same result. RPP-SP is by far the slowest method.

IPPE+HO is the fastest method. It is marginally faster

than HDZh+DLT, but considerably faster than EPnP,

RPnP and RPP-SP. In Table 12 at n = 4 we see that

IPPE is approximately 6.7 times faster than EPnP and

6.2 times faster than RPnP. IPPE is approximately

75 times faster than RPP-SP. EPnP, RPnP and IPPE

are all O(n) methods. We can see from Figure 14 that

the graph’s slope is considerably lower for IPPE than

for EPnP and RPnP. This is because IPPE is time-

bounded by the cost of computing the homography,

which itself is very fast even for large n. At n = 500,

IPPE is only about 1.5 times slower than at n = 6. By

contrast EPnP and RPnP are approximately 4.3 and

9.6 times slower at n = 500 than n = 6.

n IPPE+HO HDZh+DLT RPP-SP EPnP RPnP

4 0.150 0.261 11.101 1.012 0.940

6 0.387 0.497 14.211 0.883 0.965

10 0.398 0.517 22.444 0.929 1.011

60 0.420 0.527 51.260 1.024 1.475

160 0.494 0.605 138.508 1.705 2.908

340 0.555 0.669 258.100 2.853 5.659

500 0.602 0.715 408.362 3.760 9.205

700 0.657 0.771 483.992 4.849 13.905

Table 12 Table showing computation time (in ms) for solv-
ing PPE with compared methods.
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Fig. 7 Images taken from the ‘Game cover’ dataset. Images were captured with a Nikon D3100 DSLR with image resolution
2304 × 1536 pixels. We used SIFT [27] to compute putative feature matches with each image containing between 200-500
features.
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Fig. 8 Real experimental results (pose estimation using the ‘Game cover’ dataset): Comparing pose accuracy with varying
window sizes.
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Fig. 9 Example views of two checkerboard test surfaces. Top row: views of a 193 × 276mm target captured by a 720p
smartphone. Bottom row: views of a 360 × 360mm target from the public dataset supplied with the Matlab Calibration
Toolbox. The performance of IPPE+HO and RPP-SP is virtually indistinguishable to GEOMREF.
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Fig. 10 Real experiments (checkerboard pose estimation captured with 720p smartphone): Comparing pose accuracy with
varying checker sizes. The performance of IPPE+HO and RPP-SP is virtually indistinguishable to GEOMREF.
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Fig. 11 Real experiments (checkerboard pose estimation with data from the Matlab Calibration Toolbox): Comparing pose
accuracy with varying checker sizes.

Fig. 12 Example views of AR markers captured by a 720p smartphone. Top row: close-range views. Bottom row: medium-range
views.



Infinitesimal Plane-based Pose Estimation 31

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Error (degrees)

C
um

ul
at

at
iv

e 
D

en
si

ty
Close Range AR Markers: Rotation Error

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Error (mm)

C
um

ul
at

at
iv

e 
D

en
si

ty

Close Range AR Markers: Translation Error

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Error (degrees)

C
um

ul
at

at
iv

e 
D

en
si

ty

Mid−Range AR Markers: Rotation Error

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Error (mm)

C
um

ul
at

at
iv

e 
D

en
si

ty

Mid−Range AR Markers: Translation Error

Fig. 13 Real experiments (AR marker pose estimation). Results are divided into close-range (left column) and mid-range (right
column) conditions. Because each marker has four point correspondences at its four courners, the homography is computed
exactly without requiring HO or DLT methods. There is very little to distinguish IPPE, RPP-SP and RPnP in terms of
accuracy, and all perform very similarly to GEOMREF. This indicates that for this application there is no real benefit in
refining their pose estimates with maximum likelihood refinement. However IPPE is by far the fastest and simplest of these
three methods (see Table 12 with n = 4).
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Fig. 14 Graph showing computation time (in ms) for solving
PPE with compared methods. Benchmarking was performed
on a standard Intel i7-3820 desktop PC. We use Matlab imple-
mentations provided by the authors for HDZh+DLT, RPP-
SP, EPnP and RPnP. We use our own Matlab implementa-
tion for IPPE. The implementation of HO is provided by the
authors.

6 Conclusion

We have presented the Infinitesimal Plane-based Pose

Estimation (IPPE) algorithm. The core idea behind

IPPE is to use the fact that a noisy homography will

predict the transform w between the model plane and

the image better at some locations than others. Our

premise is that a good way to exploit the redundancy in

the homography is to locate the point where the trans-
form w is best estimated, and then solve pose exactly

using local 1st-order information of w at that point. We

have presented the statistical justification for this ap-

proach. When the homography is estimated by noisy

point correspondences we have shown using error prop-

agation that estimates of w and Jw is made with highest

certainty at the centroid of the model points. An equiv-

alent way to say this is that the centroid is the point

where a small perturbation in the correspondences will

induce the smallest change in w and Jw.

We have then shown that given an estimate of w

and Jw at a particular point u0, we can solve pose

with a non-redundant 1st-order PDE. This PDE is ex-

act and does not make any 1st-order approximations of

the projection process. The solution to IPPE has some

attractive properties. These include guarantees on the

number of physical solutions (this is at most two, but

never fewer than one), the fact that it never introduces

artificial degeneracies, and allows a clear understand-

ing of how these solutions relate geometrically. Unlike

perspective homography decomposition, IPPE handles

perspective and affine homographies transparently and

does not break down when the amount of perspective

distortion is small. Unlike affine homography decom-

position, IPPE does not introduce any modelling error

by approximating perspective projection with a linear

transform.

We have performed a thorough empirical evaluation

of IPPE and have shown that it performs very well

in practice. It substantially outperforms homography

decomposition and in most cases outperforms modern

PnP methods (whilst being substantially faster). When

the point correspondences come from AR markers, cam-

era calibration targets or a large number of 2D key-

points such as SIFT, there really is no good reason to

use another method over IPPE.

There is also a deep connection between IPPE and

the P3P problem. This is that the solutions to P3P will

tend to the solutions to IPPE if we create three vir-

tual correspondences with infinitesimal separation cen-

tred at u0, and use the homography to estimate their

positions in the image. One might then ask is there

a better strategy than IPPE for positioning these vir-

tual correspondences? Using error propagation analy-

sis the answer appears to be no, because as the three

points tend away from the centroid the uncertainty in

their positions predicted by the homography increases

quadratically. This has been confirmed empirically in

our experiments.

In the future we aim to apply IPPE to related prob-

lems that are currently solved with classic homography

decomposition, including plane-based pose estimation

with intrinsic calibration and plane-based Structure-

from-Motion. In terms of the broader picture, IPPE

is a solution to a problem that involves estimating a

transform using a redundant set of constraints that

have error-in-variables. The redundancy is exploited

by finding the point in the transform’s domain with

the least error-in-variables via uncertainty propagation,

and then solving the transform using an exact (i.e. non-

redundant) local system at that point. We hope that

this strategy may be of use in other vision problems for

estimating transforms when there exists smooth varia-

tion in the error-in-variables.

Appendices
A IPPE using the Para-perspective and

Weak-perspective Cameras

Para-perspective projection approximates perspective

projection by linearising π about some 3D point xc =
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[xc, yc, zc]
> in camera coordinates. We denote this by

πpp(x) : R3 → R2. To reduce approximation error xc is

chosen to be the centroid of the model’s points [31,32].

xc can be parameterised by a 2D point q̃c in normalised

coordinates, scaled by a depth zc: xc = zc[q̃
>
c , 1]>. πpp

is then given by:

πpp(x) = q̃c + z−1c
[
I2 | − q̃c

]
x (39)

Because para-perspective projection is an affine trans-

form, Ĥ is also an affine transform, and computed by

the best fitting affine transform that maps {ui} to {q̃i}.
The Jacobian of the model-to-image transform w is

therefore constant, which we denote by Ja ∈ R2×2. We

can then estimate zc (i.e. the depth of the centroid of

the correspondences in camera coordinates) and esti-

mate the plane’s rotation using IPPE by replacing π

with πpp. This leads to an instance of Problem (16)

with substitutions J← Ja, v← q̃c and γ ← z−1c .

The weak-perspective camera can be treated sim-

ilarly to the para-perspective camera. The difference

is that in weak-perspective projection the linearisation

is done at a 3D point passing through the camera’s

optical axis. The weak-perspective projection function

πwp(x) : R3 → R2 is given by:

πwp(x) = q̃c + z−10

[
I2 |0

]
x (40)

where z0 approximates the depth of the plane along the

camera’s optical axis. We can estimate z0 and estimate

the plane’s rotation using IPPE by replacing π with

πwp. This leads to an instance of Problem (16) with

substitutions J← Ja, v← 0 and γ ← z−10 .

B Proof of Eq. (17)

We prove Eq. (17) using a general form with point cor-

respondences in d-dimensional space. U ∈ Rd×n de-

notes the set of points in the domain space, where n

is the number of points. Q ∈ Rd×n denotes the corre-

sponding set of points in the target space (of the same

dimensionality d). We use Ū to denote U but zero-

meaned (so that the sum of the rows of Ū are zero).

Let M̂ =

[
Â t̂

0> 1

]
denote the maximum likelihood ho-

mogeneous affine transform that maps Ū to Q, with

Â ∈ Rd×d, t̂ ∈ Rd. M̂ is given by:

t̂ = Q1

Â = (B>B)−1B>q, B
def
= Id ⊗ Ū>

(41)

where 1 is the all-ones n × 1 vector and q ∈ Rdn×1
denotes Q stacked into a column vector. The transfor-

mation of a point u ∈ Rd in the domain according to M̂

is given by: f(u) = VM̂, where V
def
= Id⊗u>. Suppose

Q is corrupted by IID zero-mean Gaussian noise with

variance σ. The uncertainty covariance matrix in q is

Σq = σI2 and using propagation of uncertainty, the

uncertainty in the position of u transformed according

to M̂ is given by the n× n covariance matrix Σf(u):

Σf(u) = Σt̂ + ΣÂ (a)

Σt̂ = σ
nIn (b)

ΣÂ = σV>M̂M̂>V = V>(B>B)−1V (c)

⇔
[
ΣÂ

]
ij

=

{
u>(Ū>Ū)−1u i = j

0 i 6= j
(d)

(42)

The step from Eq. (42-c) to Eq. (42-d) is made because

of the block-diagonal structure of (B>B)−1.

C Proof of Theorem 2

Proof of Lemma 1. Lemma 1 comes directly from

Eq. (19). To first order we have:

arg min
u0

trace (ΣJ(u0)) = arg min
u0

∥∥∥∥ ∂∂q̂
vec(J)

∥∥∥∥2
F

(43)

Eq. (43) tells us that to minimise the uncertainty in J

we should find u0 where a small change in the corre-

spondences in the image changes J the least. ut

Proof of Lemma 2. Let J′ denote the Jacobian of H′,

and q̃′i = sqq̃i + tq for some sq ∈ R+ and tq ∈ R2.

Recall the centroid of {ui} is already at the origin, and

so u′i = suui for some su ∈ R+. We use q̂′ to be the

vector of length 2n that holds {q̃′i}. Using the product

rule we have ∂vec(J)
∂q̂′ = sq

∂vec(J)
∂q̂ . Because sq ∈ R+ we

have:

arg min
u0

trace (ΣJ(u0)) = arg min
u0

∥∥∥ ∂
∂q̂vec(J)

∥∥∥2
F

= arg min
u0

∥∥∥ ∂
∂q̂′ vec(J)

∥∥∥2
F

(44)

Normalising {q̃i} therefore does not affect the solution.

We then make the coordinate transform u← suu, and

solve Problem (44) using {u′i} in place of {ui} and J′

in place of J. Suppose a solution to this is given by û′0.

By undoing the coordinate transform, a solution to the

original problem is given by s−1u û′0.

When the perspective terms of H′ (H ′31 and H ′32)

are small a good approximation to J′ can be made by

linearising with respect to H ′31 and H ′32 about H ′31 =

H ′32 = 0. This linearisation gives:

w(u0) ≈
[
−H′31H

′
11u

2
x + (−H′13H

′
12 −H

′
32H
′
11)uxuy

−H′31H
′
21u

2
x + (−H′13H

′
22 −H

′
32H
′
21)uxuy

]
+[

H′11ux −H
′
32H
′
12u

2
y +H′12uy

H′21ux −H
′
32H
′
22u

2
y +H′22uy

] (a)

vec(J′) = vec
(
∂w
∂u

(u0)
)
≈


H′11 −H

′
31(2H′11ux +H′12uy) −H′32H

′
11ux

H′21 −H
′
31(2H′21ux +H′22uy) −H′32H

′
21ux

H′12 −H
′
32(H′11ux + 2H′12uy) −H′31H

′
12ux

H′22 −H
′
32(H′21ux + 2H′22uy) −H′31H

′
22ux

 (b)
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(45)

The approximation of vec(J′) in Eq. (45-b) is linear in

u0, and so ∂
∂q̂′ vec(J′) is also linear in u0. This means∥∥∥ ∂

∂q̂′ vec(J′)
∥∥∥2
F

is of the form:

∥∥∥∥ ∂

∂q̂′
vec(J′)

∥∥∥∥2
F

≈ u>0 Qu0 + b>u0 + c (46)

for some 2×2 matrix Q (which is either positive definite

or positive semi-definite), a 2×1 vector b and a constant

scalar c. ut
Using the product rule we have:∥∥∥ ∂

∂q̂′ vec(J′)
∥∥∥2
F

=
∥∥∥ ∂
∂h′ vec(J′)∂h

′

∂q̂′

∥∥∥2
F

= trace
(
∂
∂h′ vec(J′)C ∂

∂h′ vec(J′)>
)

h′
def
= vec(H′), C

def
= ∂

∂q̂′h
′ ∂
∂q̂′h

′>, C � 0,

(47)

C is a 8×8 positive definite matrix that has been stud-

ied in [5]. When H′ is approximately affine the per-

spective terms H ′31 and H ′32 and the translational terms

H ′13 and H ′23 are negligible. When H ′31 = H ′32 = H ′13 =

H ′23 = 0, ∂
∂h′ vec(J′) is given by: 1 0 0 0 0 0 −2H′11ux −H′12uy −H′11uy 0

0 0 0 1 0 0 −2H′21ux −H′22uy −H′21uy 0
0 1 0 0 0 0 −H′12ux −2H′12uy −H′11ux 0
0 0 0 0 1 0 −H′22ux −2H′22uy −H′21ux 0


(48)

It was shown that the normalisation step orthogonalises
∂
∂q̂′h

′ [5]. This implies C is approximately a diagonal

matrix and so:∥∥∥ ∂
∂q̂′ vec(J′)

∥∥∥2
F

= trace
(
∂
∂q̂vec(J′) ∂

∂q̂vec(J′)>
)

= trace
(
∂
∂h′ vec(J′)C ∂

∂h′ vec(J′)>
)

≈
∑
ij

[
∂
∂h′ vec(J′)

]2
ij

Cjj

(49)

This is a weighted sum of the (squared) elements of
∂
∂h′ vec(J′). The weights are Cjj which are non-negative

because C is positive definite. Therefore when the per-

spective terms of H′ are negligible trace (ΣJ′(u0)) is

minimised by u0 = 0, and so trace (ΣJ(u0)) minimised

by u0 = s−1u 0 = 0 (i.e. the centroid of {ui}). ut

D Proof of Lemma 3

For simplicity we centre the model’s coordinate frame

at u0, so ui ← (ui − u0) and u0 ← 0. Because

{u1,u2,u3} are non-colinear at least two members of

{u1,u2,u3} cannot be 0. Without loss of generality let

these be u1 and u2.

Let vi
def
= w(ui), i ∈ {1, 2, 3} be the position of the

three points in the image (in normalised coordinates).

From Eq. (28) the two embeddings of ui into camera

coordinates are:

s1(ui) = R1

[
ui
0

]
+ γ−1

[
v0

1

]
s2(ui) = R2

[
ui
0

]
+ γ−1

[
v0

1

] (50)

If s1(ui) and s2(ui) project ui to the same image point

(i.e. they exist along the same line-of-sight) then pose

cannot be disambiguated using the reprojection error

of ui. This is true for u0 because u0 = 0 ⇒ s1(u0) =

s2(u0) = γ−1[v>0 1]>. For ui, i 6= 0, we cannot disam-

biguate pose using reprojection error iff:

∀i ∈ {1, 2, 3} ∃si ∈ R+ s.t.

R1

[
ui
0

]
+ γ−1

[
v0

1

]
= si

(
R2

[
ui
0

]
+ γ−1

[
v0

1

])
(51)

Using the decompositions of R1 and R2 from Eq. (24)

we pre-multiply both sides of Eq. (51) by R>v to give:

∀i ∈ {1, 2, 3} ∃si ∈ R+ s.t.[
γ−1A

+b>

]
ui + t̃ = si

([
γ−1A

−b>

]
ui + t̃

)
t̃

def
= γ−1R>v

[
v0

1

] (52)

We split Eq. (52) into three cases. The first case is when

b = 0. In this case there is no ambiguity because from

Eq.(24) b = 0 ⇔ R̃1 = R̃2 ⇔ R1 = R2. The second

case is when b 6= 0 and the top two rows of the left side

of Eq. (52) are non-zero: γ−1Aui+t̃12 6= 0. This implies

σi = 1. The third row of Eq. (52) then implies b>ui =

−b>ui. Because b 6= 0 and ui 6= 0 for i ∈ {1, 2}, b

must be orthogonal to u1 and u2. This implies u1 and

u2 are colinear, which is a contradiction.

The third case is when b 6= 0 and the top two rows

of the left side of Eq. (52) are zero: γ−1Aui + t̃12 = 0.

By eliminating t̃12 and cancelling γ this implies A(u2−
u1) = 0 and A(u3 − u1) = 0. Because u2 6= u1, this

implies A has a nullspace. Because rank(A) ≥ 1, this

implies rank(A) = 1, and so (u2 − u1) = λ(u3 − u1)

for some λ 6= 0. This implies {u1,u2,u3} are colinear,

which is a contradiction.

To summarise, when b = 0 there is no ambiguity

because both solutions to pose are the same, and when

b 6= 0 Eq. (52) is false, and hence Eq. (51) is false.

Therefore when b 6= 0 Eq. (28) will project either u1,

u2 or u3 to two different image points. ut
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