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Abstract

Given a general affine camera, we study the problem of finding the closest metric affine camera,
where the latter is one of the orthographic, weak-perspective and paraperspective projection models.
This problem typically arises in stratified Structure-from-Motion methods such as factorization-based
methods. For each type of metric affine camera, we give a closed-form solution and its implementation
through an algebraic procedure. Using our algebraic procedure, we can then provide a complete analysis
of the problem’s generic ambiguity space. This also gives the means to generate the other solutions if any.

Code release. The Matlab implementation of our three algebraic procedures has been made available
under the GPL licence.
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1 Introduction

We study the problems of finding the closest orthographic, weak-perspective or paraperspective projection
to a general affine camera in the sense of the Frobenius norm. These form three instances of the metric
affine correction problem class, which we called orthographic affine correction, weak-perspective affine cor-
rection and paraperspective affine correction, respectively. The main use of metric affine correction is in
Structure-from-Motion by factorization (Poelman and Kanade, 1997; Tomasi and Kanade, 1992) and alter-
nation (Marques and Costeira, 2009). In the factorization algorithm, metric affine correction is the final
stage of a three-stage process. In the first stage, a centred measurement matrix is factored into a joint
camera matrix and a structure matrix. This factorization represents an affine 3D reconstruction and is
defined up to a (3× 3) matrix representing an affine change of coordinates. In the second stage, the metric
structure of the affine 3D reconstruction is recovered by computing an affine-to-metric upgrade using the
metric constraints from the camera model (for instance, the two rows of the orthographic camera must be
orthonormal). The metric constraints are redundant, and can thus only be satisfied approximately. This
means that, with noise, the upgraded camera factor is not exactly a metric camera factor. In the third
stage, metric affine correction must therefore be performed for each camera in order to recover the metric
cameras from the upgraded affine cameras. (Tomasi and Kanade, 1992) does factorization with the ortho-
graphic camera, while (Poelman and Kanade, 1997) does factorization with the paraperspective camera, but
uses a suboptimal metric affine correction procedure, which could thus be replaced by the proposed one.
In the alternation algorithm, metric affine correction is the third stage of an iterative three-stage process.
The alternation algorithm requires one to provide an initial estimate of the cameras. In the first stage,
the structure is computed from the current camera estimates by triangulation. In the second stage, each
camera is computed from the current structure estimate by resection. Both stages amount to solve a set
of small linear least squares problems. The second stage estimates affine cameras, as it leaves aside the
non-linear constraints characterizing each type of metric camera model. In the third stage, metric affine
correction is thus performed for each camera in order to recover the metric cameras. These three stages
are repeated until convergence is reached. The third stage is fundamental in the alternation algorithm for
two reasons. The first reason is that because of noise, similarly to the third stage of the factorization algo-
rithm, the computed general affine cameras are not exactly metric cameras. The second reason is probably
more important: without the third stage, an alternation algorithm would converge to an affine, and not
to a metric, reconstruction. The third stage indeed introduces the metric constraints into the alternation
algorithm. (Marques and Costeira, 2009) does alternation with the weak-perspective camera, and could be
readily extended to the paraperspective camera with our correction procedure.

Metric affine correction shares strong similarities with orthonormal Procrustes analysis. Inspired by the
derivation of the optimal solution to orthonormal Procrustes analysis (specifically, we follow the derivation
in (Bartoli et al., 2013) inspired by (Horn et al., 1988; Schönemann, 1966)), we solve orthographic affine
correction and weak-perspective affine correction by a simple algebraic procedure, whose derivation is also
fairly simple but does not seem to have appeared in the literature before. We also solve paraperspective
affine correction by a simple algebraic procedure. Its derivation is however far more involved. We establish
the algebraic procedures and prove their optimality. Our procedures allow us to provide an analysis of the
problem’s generic ambiguities. These are generic in the sense that they apply to any solution algorithm.
Our analysis thus determines cases for which the problem has a unique solution, and cases for which it
does not. For the latter, we provide a characterization of the solution space1 and a means to generate all
solutions. Our results on the solution ambiguities are summarized in table 1. Metric affine correction is a
set of constrained polynomial optimization problems, to which polynomial optimization methods could be
applied. This would however be computationally more expensive by several orders of magnitude than our
analytical solutions and would not reveal the problems’ intrinsic structure and degenerate cases.

Our input data is an affine projection matrix written as P ∈ R2×3 (and the direction of projection in the
paraperspective case). Our goal is to perform metric affine correction on P. For the orthographic camera,
this means finding the camera’s rotation, and for the weak-perspective and paraperspective cameras, this
means finding the camera’s rotation and scale factor. The rank of P must be two (Hartley and Zisserman,

1A space is a set (a simple collection of objects) with some added structure, such as a norm.
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2003). A rank of one would mean that all 3D space points would be projected to a single image line; a
rank of zero would mean that they would be projected to a single image point. Even if these are not proper
projections, the rank of matrix P may drop to one or zero for near degenerate geometries under the effect
of noise. For instance, a rank of one may happen when viewing an object with a strong tilt, while a rank of
zero may happen when viewing an object at a distance with a narrow field of view. Analyzing degenerate
cases thus tells us what may happen in near degenerate cases. We established that, excluding the case
where P vanishes (which is equivalent to it having a zero rank), the weak-perspective and paraperspective
scale is always uniquely recoverable. However, for the three metric affine cameras, the rotation is uniquely
recoverable only if P has full rank, otherwise it has an ambiguity in SO2.

Camera model rank(P) = 2 rank(P) = 1 rank(P) = 0

Orthographic

Rotation Unique SO2 ambiguous Unrecoverable

Weak-perspective

Scale Unique Unique Unique

Rotation Unique SO2 ambiguous Unrecoverable

Paraperspective

Scale Unique Unique Unique

Rotation Unique SO2 ambiguous Unrecoverable

Table 1: Summary of our results on solution uniqueness. Matrix P ∈ R2×3 is a known upgraded
affine projection matrix whose correction into one of the three listed metric affine camera models is sought.
The case rank(P) = 2 includes the two sub-cases where the singular values of P are distinct or equal.

We first give our notation and background in §2. We then solve the metric correction problem for the
orthographic, weak-perspective and paraperspective cameras in §§3, 4 and 5 respectively. For each camera
model, we first give the correction’s cost function and pseudo-code. We then derive the correction procedure
based on the Singular Value Decomposition (SVD) and analyze the correction’s ambiguities. The details of
our analysis of the correction’s ambiguities for the paraperspective camera are deferred to appendix A. We
finally give experimental results in §6 and conclude in §7.

2 Notation and Background

2.1 Notation

General notation. We use italics for scalar (such as a and α), bold fonts for vector (such as v) and

typewriter fonts for matrices (such as A). The entries of a vector or matrix are written as in A =
[
A1,1 A1,2

A2,1 A2,2

]
.

We use diag to create (block) diagonal matrices. We use double bar fonts for sets (such as R). We use B
to denote a generic binary set with |B| = 2. We have for instance {−1, 1} ≡ B. We write vector two-norm

as in ‖v‖2 and matrix Frobenius norm as in ‖A‖F . We define [a, b]×
def
=
[
a b
b a

]
and � as the Hadamard

(element-wise) product.

Orthonormal matrices. We use Od for the Lie group of orthonormal matrices2 and SOd ⊂ Od for the Lie
group of special orthonormal matrices, with d ∈ {2, 3}. For A ∈ Od, det(A) = ±1; for A ∈ SOd, det(A) = 1.
We thus have Od ≡ SOd × B. Elements of SO2 may be parameterized as

[
cos θ − sin θ
sin θ cos θ

]
for θ ∈ R. Elements

2A group is a set associated with an operation called the group law. The set and group law must satisfy closure and
associativity, and there must be an identity element and an inverse element for each member of the group. For instance, the
group law of Od and SOd is matrix multiplication, the identity element is the identity matrix in Rd×d and the inverse is element
is obtained by matrix transposition.
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of O2 may be parameterized as
[
a cos θ − sin θ
a sin θ cos θ

]
for θ ∈ R and a ∈ {−1, 1}. This is equivalent to having[

b cosµ −b sinµ
sinµ cosµ

]
for some µ ∈ R and b ∈ {−1, 1}. For A ∈ O2, det(A) = det(−A), and the variable a is

thus required to specify whether A ∈ SO2 (for a = 1) or A ∈ O2\SO2 (for a = −1). For A ∈ O3 however,
det(A) = −det(−A), and A ∈ SO3 can thus be switched to O3\SO3 by simply negating its entries. We write

P2 for the space of (2 × 2) permutation matrices defined as P2
def
=
{
I, Ĩ
}

with Ĩ
def
= [ 0 1

1 0 ]. We have that
P2 ⊂ O2 and P2 ≡ B,

Sub-Stiefel matrices. A sub-Stiefel set SSr×c, 1 ≤ r ≤ 3, 1 ≤ c ≤ 3, is formed as the set of r × c blocks
taken from all orthonormal matrices in O3. Consequently, the Frobenius norm of any element of SSr×c is
bounded by 1. For instance, n ∈ SS1×1 ⊂ R is a scalar such that |n| ≤ 1 and n ∈ SS2×1 ⊂ R2×1 is a vector
such that ‖n‖2 ≤ 1.

2.2 Metric Affine Camera Models

The affine camera is simply defined as a projection which preserves parallelism. The general affine camera is
thus represented by a matrix A ∈ R2×3 for the rotational part and a vector t ∈ R2×1 for the translational part.
More specifically, a point with world coordinates Q ∈ R3×1 is projected to image coordinates q ∈ R2×1 as
q = AQ+t. We use metric affine camera to mean an affine camera which satisfies some additional constraints
called the metric constraints. Metric affine cameras are important: they form the basis of many Shape-from-
X methods, such as Photometric Stereo (Woodham, 1980) and Shape-from-Shading (Horn, 1989), to name
a few. The metric affine cameras may be derived from the perspective camera in two ways. First, by
increasing the focal length to infinity while back-tracking along the principal ray (Hartley and Zisserman,
2003). Second, by approximating perspective projection to some order (Faugeras et al., 2001).

The orthographic camera is the simplest metric affine camera. An affine camera is orthographic if A = R̄

with R̄ ∈ SS2×3. In other words, A must be the leading two rows of a 3D rotation matrix. Geometrically,
it rotates the object’s points and simply projects them orthographically to the camera’s retina. The weak-
perspective camera is a zeroth order approximation of the perspective camera. An affine camera is weak-
perspective if A = αR̄ with α ∈ R+ and R̄ ∈ SS2×3. In other words, A must be the leading two rows
of a 3D rotation matrix up to a positive rescaling. Geometrically, it follows the orthographic camera, and
additionally rescales the projected points about the optical axis. The rescaling takes into account the camera
to object distance, as α is chosen as the inverse of the object’s average depth. The paraperspective camera
is a first order approximation of the perspective camera. An affine camera is paraperspective if A = α[I d]R
with α ∈ R+, d ∈ R2×1 and R̄ ∈ SS2×3. The vector d is related to a direction of projection. Indeed, a
paraperspective camera follows the weak-perspective camera, except that the projection to the retina is
along the direction defined by the perspective projection of the object’s centre of mass. This allows the
paraperspective camera to take the full 3D coordinates of the object’s location into account in the projection
process.

The orthographic, weak-perspective and paraperspective cameras form a hierarchy of approximations
with gradually increasing precision to perspective projection. The affine camera models are simpler than
the perspective camera because their projection process is essentially linear. However, any metric affine
camera model must satisfy a set of nonlinear constraints. For these problems such as Structure-from-Motion
where the camera parameters must be estimated (Poelman and Kanade, 1997; Quan, 1996; Tomasi and
Kanade, 1992; Weinshall and Tomasi, 1995), this has motivated the use of approaches estimating first the
general affine model (which, being non-metric, is not subject to nonlinear constraints), and then fitting the
chosen metric affine camera model in a second step called metric affine correction.

2.3 The Singular Value Decomposition in R2×3

Definition. Our algebraic procedures are extensively based on the SVD (Golub and van Loan, 1989) in
R2×3. An SVD P = UΣV> must satisfy U ∈ O2, V ∈ O3 and Σ = [Σ̄ 0] ∈ R2×3 with Σ̄ = diag(σ1, σ2). We have
that σ1, σ2 ∈ R+ are the singular values of P in decreasing order. Though the singular values are unique,
an SVD is never unique. Understanding the ambiguities of the SVD in R2×3 is of utmost importance in
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studying the ambiguities of metric affine correction. The existence of SVD ambiguities means that for a
given reference SVD P = UΣV> there exist concurrent SVDs P = U′Σ′V′> that produce the same P. Because
U, U′ ∈ O2 there exist A ∈ O2 such that U′ = UA. Similarly, there exist B ∈ O3 such that V′ = VB. Therefore
the concurrent SVDs U′Σ′V′> = UAΣ′B>V> and so Σ = AΣ′B>. Because the singular values are unique, Σ
and Σ′ must be equal up to re-ordering. We model this re-ordering with Σ′ = E>Σ diag(E, 1) for some E ∈ P2.

By combining these two equations, we obtain Σ = M>ΣN with M
def
= AE> and N

def
= Bdiag(E, 1)>. Therefore a

full characterization of the SVD ambiguities is given by the family of matrices A ∈ O2 and B ∈ O3 such that:{
A = ME

B = N diag(E, 1)
with

{
E ∈ P2, M ∈ O2, N ∈ O3

MΣ = ΣN.
(1)

Note that the family of matrices M ∈ O2 and N ∈ O3 characterizes the ambiguities of the SVD up to re-
ordering. The singular values of matrix P provide a neat way to form categories of ambiguities of the SVD.
In R2×3 this leads to four cases, which we analyze in detail below and summarize the results in table 2. In
practice, this means that our algebraic procedures, which are based on taking the SVD of P, will have to be
tested against a reference SVD and four types of concurrent SVDs for ambiguities.

rank(P) = 2 rank(P) = 1 rank(P) = 0

Case 1: σ1 > σ2 > 0 Case 2: σ1 = σ2 > 0 Case 3: σ1 > σ2 = 0 Case 4: σ1 = σ2 = 0

Parameters
s1, s2, s3 ∈ {−1, 1}

s ∈ {−1, 1}, C ∈ O2
s1, s2 ∈ {−1, 1}

A ∈ O2, B ∈ O3
E ∈ P2 C ∈ O2, E ∈ P2

A ∈ O2 diag(s1, s2)E C diag(s1, s2)E O2

B ∈ O3 diag(s1, s2, s3) diag(E, 1) diag(C, s) diag(s1, C) diag(E, 1) O3

Space B4 O2 × B O2 × B3 O2 ×O3

Σ′ = A>ΣB = EΣdiag(E, 1)
= Σ = σI

= EΣdiag(E, 1) = Σ = 0
σ

def
= σ1 = σ2

σ′1 = eσ1 + (1− e)σ2 = σ′ = σ = eσ1 = 0

σ′2 = eσ2 + (1− e)σ1 = σ′ = σ = (1− e)σ1 = 0

Table 2: Ambiguities of the SVD in R2×3. A concurrent SVD U′Σ′V′> is related to the reference SVD
UΣV> by U′ = UA, Σ′ = A>ΣB and V′ = VB. The last row of the table indicates the ambiguity space. For
instance in case 1 there are no continuous ambiguities but 4 binary ones, namely 3 sign flips and 1 re-ordering.
The indicator variable e ∈ {0, 1} parameterizes E = eI + (1− e)Ĩ.

Case 1: σ1 > σ2 > 0. This case is the most general one and has only generic ambiguities. We partition
matrix N ∈ O3 as:

N =

[
N̄ n1

n>2 n

]
with N̄ ∈ SS2×2, n1,n2 ∈ SS2×1, n ∈ SS1×1,

and using MΣ = ΣN from equation (1) we obtain:[
MΣ̄ 0

]
=
[
Σ̄N̄ Σ̄n1

]
. (2)

This directly gives n1 = 0. Because N ∈ O3, this implies n ∈ {−1, 1} and n2 = 0, and finally N̄ ∈ O2. By
parameterizing M ∈ O2 and N̄ ∈ O2 as:

M =

[
a cos θ − sin θ

a sin θ cos θ

]
and N̄ =

[
b cosµ − sinµ

b sinµ cosµ

]
,
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with a, b ∈ {−1, 1} and θ, µ ∈ R, and using the leading part MΣ̄ = Σ̄N̄ of equation (2) we obtain the following
equation: [

σ1a cos θ −σ2 sin θ

σ1a sin θ σ2 cos θ

]
=

[
σ1b cosµ −σ1 sinµ

σ2b sinµ σ2 cosµ

]
.

It is trivial that element (2, 2) implies cos θ = cosµ and that then element (1, 1) implies a = b. Elements
(1, 2) and (2, 1) imply sin θ = sinµ = 0 and so θ = kπ, µ = k′π, for k, k′ ∈ N. Finally, element (2, 2) implies
k = k′, and we thus obtain:

M = diag(s1, s2) and N = diag(s1, s2, s3) with s1, s2, s3 ∈ {−1, 1}.

We obtain a generic SVD ambiguity: sign flips on corresponding columns of U and V. We finally arrive at:

A = diag(s1, s2)E and B = diag(s1, s2, s3) diag(E, 1) with s1, s2, s3 ∈ {−1, 1}, E ∈ P2.

The ambiguity space is thus B4 (it has 4 binary possible choices). Starting from Σ = AΣ′B>, and replacing A

and B by their expressions, we obtain Σ′ = Ediag(s1, s2)Σ diag(s1, s2, s3) diag(E, 1) = EΣdiag(E, 1).

Case 2: σ1 = σ2 > 0. Let σ
def
= σ1 = σ2. This case is known as a ‘degenerate SVD’ in the literature.

The SVD can be rewritten as P = σU[I 0]V> and equation (1) reduces to M[I 0] = [I 0]N. By partitioning
N ∈ O3 as we did in case 1, we obtain: [

M 0
]

=
[
N̄ n1

]
,

from which we conclude, again as in case 1, that n1 = n2 = 0, n ∈ {−1, 1} and N̄ ∈ O2. The leading part of
this equation gives us M = N̄ = C ∈ O2, and leads to:

M = C and N = diag(C, s) with s ∈ {−1, 1}, C ∈ O2.

Because P2 ⊂ O2, we finally arrive at:

A = C and B = diag(C, s) with s ∈ {−1, 1}, C ∈ O2.

The ambiguity space is thus O2 × B (it has 1 continuous and 2 binary possible choices). Starting from
Σ = AΣ′B>, and replacing A and B by their expressions, we obtain Σ′ = C>Σdiag(C, s) = Σ = σI.

Case 3: σ1 > σ2 = 0. In this case, we have Σ̄ = diag(σ1, 0). We use a different partition of N ∈ O3

compared to case 1 and case 2:

N =

[
n n>2

n1 N̄

]
with N̄ ∈ SS2×2, n1,n2 ∈ SS2×1, n ∈ SS1×1.

Equation (1) is then rewritten as: [
σ1m1,1 0>

σ1m2,1 0>

]
=

[
σ1n σ1n

>
2

0 0>

]
.

We thus obtain n2 = 0, and using the same reasoning as in case 1 and case 2, this implies n ∈ {−1, 1},
n1 = 0 and N̄ ∈ O2. We also trivially obtain m2,1 = 0 and m1,1 = n. Because M ∈ O2, this implies m1,2 = 0
and m2,2 ∈ {−1, 1}, leading to:

M = diag(s1, s2) and N = diag(s1, C) with s1, s2 ∈ {−1, 1}, C ∈ O2.

We finally arrive at:

A = diag(s1, s2)E, and B = diag(s1, C) diag(E, 1) with s1, s2 ∈ {−1, 1}, C ∈ O2, E ∈ P2.

The ambiguity space is thus O2 × B3 (it has 1 continuous and 4 binary possible choices). Starting from
Σ = AΣ′B>, and replacing A and B by their expressions, we obtain Σ′ = E diag(s1, s2)Σdiag(s1, C) diag(E, 1) =
EΣdiag(E, 1).
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Case 4: σ1 = σ2 = 0. In this case, P = 0 = U0V> with 0 ∈ R2×3 the all-zero matrix. We can trivially
conclude that M ∈ O2 and N ∈ O3. In other words, Σ = 0 contains all the information of the SVD, and U

and V are uninformative. Because P2 ⊂ O2, we arrive at:

A ∈ O2 and B ∈ O3.

The ambiguity space is thus O2 × O3 (it has 4 continuous and 2 binary possible choices). Starting from
Σ = AΣ′B> we obtain Σ′ = Σ = 0.

2.4 Methodology

For each metric affine camera, we first formulate metric affine correction using the Frobenius norm. We use
this norm since we do not have specific prior information on the error distribution in P. The Frobenius norm
has been used for many similar problems in 3D computer vision. One of the most well-known examples is
probably the rank-correction step of the 8 point algorithm for fundamental matrix estimation (Hartley and
Zisserman, 2003). We prove the existence of a solution to this formulation, and give an algebraic procedure
to compute this solution using reference SVDs. We then use the algebraic procedure to analyze the problem’s
generic degeneracies, corresponding to ambiguous cases which cannot be solved by any algorithm. Because
the SVD is the basis of our algebraic procedures, we use its ambiguities as a basis to derive and classify the
problem’s generic degeneracies. We consider each of the above four cases of SVD ambiguities for each SVD
involved in the algebraic procedure. This is done by substituting the reference SVD by concurrent SVDs
and comparing the discrepancy in the result of the algebraic procedure. In other words, we answer the
question of which ambiguities of the SVD carry over to the correction procedure. The equivalence between
the problem’s generic ambiguities and the algebraic procedure’s can be established since in most cases the
latter is non-degenerate.3 For all cases, we show how the solution space may be entirely generated.

3 Orthographic Affine Correction

Defining R̄ ∈ SS2×3 as the first two rows of R ∈ SO3, the problem of orthographic affine correction is
formulated as:

min
R∈SO3

OOR(R) with OOR(R)
def
= ‖P− R̄‖2F . (3)

In solving this problem, we use an SVD of matrix P ∈ R2×3. We write P = UΣV> as the reference SVD, and
P = U′Σ′V′> as the concurrent SVDs. Our algebraic procedure is given in table 3.

Function ORAC(P ∈ R2×3)

• Set (U, Σ, V)← SVD(P)

• Set R← diag(U, det(U) det(V))V>

Output R ∈ SO3

Table 3: Algebraic procedure solving orthographic affine correction. For rank(P) = 2 the returned
solution is the problem’s unique solution. For rank(P) = 1 and rank(P) = 0 the returned solution lies in the
problem’s solution space.

3Degeneracies only occur for a few special cases of paraperspective metric correction. For these cases, we specifically analyze
the problem’s generic degeneracies. An algebraic procedure is said to degenerate when it fails to return a valid solution. This
here happens due to division by zero.
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3.1 Solution Existence

To establish the existence of a solution we only use the reference SVD of matrix P, that we plug into the
cost function OOR, giving:

OOR(R) = ‖UΣV> − R̄‖2F = ‖Σ− U>R̄V‖2F ,

since multiplying by a unitary matrix preserves the Frobenius norm. Introducing Z̄
def
= U>R̄V, Z̄ ∈ SS2×3, the

problem can be rewritten as:

min
Z̄∈SS2×3

O′OR(Z̄) with O′OR(Z̄) = ‖Σ− Z̄‖2F .

Because Σ is a diagonal matrix, and using ‖Z̄‖2F = ‖R̄‖2F = 2, the cost function O′OR can be expanded as:

O′OR(Z̄) = ‖Σ‖2F + ‖Z̄‖2F − 2tr (ΣZ̄) = σ2
1 + σ2

2 + 2− 2(σ1Z1,1 + σ2Z2,2).

Recall that σ1 ≥ 0, σ2 ≥ 0 and because Z̄ ∈ SS2×3, |Z1,1| ≤ 1 and |Z2,2| ≤ 1. The cost is thus clearly
minimized by choosing Z1,1 = Z2,2 = 1. Because Z̄ ∈ SS2×3, we obtain Z̄ = [I 0]. We finally arrive at
R̄ = U[I 0]V> and construct the third row of R as the cross-product of the first two, giving:

R = diag(U, det(U) det(V))V>.

A geometric interpretation of the recovered orthographic camera may be given by rewriting the result as
R̄ = (det(V)U)[I 0]

(
det(V)V>

)
. This shows that R̄ performs a rotation det(V)V> which aligns the world to

the camera’s z-axis, followed by a parallel projection along the z-axis and a composed rotation and reflection
det(V)U in the image plane.

By replacing the estimated Z̄ in the cost function O′OR, we obtain the value of the cost for the optimal
solution as vOR = O′OR([I 0]), giving:

vOR

def
= (σ1 − 1)2 + (σ2 − 1)2.

The algebraic procedure of table 3 simply follows from the derivation above. It handles all four cases of
the SVD ambiguities from table 2, by returning a valid solution which always lies in the solution space, as
shown in the next section.

3.2 Generic Problem Ambiguities

The algebraic procedure in table 3 solves formulation (3). Because the former has no degeneracies, it
allows us to study the problem’s generic ambiguities by analyzing the solution space. For that purpose,
we use the concurrent SVDs instead of the reference SVD of P in our algebraic proceduce. This leads
to R′ = diag(U′,det(U′) det(V′))V′>. We then substitute U′ = UA and V′ = VB to analyze the problem’s
ambiguities for the four cases of table 2.

Case 1: σ1 > σ2 > 0. In case 1 we have U′ = Udiag(s1, s2)E and V′ = Vdiag(s1, s2, s3) diag(E, 1). We thus
obtain det(U′) det(V′) = s3 det(U) det(V) since det(E), s1, s2 ∈ {−1, 1}. The concurrent solutions are thus:

R′ = diag(Udiag(s1, s2)E, s3 det(U) det(V)) diag(E, 1) diag(s1, s2, s3)V>.

Because E2 = I (since E ∈ P2 ⊂ O2) and s1, s2, s3 ∈ {−1, 1}, this simplifies to:

R′ = diag(U,det(U) det(V))V> = R.

In case 1, the solution is thus unique. The optimal cost is (σ1 − 1)2 + (σ2 − 1)2.
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Case 2: σ1 = σ2 > 0. In case 2 we have U′ = UC and V′ = Vdiag(C, s). We thus obtain det(U′) det(V′) =
s det(U) det(V) since C ∈ O2. The concurrent solutions are thus:

R′ = diag(UC, sdet(U) det(V)) diag(C, s)>V>.

Because C ∈ O2 and s ∈ {−1, 1}, this simplifies to:

R′ = diag(U,det(U) det(V))V> = R.

In case 2, the solution is thus unique. The optimal cost can be simplified to 2(σ − 1)2, with σ
def
= σ1 = σ2.

Case 3: σ1 > σ2 = 0. In case 3 we have U′ = Udiag(s1, s2)E and V′ = Vdiag(s1, C) diag(E, 1). We thus
obtain det(U′) det(V′) = s2 det(C) det(U) det(V) since det(E), s1 ∈ {−1, 1}. The concurrent solutions are thus:

R′ = diag(Udiag(s1, s2)E, s2 det(C) det(U) det(V)) diag(E, 1) diag(s1, C)>V>.

Because E2 = I and s1 ∈ {−1, 1}, this simplifies to:

R′ = diag(Udiag(1, s2), s2 det(C) det(U) det(V)) diag(1, C)>V>.

Defining G
def
= s2Cdiag(1, det(C)) with G ∈ SO2 since C ∈ O2 and det(G) = 1, we rewrite R′ as:

R′ = diag(U, det(U) det(V)) diag(1, G)>V>.

In case 3, the solution is thus not unique: there is a rotational ambiguity in SO2. A geo-
metric interpretation may be given by rewriting R′ as the composition of three rotations R′ =
diag(det(V)U,det(U)) diag(1, G)>

(
det(V)V>

)
. This reveals that the ambiguity is a free rotation diag(1, G)

around some fixed axis parallel to the image plane. This axis is the camera’s x-axis, rotated by
diag

(
det(V)U>,det(U)

)
around the camera’s z-axis. Choosing G = I leads to R′ = R, implying that the

solution R returned by the algebraic procedure always lies in the solution space. The optimal cost can be
simplified to (σ1 − 1)2 + 1.

Case 4: σ1 = σ2 = 0. In case 4, U′ = UA and V′ = VB. The concurrent solutions are thus:

R′ = diag(UA,det(A) det(B) det(U) det(V))B>V>.

Defining H
def
= diag(A, det(A) det(B))B> with H ∈ SO3 since A ∈ O2, B ∈ O3 and det(H) = 1, we rewrite R′ as:

R′ = diag(U,det(U) det(V))HV>.

In case 4, the solution is thus not unique: there is a rotational ambiguity in SO3. Geometrically, this means
that any rotation solves the problem equally well. In other words, the rotation is unrecoverable. Choosing
H = I leads to R′ = R, implying that the solution R returned by the algebraic procedure always lies in the
solution space. The optimal cost can be simplified to a constant value: 2.

4 Weak-Perspective Affine Correction

The problem of weak-perspective affine correction is formulated as:

min
α∈R+

R∈SO3

OWP(α, R) with OWP(α, R)
def
= ‖P− αR̄‖2F . (4)

As in the orthographic case, we shall use the reference SVD of matrix P ∈ R2×3 first and then its concurrent
SVDs. Our algebraic proceduce is given in table 4.

10



Function WPAC(P ∈ R2×3)

• Set (U, Σ, V)← SVD(P), with Σ = [diag(σ1, σ2) 0]

• Set R← diag(U,det(U) det(V))V>

• Set α← 1
2(σ1 + σ2)

Output α ∈ R+ and R ∈ SO3

Table 4: Algebraic procedure solving weak-perspective affine correction. For rank(P) = 2 the
returned solution is the problem’s unique solution. For rank(P) = 1 and rank(P) = 0 the returned solution
lies in the problem’s solution space.

4.1 Solution Existence

We follow the same steps as in the orthographic case. We first define Z̄
def
= U>R̄V, Z̄ ∈ SS2×3 and rewrite

formulation (4) as:

min
α∈R+

Z̄∈SS2×3

O′WP(α, Z̄) with O′WP(α, Z̄)
def
= ‖Σ− αZ̄‖2F .

We then expand the cost function O′WP, using ‖αZ̄‖2F = 2α2, as:

O′WP(α, Z̄) = ‖Σ‖2F + ‖αZ̄‖2F − 2αtr(ΣZ̄) = σ2
1 + σ2

2 + 2α2 − 2α(σ1Z1,1 + σ2Z2,2).

Since α ≥ 0 this lets us find Z1,1 = Z2,2 = 1, from which Z̄ = [I 0], with the same arguments as in the
orthographic case, and thus R̄ = U[I 0]V>. The cost function O′WP can then be rewritten in terms of α only
as:

O′′WP(α)
def
= O′WP(α, [I 0]) = σ2

1 + σ2
2 + 2α2 − 2α(σ1 + σ2).

Differentiating with respect to α and nullifying leads to:

∂O′′WP

∂α
(α) = 4α− 2(σ1 + σ2) = 0,

and finally yields α = 1
2(σ1 + σ2). This result ensures α ≥ 0. It is easy to verify that the estimated α

corresponds to a minimum of the cost since
∂2O′′WP
∂α2 = 4 > 0. By replacing the estimated α in the cost

function O′′WP, we obtain the value of the cost for the optimal solution as vWP = O′′WP(1
2(σ1 + σ2)), giving:

vWP

def
=

1

2
(σ1 − σ2)2.

The algebraic procedure of table 4 simply follows from the derivation above. It handles all four cases of
the SVD ambiguities from table 2, by returning a valid solution which always lies in the solution space, as
shown in the next section.

4.2 Generic Problem Ambiguities

The algebraic procedure in table 4 solves formulation (4). Because the former has no degeneracies, it allows
us to study the problem’s generic ambiguities by analyzing the solution space. As in the orthographic case,
we use the concurrent SVDs of P in our algebraic procedure. Because the estimated rotation is obtained as
in the orthographic case, the ambiguities are the same. We thus only study the ambiguities of the estimated
scale.

Case 1: σ1 > σ2 > 0. In case 1, because the singular values are the same up to re-ordering in the reference
and concurrent SVDs, we conclude that α′ = 1

2(σ′1 + σ′2) = 1
2(σ1 + σ2) = α. In case 1, the solution is thus

unique. The optimal cost is 1
2(σ1 − σ2)2.
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Case 2: σ1 = σ2 > 0. In case 2, because the singular values are the same up to re-ordering in the reference

and the concurrent SVDs, we conclude that α′ = σ′ = σ = α, with σ
def
= σ1 = σ2 and σ′

def
= σ′1 = σ′2. In

case 2, the solution is thus unique. It is trivial to derive that the optimal cost vanishes; this means that
the solution is exact, and that σ1 = σ2 > 0 is a sufficient constraint to characterize the family of (2 × 3)
matrices representing a valid weak-perspective projection.

Case 3: σ1 > σ2 = 0. In case 3, because the singular values are the same up to re-ordering in the reference
and the concurrent SVDs, we conclude that α′ = 1

2(σ′1 + σ′2) = 1
2(σ1 + σ2) = α. In case 3, the scale is thus

unique, while the estimated rotation inherits the ambiguity in SO2 from the orthographic case. The solution
thus always lies in the solution space, as in the orthographic case. We note that the optimal scale also
simplifies to α = 1

2σ1, and the optimal cost to 1
2σ

2
1.

Case 4: σ1 = σ2 = 0. In case 4, the scale vanishes as α′ = α = 0. It is thus unique, while the rotation
inherits the ambiguity in SO3 from the orthographic case. The solution thus always lies in the solution
space, as in the orthographic case. The optimal cost vanishes.

5 Paraperspective Affine Correction

For a given matrix D ∈ R2×3, which encapsulates the direction of projection [d> −1]> ∈ R3×1 as D
def
= [I d],

the problem of paraperspective affine correction is stated as:

min
α∈R+

R∈SO3

OPP(α, R) with OPP(α, R)
def
= ‖P− αDR‖2F . (5)

We shall here first consider D as a general (2 × 3) matrix. This more general problem may be called
scaled-orthonormal Procrustes analysis from 2 points, as explained below. As in the orthographic and
weak-perspective cases, we use the reference SVD P = UpΣpV

>
p in our derivation, but also the reference SVD

D = UdΣdV
>
d . We normalize each of them to P = ŨpΣpṼ

>
p and D = ŨdΣdṼ

>
d so that Ṽp, Ṽd ∈ SO3 by setting:

Ũp
def
= det(Vp)Up, Ṽp

def
= det(Vp)Vp, Ũd

def
= det(Vd)Ud and Ṽd

def
= det(Vd)Vd.

The reference and concurrent SVDs of both P and D shall be considered to study the problem’s ambiguities,
while only the reference SVDs are considered directly below for etablishing the solution’s existence. Our
algebraic procedure is given in table 5.

By interpreting each of the two rows of P and D as a pair of corresponding 3D points, problem (5) can
be readily interpreted as a special case of orthonormal Procrustes analysis. In this special case, there is
no translation and only two data points (whose source coordinates are defined by matrix D and thus in
practice have the special form [1 0 d1]> and [0 1 d2]>). This cannot be solved by existing orthonormal
Procrustes analysis methods: a significant part of them does not estimate scale (Eggert et al., 1997; Kabsch,
1978; Schönemann, 1966) and methods which solve for scale either distribute it over both point sets to
ensure its independence to the rotation (Horn et al., 1988) or only apply to non-coplanar points (and so
to more than three points), as for instance (Schönemann and Carroll, 1970). Finally, none of the existing
Procrustes analysis methods works for only two points. In paraperspective factorization for Structure-
from-Motion (Poelman and Kanade, 1997), paraperspective affine correction was solved approximately.
The procedure finds a suboptimal initial solution which is then refined by means of iterative nonlinear
minimization. It is not clear what cost function the initial solution minimizes. In contrast, our procedure
directly finds the Frobenius-norm optimal solution.
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Function PPAC(P ∈ R2×3, D ∈ R2×3)

• Set (Up, Σp, Vp)← SVD(P), with Σp = [diag(σp,1, σp,2) 0]

• Set (Ud, Σd, Vd)← SVD(D), with Σd = [diag(σd,1, σd,2) 0]

• Set U← U>d Up

• Set β ← σd,1σp,1 + σd,2σp,2

• Set γ ← σd,1σp,2 + σd,2σp,1

• Set δ ← σ2
d,1 + σ2

d,2

• Set η ←
√
β2u2

2,2 + γ2u2
1,2

• Set α← η
δ

• Set Z← diag
(

1
η [β, γ]× � U, det(U) det(Vd) det(Vp)

)
• Set R← VdZV

>
p

Output α ∈ R+ and R ∈ SO3

Table 5: Algebraic procedure solving paraperspective affine correction. The paraperspective case
implies rank(D) = 2. For rank(P) = 2 the returned solution is the problem’s unique solution. For rank(P) = 1
and rank(P) = 0 the returned solution lies in the problem’s solution space, though in the latter case the pro-
cedure degenerates and fails to compute the undetermined rotation. The more general, non-paraperspective
case, includes rank(D) < 2. For rank(D) = 1 the returned solution lies in the problem’s solution space. For
rank(D) = 0 the algebraic procedure degenerates and fails to compute the undetermined scale and rotation.
Both degeneracies rank(P) = 0 and rank(D) = 0 are discussed in §5.4 and would be easily handled as special
cases.
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5.1 Solution Existence

5.1.1 General Case: D ∈ R2×3

Plugging the normalized reference SVD of P and D into the cost function OPP gives:

OPP(α, R) =
∥∥∥ŨpΣpṼ>p − αŨdΣdṼ>d R∥∥∥2

F
=
∥∥∥Ũ>d ŨpΣp − αΣdṼ>d RṼp∥∥∥2

F
.

Introducing K ∈ R2×2, K
def
= Ũ>d ŨpΣ̄p and Z̃ ∈ SO3, Z̄ ∈ SS2×3 (with Z̄ the upper (2×3) block of Z̃), Z̃

def
= Ṽ>d RṼp,

the problem can be reformulated as:

min
α∈R+

Z̄∈SS2×3

O′PP(α, Z̄) with O′PP(α, Z̄)
def
= ‖[K 0]− αΣ̄dZ̄‖2F . (6)

We expand the cost function O′PP as:

O′PP(α, Z̄) = ‖K‖2F + α2‖Σ̄dZ̄‖2F − 2αtr
(

[K 0]Z̄>Σ̄>d

)
.

The first term ‖K‖2F = σ2
p,1 + σ2

p,2 is non minimizable. The second term α2‖Σ̄dZ̄‖2F = α2(σ2
d,1 + σ2

d,2) is
minimizable but is independent of Z̄. Because α ≥ 0, the problem can be reduced to:

max
Z̄∈SS2×3

O′′PP(Z̄) with O′′PP(Z̄)
def
= tr

(
[K 0]Z̄>Σ̄d

)
.

Let s1, s2 ∈ R3×1 be the first and second rows of [K 0], and let λ ∈ R3×1 be a vector of Lagrange multipliers,
designed to enforce the three constraints Z̄Z̄> = I from Z̄ ∈ SS2×3. Let z1, z2 ∈ R3×1 be the first and second
rows of Z̄. The cost function O′′PP can be expanded to the following Lagrangian:

L(Z̄,λ)
def
= σd,1s

>
1 z1 + σd,2s

>
2 z2 + λ1(‖z1‖22 − 1) + λ2(‖z2‖22 − 1) + λ3z

>
1 z2.

Differentiating with respect to z1 and z2, and nullifying gives:

∂L
∂z1

(Z̄,λ) = σd,1s1 + 2λ1z1 + λ3z2 = 0
∂L
∂z2

(Z̄,λ) = σd,2s2 + 2λ2z2 + λ3z1 = 0.

This is equivalent to the following linear system:[
2λ1I λ3I

λ3I 2λ2I

][
z1

z2

]
= −

[
σd,1s1

σd,2s2

]
.

It cannot be used at this stage to solve for Z̄ since the value of λ is unknown, and would require one to
reintroduce the three nonlinear orthonormality constraints on Z̄ to be able to find a solution. However, the
above linear system allows us to express the rows of Z̄ in terms of s1 and s2 as:[

z1

z2

]
= − 1

4λ1λ2 − λ2
3

[
2λ2I −λ3I

−λ3I 2λ1I

][
σd,1s1

σd,2s2

]
.

By definition, the last element of s1 and s2 is zero, and because of the block structure of the above linear
relationship, we conclude that the last element of z1 and z2 must be zero too. In other words, the last
column of Z̄ must be zero, and we can write Z̄ = [Y 0], for some Y ∈ O2. The problem formulation (6) can
thus be rewritten as:

min
α∈R+

Y∈O2

O′′′PP(α, Y) with O′′′PP(α, Y)
def
= ‖[K 0]− αΣ̄d[Y 0]‖2F .
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The cost function O′′′PP can obviously be directly rewritten as:

O′′′PP(α, Y) = ‖K− αΣ̄dY‖2F .

We define X
def
= αY. Because Y ∈ O2, X is thus a scaled orthonormal matrix, which, using s ∈ {−1, 1},

u, v ∈ R, can be parameterized as:

X =

[
su v

−sv u

]
, (7)

with:
α =

√
u2 + v2. (8)

We have that s = 1 for Y ∈ SO2, and s = −1 for Y ∈ O2\SO2. The problem can thus be reformulated as:

min
u,v∈R

s∈{−1,1}

O′′′′PP(u, v, s) with O′′′′PP(u, v, s)
def
= ‖K− Σ̄dX‖2F .

We first proceed to solve for u, v, and then determine s. We rewrite the cost using the column-wise vector-
ization operator vect as:

O′′′′PP(u, v, s) = ‖vect(K)− vect(Σ̄dX)‖22 =

∥∥∥∥∥vect(K)− A

[
u

v

]∥∥∥∥∥
2

2

,

where vect(K)
def
= [K1,1 K2,1 K1,2 K2,2]> and A ∈ R4×2 depends on s and is defined as:

A
def
=


σd,1s 0

0 −σd,2s
0 σd,1

σd,2 0

 .
The solution to this linear least squares problem can be obtained as:[

u

v

]
=
(
A>A

)−1
A>vect(K) =

1

σ2
d,1 + σ2

d,2

A>vect(K),

where we used s ∈ {−1, 1} to cancel factor s2. We finally obtain u and v as:

u =
sσd,1K1,1 + σd,2K2,2

σ2
d,1 + σ2

d,2

(9)

v =
σd,1K1,2 − sσd,2K2,1

σ2
d,1 + σ2

d,2

. (10)

The final step to complete this solution is to determine s. The problem can be formulated by plugging the
estimated u, v in the cost function O′′′′PP:

min
s∈{−1,1}

O′′′′′PP (s) with O′′′′′PP (s)
def
=

∥∥vect(K)− Âvect(K)
∥∥2

2
=
∥∥(Â− I)vect(K)

∥∥2

2
,

where Â
def
= A

(
A>A

)−1
A>. Matrix Â− I ∈ R4×4 can be expanded as:

Â− I =
1

σ2
d,1 + σ2

d,2


−σ2

d,2 0 0 sσd,1σd,2

0 −σ2
d,1 −sσd,1σd,2 0

0 −sσd,1σd,2 −σ2
d,2 0

sσd,1σd,2 0 0 −σ2
d,1

 .
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By plugging this expansion in the cost function O′′′′′PP , as well as the definition of K = ŨΣ̄p with Ũ = Ũ>d Ũp =[
l cos θ sin θ
−l sin θ cos θ

]
∈ O2, we obtain the following rewriting:

O′′′′′PP (s) =

∥∥∥∥∥(Â− I)vect

([
l cos θ sin θ

−l sin θ cos θ

][
σp,1

σp,2

])∥∥∥∥∥
2

2

.

Expanding, we obtain:

O′′′′′PP (s) =
1(

σ2
d,1 + σ2

d,2

)2

∥∥∥∥∥∥∥∥∥∥∥


σd,2(lσd,2σp,1 − sσd,1σp,2) cos θ)

σd,1(lσd,1σp,1 − sσd,2σp,2) sin θ)

σd,2(lsσd,1σp,1 − σd,2σp,2) sin θ)

σd,1(lsσd,2σp,1 − σd,1σp,2) cos θ)



∥∥∥∥∥∥∥∥∥∥∥

2

2

.

The value of s which minimizes the absolute value of each element of the above vector is s = l. This may
be shown by inspecting each element in turn. For the first one, for instance, ignoring the factors σd,2 and
cos θ, one is left with lσd,2σp,1 − sσd,1σp,2. Because l, s ∈ {−1, 1} and σd,1, σd,2, σp,1, σp,2 ≥ 0, it is clear that
s = l always minimizes the value of the difference. The same reasoning holds for the four elements involved.
Replacing the solution s = l in the cost O′′′′′PP , we obtain the value of the cost for the optimal solution as
vPP = O′′′′′PP (l), giving:

vPP =
1

σ2
d,1 + σ2

d,2

∥∥∥∥∥
[

(σd,2σp,1 − σd,1σp,2) cos θ

(σd,1σp,1 − σd,2σp,2) sin θ

]∥∥∥∥∥ .
This can be simply rewritten as:

vPP =
1

σ2
d,1 + σ2

d,2

(
(σd,2σp,1 − σd,1σp,2)2u2

2,2 + (σd,1σp,1 − σd,2σp,2)2u2
1,2

)
.

5.1.2 Paraperspective Case: D = [I d] ∈ R2×3, d ∈ R2×1

The paraperspective case is merely a special case where D = [I d]. The main consequence of this special
case is that only case 1 and case 2 in the ambiguities of the SVD of D apply, since rank([I d]) = 2. This
can be easily shown from the (reference) SVD D = UdΣdV

>
d . By multiplying each side of this equation by

its transpose, we obtain I + dd> = UdΣ̄
2
dU
>
d . Let d = [d1 d2]> and d⊥

def
= [−d2 d1]>. We can verify that

1
‖d‖2 d and 1

‖d‖2 d⊥ are eigenvectors of I + dd> associated respectively to the eigenvalues 1 + ‖d‖2 and 1.

The eigenvectors can be directly used as the left singular vector of I + dd>, while the square root of the
eigenvalues gives us the singular values, leading to:

Ud =
1

‖d‖2

[
d d⊥

]
and Σd =

[
diag(

√
1 + ‖d‖22, 1) 0

]
.

Matrix Vd can be easily worked out from the SVD equation. This closed-form solution is not directly useful
in numerical calculations in practice since it only holds for d 6= 0 and is unstable for smaller ‖d‖2. However,
it tells us a few useful facts. First, it tells us rank(D) = 2 if D = [I d] and for any d ∈ R2×1. Second, it tells
us that case 1 of SVD ambiguities occurs for d 6= 0, since σd,1 =

√
1 + ‖d‖22 > σd,2 = 1 > 0 ⇔ d 6= 0, and

case 2 occurs for d = 0, since and σd,1 = σd,2 = 1 > 0⇔ d = 0.

5.2 Algebraic Procedure

There are several possible ways to turn our theory into an effective algebraic procedure. Our goal is to find
the procedure with the least possible computational cost. We chose to proceed in six steps, (S1) to (S6).
(S1) is to compute the SVD of P and D. (S2) is to form U = U>d Up. We note that U = det(Vd) det(Vp)Ũ. (S3)
is to compute β, γ, δ ∈ R as:

β
def
= σd,1σp,1 + σd,2σp,2, γ

def
= σd,1σp,2 + σd,2σp,1 and δ

def
= σ2

d,1 + σ2
d,2. (11)
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These three new variables are related to u and v, as follows. By replacing s = l and the entries of K = ŨΣ̄p
in equations (9) and (10), and using the fact that Ũ ∈ O2, we obtain:

u =
β

δ
ũ2,2 and v =

γ

δ
ũ1,2. (12)

(S4) is to compute η and α. The former is a new variable related to β, γ and U as:

η
def
=

√
β2u2

2,2 + γ2u2
1,2. (13)

By substituting u and v from equations (12) in equation (8) and noting that ũ2
1,2 = u2

1,2 and ũ2
2,2 = u2

2,2, we
then obtain:

α =
η

δ
. (14)

(S5) is to compute Z = det(Vd) det(Vp)Z̃. From equation (7), and since s = l, we obtain by substituting u
and v from equation (12):

X = det(Vd) det(Vp)
1

δ

[
β u1,1 γ u1,2

γ u2,1 β u2,2

]
= det(Vd) det(Vp)

1

δ
[β, γ]× � U. (15)

By definition, we have Y = 1
αX and Z̄ = [ 1

αX 0]. Replacing X by its expression (15), and forming the third
row of Z̃ ∈ SO3 as the cross-product of its first two rows, we obtain:

Z = det(Vd) det(Vp)Z̃ =

 1
η [β, γ]× � U

0

0

0 0 det(U) det(Vd) det(Vp)

 . (16)

(S6) is to compute R. By definition, it simply comes as R = ṼdZ̃Ṽ
>
p = det(Vd)Vd det(Vd) det(Vp)Zdet(Vp)V

>
p =

VdZV
>
p . Our algebraic procedure is summarized in table 5.

5.3 Closed-Form Solution

We may obtain a closed-form solution for the scale and rotation from the SVD of P and D. By substituting
the expressions for β, γ and η from equations (11) and (13) into equations (14) and (16), we arrive at:

α =

√
(σd,1σp,1 + σd,2σp,2)2u2

2,2 + (σd,1σp,2 + σd,2σp,1)2u2
1,2

σ2
d,1 + σ2

d,2

R = Vd diag

(
[σd,1σp,1 + σd,2σp,2, σd,1σp,2 + σd,2σp,1]× � U√

(σd,1σp,1 + σd,2σp,2)u2,2 + (σd,1σp,2 + σd,2σp,1)u1,2

, det(U) det(Vd) det(Vp)

)
V>p .

Computing directly this closed-form solution is more expensive than running our algebraic procedure.

5.4 Degeneracies of the Algebraic Procedure

The algebraic procedure in table 5 may degenerate by not returning a valid solution. This specifically
happens when δ or η (or both) vanishes, since this would cause a division by zero. We have established that
a degeneracy occurs when either rank(P) = 0 or rank(D) = 0 (or both). Both cases may be easily handled
as special cases in the algebraic procedure.

Case rank(P) = 0 and rank(D) > 0. For rank(P) = 0, the cost function can be simplified to OPP =
‖αDR‖2F = α2‖D‖2F , simplifying formulation (5) to minα∈R+ α2, and leaving us with the solution α = 0 and
R ∈ SO3 undetermined. In this case, the algebraic procedure in table 5 computes β = γ = 0, and thus η = 0.
This leads to the correct scale α = 0, but fails to compute Z since it involves 1

η , and thus fails to compute R.

17



Case rank(D) = 0. For rank(D) = 0, the cost function reduces to the constant value OPP = ‖P‖2F , leaving
us with the solution α ∈ R+ and R ∈ SO3, both undetermined. In this case, the algebraic procedure in
table 5 computes β = γ = 0, and thus η = 0, but also δ = 0. This thus fails to compute α since it involves
1
δ , and Z since it involves 1

η , and thus fails to compute R.

5.5 Generic Problem Ambiguities

The algebraic procedure in table 5 solves formulation (5). Following the discussion directly above, the
former degenerates only for rank(P) = 0 or rank(D) = 0. In other words, we may, as in the orthographic and
weak-perspective cases, use our algebraic procedure to study the problem’s generic ambiguities by analyzing
the solution space, in non-degenerate cases. Our analysis proceeds by evaluating our algebraic procedure
directly on the concurrent SVDs, and comparing the result with the reference SVDs. Because the SVD of
matrices P, D ∈ R2×3 are involved in the procedure, this leaves 4× 4 = 16 possible combinations of the four
cases of SVD ambiguities given in table 2. We note that in the specific paraperspective case, since one has
D = [I 0] and thus rank(D) = 2, only case 1 and case 2 are left to study in the SVD of D, leading to an
overall number of 2× 4 = 8 relevant cases. For completeness however we shall study the complete set of 16
cases. Our results are summarized in table 6. The detailed proof can be found in the appendix.

P Case 1 Case 2 Case 3 Case 4

D 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Scale 3 3 3 7 3 3 3 7 3 3 3 7 3 3 3 7

Rotation 3 3 Ad 7 3 3 Ad 7 Ap Ap Adp 7 7 7 7 7

Table 6: Summary of results on the solution uniqueness in paraperspective affine correction.
This table summarizes the 16 possible cases of SVD ambiguities for the input matrices P, D ∈ R2×3 for the
general problem. Paraperspective affine correction is only concerned with the 8 cases in grey since it implies
rank(D) = 2 and thus D only falls in case 1 and case 2. The Scale and Rotation rows indicate respectively
if the scale and rotation are uniquely recoverable with 3, completely unrecoverable (which is equivalent to
an ambiguity in R+ and SO3 respectively) with 7 or partially recoverable, indicating the type of rotational
ambiguity with Ad ≡ SO2, Ap ≡ SO2 or Adp ≡ SO2

2 (see main text for details).

We identified four types of rotational ambiguities: Ad ≡ SO2, Ap ≡ SO2, Adp ≡ SO2
2 and SO3. We

describe their structure below, and indicate how to obtain the whole spectrum of solutions, from the last
step of the algebraic procedure forming the rotation as R← VdZV

>
p :

• Ambiguities of type Ad. This type of ambiguities manifests itself when one may choose any matrix
Gd ∈ SO2 to generate an admissible solution as R← Vd diag(1, Gd)ZV

>
p .

• Ambiguities of type Ap. This type of ambiguities manifests itself when one may choose any matrix
Gp ∈ SO2 to generate an admissible solution as R← VdZ diag(1, G>p )V>p .

• Ambiguities of type Adp. This type of ambiguities combines types Ad and Ap. It manifests
itself when one may choose any matrices Gd, Gp ∈ SO2 to generate an admissible solution as R ←
Vd diag(1, Gd)Zdiag(1, G>p )V>p .

• Ambiguities of type SO3. This type of ambiguities means that the rotation is completely unrecov-
erable. Any rotation thus solves the problem equally well.

It should be noted from table 6 that in the paraperspective case, where rank(D) = 2, the procedure is
guaranteed to complete and to return a valid solution, in the sense that it always lies in the solution space.
The ambiguities are then simple: there are none for rank(P) = 2 (case 1 and case 2), there is one in SO2 for
rank(P) = 1 (case 3), and the rotation is unrecoverable for rank(P) = 0 (case 4). The scale is always simple.
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6 Empirical Evaluation and Comparison

6.1 Compared Methods

For each camera model, we have compared our algebraic procedure, abbreviated by Alg, to an alternative
method which we have designed to assess the precision of the numerical results and stability of Alg. The
alternative method is based on a quaternion parameterization and global polynomial optimization. It is
abbreviated by Poly. The quaternion parameterization is important since 9 entries of a rotation matrix
would be too many parameters for current global polynomial optimization toolboxes. We have also used
the result of both Alg and Poly to initialize a direct iterative solution of the metric affine correction
problems (3), (4) and (5) with an interior-point method from Matlab’s optimization toolbox. The resulting
methods are respectively abbreviated AlgRef and PolyRef.

General methodology for global polynomial optimization correction methods. In Poly, the
rotation matrix R is parameterized by a unit quaternion represented by a ∈ R4, ‖a‖2 = 1. With this
representation, R becomes a quadratic function of a, denoted as R = R(a) and defined as:

R(a)
def
=


a2

1 + a2
2 − a2

3 − a2
4 2a2a3 − 2a1a4 2a2a4 + 2a1a3

2a2a3 + 2a1a4 a2
1 − a2

2 + a2
3 − a2

4 2a3a4 − 2a1a2

2a2a4 − 2a1a3 2a3a4 + 2a1a2 a2
1 − a2

2 − a2
3 + a2

4

 .
Using the quaternion representation, each metric affine correction problem can be turned into a polynomial
optimization problem with 4 unknowns. We used Matlab’s symbolic toolbox to expand each polynomial
cost, and used it as a cost function in the Globtipoly 3 toolbox (Henrion et al., 2009). Globtipoly does
global polynomial optimization, and, for our problems, always returns two conjugate solutions representing
the same geometric solution, since R(a) = R(−a).

The orthographic camera. We define R̄(a) as the first two rows of R(a). Problem (3) can thus be
rewritten as:

min
a∈R4

‖a‖22=1

O′′OR(a) with O′′OR(a)
def
= ‖P− R̄(a)‖2F .

We have changed the original unity constraint ‖a‖2 = 1 to the equivalent quadratic constraint ‖a‖22 = 1.
It is clear that O′′OR is a quartic polynomial in the entries of a, which is solved by Globtipoly 3 under the
quadratic constraint.

The weak-perspective camera. The product αR̄ involved in problem (4) can be rewritten as:

αR̄ = αR̄(a) = R̄(
√
αa) = R̄(b) with b

def
=
√
αa.

We have defined b ∈ R4 as a general (non-unitary) quaternion. Problem (4) may thus be reformulated as:

min
b∈R4

O′′′WP(b) with O′′′WP(b)
def
= ‖P− R̄(b)‖2F .

It is clear that O′′′WP is a quartic polynomial in the entries of b. Once solved by Globtipoly 3, we finally

extract the scale as α← ‖b‖22 and build the rotation as R← R
(

b
‖b‖2

)
.

The paraperspective camera. The product αDR involved in problem (5) can be rewritten as:

αDR = αDR(a) = DR(
√
αa) = DR(b).

Problem (5) may thus be reformulated as:

min
b∈R4

O′′′′′′PP (b) with O′′′′′′PP (b)
def
= ‖P− DR(b)‖2F .

It is clear that O′′′′′′PP is a quartic polynomial in the entries of b. Once solved by Globtipoly 3, we finally
extract the scale and rotation from b as described for the weak-perspective camera.
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Average discrepancy to PolyRef Standard deviation

Poly Alg AlgRef Poly Alg AlgRef

Rotation 7.7× 10−5 1.7× 10−8 1.0× 10−8 3.6× 10−5 2.2× 10−7 2.2× 10−7

Table 7: Experimental results for orthographic correction. For each unorthographicity rate, the
average and standard deviation of the discrepancy to PolyRef was computed over 10,000 trials. The left
part of the table shows the average over unorthographicity of the average discrepancy, while the right part
shows the average over unorthographicity of the discrepancy’s standard deviation.

Average discrepancy to PolyRef Standard deviation

Poly Alg AlgRef Poly Alg AlgRef

Scale 2.7× 10−5 7.5× 10−9 1.1× 10−9 1.4× 10−5 5.0× 10−10 1.6× 10−9

Rotation 1.8× 10−5 1.4× 10−8 7.6× 10−9 1.2× 10−5 1.5× 10−7 1.5× 10−7

Table 8: Experimental results for weak-perspective correction. For each unweakperspectiveness
rate, the average and standard deviation of the discrepancy to PolyRef was computed over 10,000 trials.
The left part of the table shows the average over unweakperspectiveness of the average discrepancy, while
the right part shows the average over unweakperspectiveness of the discrepancy’s standard deviation.

Average discrepancy to PolyRef Standard deviation

Poly Alg AlgRef Poly Alg AlgRef

Scale 2.5× 10−5 7.4× 10−9 1.7× 10−9 5.4× 10−7 4.3× 10−11 1.5× 10−10

Rotation 1.4× 10−5 1.4× 10−8 8.0× 10−9 2.5× 10−6 4.0× 10−9 4.6× 10−9

Table 9: Experimental results for paraperspective correction. For each unparaperspectiveness rate,
the average and standard deviation of the discrepancy to PolyRef was computed over 10,000 trials. The
left part of the table shows the average over unparaperspectiveness of the average discrepancy, while the
right part shows the average over unparaperspectiveness of the discrepancy’s standard deviation.
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6.2 Experimental Setup

We simulated orthographic, weak-perspective and paraperspective cameras by randomly drawing scale fac-
tors, projection directions and rotations. In order to test the correction methods, we perturbed the simulated
perfect camera matrices by random additive gaussian noise with strength varying from 0 to 100% of the
camera matrix’ norm. The noise strength thus represents unorthographicity, unweakperspectiveness and
unparaperspectiveness respectively. We averaged the results over 10,000 trials for each noise strength. For
each camera model, we ran the four methods, and computed their correction residual, given by the value of√
OOR,

√
OWP and

√
OPP from problems (3), (4) and (5) respectively, evaluated with the returned solutions.

We also computed the discrepancy in rotation and scale (only for the weak-perspective and paraperspective
cameras) between PolyRef and the other three methods. The reason we chose PolyRef as a reference
here is because it is the one which gives the most objective evaluation of Alg, the method we ultimately
want to evaluate here.

6.3 Experimental Results

Numerical accuracy. Our results are given in figure 1, 2 and 3 for the orthographic, weak-perspective
and paraperspective cameras respectively. We observe similar trends for the three camera models in several
respects. First, we observe that all four methods gave the same correction residual. For the orthographic
and weak-perspective cameras, the residual behaves as a quadratic function of the unorthographicity and
unweakperspectiveness rates respectively, while for the paraperspective camera, it behaves as a linear func-
tion of the unparaperspectiveness rate. The discrepancy between PolyRef and the other methods remains,
roughly speaking, at a constant order of magnitude, and is similar for scale and rotation. The discrepancy
is of an order of magnitude between 10−4 and 10−5 for Poly, 10−8 for Alg and 10−9 for AlgRef (with the
exception of greater than 60% unorthographicity, unweakperspectiveness and unparaperspectiveness rates
where it reaches 10−8 in rotation). To be more precise, we report the average discrepancies and standard
deviations in tables 7, 8 and 9. From these results, it is clear that all methods find very similar results,
corresponding to the same geometric solution. PolyRef, Alg and AlgRef all have a very good numerical
precision while Poly is slightly less numerically stable.

Computation time. We monitored the computation time taken by each method. The following table
gives the average and standard deviation over all trials, in seconds:

Poly Alg AlgRef PolyRef

Orthographic camera

1.0× 10−1 ± 9.0× 10−3 1.0× 10−4 ± 1.2× 10−5 3.5× 10−2 ± 8.2× 10−3 5.2× 10−2 ± 2.6× 10−2

Weak-perspective camera

9.5× 10−2 ± 7.2× 10−3 1.2× 10−4 ± 1.9× 10−5 3.6× 10−2 ± 9.1× 10−3 5.2× 10−2 ± 2.0× 10−2

Paraperspective camera

2.1× 10−1 ± 1.5× 10−2 1.7× 10−4 ± 5.8× 10−5 4.6× 10−2 ± 1.1× 10−2 6.2× 10−2 ± 2.7× 10−2

As for the numerical accuracy, we can draw general conclusions valid for the three camera models. As
expected, Poly is the slowest, requiring about a tenth of a second per run, followed by AlgRef and
PolyRef, being an order of magnitude faster. Finally, Alg is the fastest, as it is three orders of magnitude
faster than Poly.

Conclusion. For all three camera models, the proposed algebraic procedures Alg are numerically stable
as they agree to a very good precision with an iterative interior-point method with two types of initialization:
from methods Alg themself (methods AlgRef) and from methods Poly, which are methods using a global
polynomial solver (methods PolyRef). Methods Alg are between three and four orders of magnitude
more accurate than methods Poly. The algebraic procedures Alg are also between two and three orders
of magnitude faster than all other methods.
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Figure 1: Experimental results for orthographic metric correction. The four methods are undistin-
guishable on the left-most graph. Note the logarithmic scale on the vertical axis of the right-most graph.
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Figure 2: Experimental results for weak-perspective metric correction. The four methods are
undistinguishable on the left-most graph. Note the logarithmic scale on the vertical axes of the middle and
right-most graphs.
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Figure 3: Experimental results for paraperspective metric correction. The four methods are undis-
tinguishable on the left-most graph. Note the logarithmic scale on the vertical axes of the middle and
right-most graphs.
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7 Conclusion

We have given algebraic procedures to solve the problems of finding the closest orthographic, weak-
perspective or paraperspective projection matrix to a given general affine projection represented by a (2×3)
matrix. These algebraic procedures efficiently implement closed-form solutions which we derived, along with
a complete characterization of the problems’ generic ambiguities and solution spaces. We proved that the
level of ambiguity can be determined from the input affine projection matrix’ rank. For a full-rank input
matrix the solution is always unique. For a rank-one input matrix (representing an affine projection to an
image line) the rotation is 1D ambiguous and the weak-perspective and paraperspective scale is unique. For
a zero matrix (representing an affine projection to a single image point) the rotation is unrecoverable and
the scale vanishes. So as to obtain this complete characterization of ambiguities, we have introduced an
original methodology based on the SVD in R2×3, which we think could benefit to other problems such as
Procrustes analysis. Interesting topics of future work are the detection and handling of ambiguities in the
presence of noise.
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A Generic Problem Ambiguities in Paraperspective Correction

The algebraic procedure in table 5 solves formulation (5). The former degenerates for rank(P) = 0 or
rank(D) = 0 (case 4 of the SVD ambiguities in table 2). We have already established the problem’s specific
generic ambiguities for these cases in §5.4. Our algebraic procedure thus allows us to study the problem’s
generic ambiguities by analyzing the solution space obtained from the concurrent SVDs in 9 cases of SVD
ambiguities: cases 1, 2 and 3 for P combined with cases 1, 2 and 3 for D. This is done by analyzing the
concurrent solutions to our procedure of table 5 step by step. The 5 remaining cases, corresponding to the
algebraic procedure’s degeneracies, are included for completeness, and indicated by an asterisk mark.

Preliminaries. We represent a permutation matrix E ∈ P2 by a binary value e ∈ {0, 1} with E = eI +
(1− e)Ĩ. We use the indicator function 1 : {true, false} → {0, 1}, with:

1e=e′
def
= ee′ + (1− e)(1− e′)

1e6=e′
def
= e(1− e′) + (1− e)e′.

We use the rules 12
e=e′ = 1e=e′ , 1e=e′1e6=e′ = 0 and 1e=e′ + 1e 6=e′ = 1.

Case 1–1: σp,1 > σp,2 > 0, σd,1 > σd,2 > 0.

• Set (U′p, Σ
′
p, V
′
p)← SVD(P), Σ′p = [diag(σ′p,1, σ

′
p,2) 0]

From table 2 we have, for Ep ∈ P2, ep ∈ {0, 1}, sp,1, sp,2, sp,3 ∈ {−1, 1}:

U′p = Up diag(sp,1, sp,2)Ep (17)

Σ′p = EpΣp diag(Ep, 1) (18)

V′p = Vp diag(sp,1, sp,2, sp,3) diag(Ep, 1) (19)

Ep = epI + (1− ep)Ĩ (20)

σ′p,1 = epσp,1 + (1− ep)σp,2 (21)

σ′p,2 = epσp,2 + (1− ep)σp,1. (22)

• Set (U′d, Σ
′
d, V
′
d)← SVD(P), Σ′d = [diag(σ′d,1, σ

′
d,2) 0]

From table 2 we have, for Ed ∈ P2, ed ∈ {0, 1}, sd,1, sd,2, sd,3 ∈ {−1, 1}:

U′d = Ud diag(sd,1, sd,2)Ed (23)

Σ′d = EdΣd diag(Ed, 1) (24)

V′d = Vd diag(sd,1, sd,2, sd,3) diag(Ed, 1) (25)

Ed = edI + (1− ed)Ĩ (26)

σ′d,1 = edσd,1 + (1− ed)σd,2 (27)

σ′d,2 = edσd,2 + (1− ed)σd,1. (28)
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• Set U′ ← U′>d U′p
Using equations (17) and (23) we obtain:

U′ = (Ud diag(sd,1, sd,2)Ed)
>Up diag(sp,1, sp,2)Ep = Ed diag(sd,1, sd,2)Udiag(sp,1, sp,2)Ep. (29)

This implies |U′| = Ed|U|Ep, and thus, using equations (20) and (26) we obtain:

|U′| = (edI+ (1− ed)Ĩ)|U|(epI+ (1− ep)Ĩ) = edep|U|+ ed(1− ep)|U|Ĩ+ (1− ed)epĨ|U|+ (1− ed)(1− ep)Ĩ|U|Ĩ.

Because U ∈ O2, |U|Ĩ = Ĩ|U| and |U| = Ĩ|U|Ĩ, and so:

|U′| = (edep + (1− ed)(1− ep))|U|+ (ed(1− ep) + (1− ed)ep)|U|Ĩ = 1ed=ep |U|+ 1ed 6=ep |U|Ĩ. (30)

• Set β′ ← σ′d,1σ
′
p,1 + σ′d,2σ

′
p,2

Using equations (21), (22), (27) and (28) we obtain:

β′ = (edσd,1 + (1− ed)σd,2)(epσp,1 + (1− ep)σp,2) + (edσd,2 + (1− ed)σd,1)(epσp,2 + (1− ep)σp,1)

= (edep + (1− ed)(1− ep))(σd,1σp,1 + σd,2σp,2) + (ed(1− ep) + (1− ed)ep)(σd,1σp,2 + σd,2σp,1)

= 1ed=epβ + 1ed 6=epγ. (31)

• Set γ′ ← σ′d,1σ
′
p,2 + σ′d,2σ

′
p,1

Using equations (21), (22), (27) and (28) we obtain:

γ′ = (edσd,1 + (1− ed)σd,2)(epσp,2 + (1− ep)σp,1) + (edσd,2 + (1− ed)σd,1)(epσp,1 + (1− ep)σp,2)

= (edep + (1− ed)(1− ep))(σd,1σp,2 + σd,2σp,1) + (ed(1− ep) + (1− ed)ep)(σd,1σp,1 + σd,2σp,2)

= 1ed=epγ + 1ed 6=epβ. (32)

• Set δ′ ← σ′2d,1 + σ′2d,2
Using equations (27) and (28) we obtain:

δ′ = (edσd,1 + (1− ed)σd,2)2 + (edσd,2 + (1− ed)σd,1)2

= edσ
2
d,1 + (1− ed)σ2

d,2 + edσ
2
d,2 + (1− ed)σ2

d,1

= σ2
d,1 + σ2

d,2

= δ. (33)

• Set η′ ←
√
β′2u′22,2 + γ′2u′21,2

Equation (30) implies u′21,2 = 1ed=epu
2
1,2 + 1ed 6=epu

2
2,2 and u′22,2 = 1ed=epu

2
2,2 + 1ed 6=epu

2
1,2, from which we may

expand η′ using equations (31) and (32) as:

η′ =
√

(1ed=epβ
2 + 1ed 6=epγ

2)(1ed=epu
2
2,2 + 1ed 6=epu

2
1,2) + (1ed=epγ

2 + 1ed 6=epβ
2)(1ed=epu

2
1,2 + 1ed 6=epu

2
2,2)

=
√

(1ed=ep + 1ed 6=ep)(β2u22,2 + γ2u21,2)

= η. (34)

• Set α′ ← η′

δ′

Using equations (33) and (34) we obtain α′ = η
δ = α.

• Set Z′ ← diag
(

1
η′ [β′, γ′]× � U′, det(U′) det(V′d) det(V′p)

)
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Equations (31) and (32) imply [β′, γ′]× = Ed [β, γ]× Ep from which we may expand the leading block using
equations (29) and (34) as:

1

η′
[β′, γ′]× � U′ =

1

η
(Ed [β, γ]× Ep)� (Ed diag(sd,1, sd,2)U diag(sp,1, sp,2)Ep)

=
1

η
Ed([β, γ]× � (diag(sd,1, sd,2)U diag(sp,1, sp,2)))Ep (35)

From equations (19), (25) and (29) we simplify the bottom right entry to:

det(U′) det(V′d) det(V′p) = sd,3sp,3 det(U) det(Vd) det(Vp). (36)

• Set R′ ← V′dZ
′V′>p

Using equations (19), (25), (35) and (36) we obtain:

R′ = Vd diag(sd,1, sd,2, sd,3) diag(Ed, 1)

diag

(
1

η
Ed([β, γ]× � (diag(sd,1, sd,2)U diag(sp,1, sp,2)))Ep, sd,3sp,3 det(U) det(Vd) det(Vp)

)
diag(Ep, 1) diag(sp,1, sp,2, sp,3)V>p

= Vd diag

(
1

η
([β, γ]× � (diag(s2d,1, s

2
d,2)U diag(s2p,1, s

2
p,2))), s3d,3s

3
p,3 det(U) det(Vd) det(Vp)

)
V>p

= VdZV
>
p

= R.

In case 1–1, the solution is thus unique. The optimal cost is:

vPP =
1

σ2
d,1 + σ2

d,2

(
(σd,2σp,1 − σd,1σp,2)2u2

2,2 + (σd,1σp,1 − σd,2σp,2)2u2
1,2

)
.

Case 1–2: σp,1 > σp,2 > 0, σd,1 = σd,2 > 0. We define σd
def
= σd,1 = σd,2.

• Set (U′p, Σ
′
p, V
′
p)← SVD(P), Σ′p = [diag(σ′p,1, σ

′
p,2) 0]

See case 1–1.

• Set (U′d, Σ
′
d, V
′
d)← SVD(D), Σ′d = [diag(σ′d,1, σ

′
d,2) 0]

From table 2 we have, for Cd ∈ O2 and sd ∈ {−1, 1}:

U′d = UdCd (37)

Σ′d = Σd (38)

V′d = Vd diag(Cd, sd) (39)

σ′d
def
= σ′d,1 = σ′d,2 = σd. (40)

• Set U′ ← U′>d U′p
Using equations (17) and (37) we obtain:

U′ = (UdCd)
>Up diag(sp,1, sp,2)Ep = C>d U diag(sp,1, sp,2)Ep. (41)

• Set β′ ← σ′d,1σ
′
p,1 + σ′d,2σ

′
p,2

Using equations (21), (22) and (40) we obtain:

β′ = σd(σ
′
p,1 + σ′p,2)

= σd(epσp,1 + (1− ep)σp,2 + epσp,2 + (1− ep)σp,1)

= σd((ep + (1− ep))(σp,1 + σp,2)

= σd(σp,1 + σp,2)

= β.
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• Set γ′ ← σ′d,1σ
′
p,2 + σ′d,2σ

′
p,1

Using equations (21), (22) and (40) we obtain:

γ′ = σd(σ
′
p,2 + σ′p,1)

= σd(epσp,2 + (1− ep)σp,1 + epσp,1 + (1− ep)σp,2)

= σd((ep + (1− ep))(σp,1 + σp,2)

= σd(σp,1 + σp,2)

= γ.

We note that γ′ = γ = β′ = β.

• Set δ′ ← σ′2d,1 + σ′2d,2

Using equation (40) we obtain δ′ = σ′2d + σ′2d = σ2
d + σ2

d = σ2
d,1 + σ2

d,2 = δ.

• Set η′ ←
√
β′2u′22,2 + γ′2u′21,2

We have seen that β′ = β = γ′ = γ. Therefore, η′ = β
√
u′22,2 + u′21,2. Because U′ ∈ O2,

√
u′22,2 + u′21,2 = 1 and

this simplifies to η′ = β. Because U ∈ O2, we also obtain η = β
√
u22,2 + u21,2 = β, and thus η′ = η.

• Set α′ ← η′

δ′

We have α′ = η
δ = α since η′ = η and δ′ = δ.

• Set Z′ ← diag
(

1
η′ [β′, γ′]× � U′, det(U′) det(V′d) det(V′p)

)
Because η′ = β′ = γ′ we have 1

η′ [β′, γ′]× = I, from which, using equation (41) we simplify the leading block as:

1

η′
[β′, γ′]× � U′ = U′ = C>d Udiag(sp,1, sp,2)Ep. (42)

Using equations (19), (39) and (41) we simplify the bottom right entry to:

det(U′) det(V′d) det(V′p) = sdsp,3 det(U) det(Vd) det(Vp). (43)

• Set R′ ← V′dZ
′V′>p

Using equations (19), (39), (42) and (43) we obtain:

R′ = Vd diag(Cd, sd) diag (U′, sdsp,3 det(U) det(Vd) det(Vp)) diag(Ep, 1) diag(sp,1, sp,2, sp,3)V>p

= Vd diag
(
CdC
>
d U
′ diag(sp,1, sp,2)EpEp diag(sp,1, sp,2), s2ds

2
p,3 det(U) det(Vd) det(Vp)

)
V>p

= VdZV
>
p

= R.

In case 1–2, the solution is thus unique. The optimal cost simplifies to 1
2(σp,1 − σp,2)2. This is the same as

the general weak-perspective cost.

Case 1–3: σp,1 > σp,2 > 0, σd,1 > σd,2 = 0. In case 1–3 almost all the early steps are similar to case
1–1. In fact, they could even be further simplified owing to σd,2 = 0, though this is not necessary for the
demonstration. We thus here only give the steps which differ from case 1–1.

• Set (U′d, Σ
′
d, V
′
d)← SVD(D), Σ′d = [diag(σ′d,1, σ

′
d,2) 0]
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From table 2 we have, for Ed ∈ P2, ed ∈ {0, 1}, Cd ∈ O2 and sd,1, sd,2 ∈ {−1, 1}:

U′d = Ud diag(sd,1, sd,2)Ed (44)

Σ′d = EdΣd diag(Ed, 1) (45)

V′d = Vd diag(sd,1, Cd) diag(Ed, 1) (46)

σ′d,1 = edσd,1 (47)

σ′d,2 = (1− ed)σd,1. (48)

• Set Z′ ← diag
(

1
η′ [β′, γ′]× � U′, det(U′) det(V′d) det(V′p)

)
The leading block is expanded as in case 1–1. From equation (46), (19) and (29) we simplify the bottom right
entry to:

sd,2sp,3 det(Cd) det(U) det(Vd) det(Vp). (49)

• Set R′ ← V′dZ
′V′>p

Using equations (19), (35), (46) and (49) we obtain:

R′ = Vd diag(sd,1, Cd) diag(Ed, 1)

diag

(
1

η
Ed([β, γ]× � (diag(sd,1, sd,2)U diag(sp,1, sp,2)))Ep, sd,2sp,3 det(Cd) det(U′) det(V′d) det(V′p)

)
diag(Ep, 1) diag(sp,1, sp,2, sp,3)V>p

= Vd diag(1, Cd) diag

(
1

η
[β, γ]× � (diag(1, sd,2)U), sd,2 det(Cd) det(U′) det(V′d) det(V′p)

)
V>p

= Vd diag(1, Gd) diag

(
1

η
[β, γ]× � U,det(U′) det(V′d) det(V′p)

)
V>p

= Vd diag(1, Gd)ZV
>
p ,

with Gd ∈ SO2, Gd
def
= sd,2Cd diag(1,det(Cd)).

In case 1–3, the scale α is thus unique, but the rotation R has an ambiguity of type Ad ≡ SO2. Choosing
Gd = I leads to R′ = R, implying that the solution R returned by the algebraic procedure always lies in the
solution space. The optimal cost simplifies to σ2

p,1u
2
1,2 + σ2

p,2u
2
2,2.

*Case 1–4: σp,1 > σp,2 > 0, σd,1 = σd,2 = 0. In case 1–4, D = O ∈ R2×3, and no information can be
retrieved on the scale and the rotation, since they both vanish from the cost function, as studied in §5.4.
The overall ambiguity space is thus SO3 × R+. The cost is constant and given by σ2

p,1 + σ2
p,2.

Case 2–1: σp,1 = σp,2 > 0, σd,1 > σd,2 > 0. We define σp
def
= σp,1 = σp,2. Case 2–1 shares similarities with

case 1–2 to which we substantially refer.

• Set (U′p, Σ
′
p, V
′
p)← SVD(P), Σ′p = [diag(σ′p,1, σ

′
p,2) 0]

From table 2 we have, for Cp ∈ O2 and sp ∈ {−1, 1}:

U′p = UpCp (50)

Σ′p = Σp (51)

V′p = Vp diag(Cp, sp) (52)

σ′p
def
= σ′p,1 = σ′p,2 = σp. (53)

• Set (U′d, Σ
′
d, V
′
d)← SVD(D), Σ′d = [diag(σ′d,1, σ

′
d,2) 0]

See case 1–1.
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• Set U′ ← U′>d U′p
Using equations (23) and (50) we obtain:

U′ = Ed diag(sd,1, sd,2)UCp. (54)

• Set β′ ← σ′d,1σ
′
p,1 + σ′d,2σ

′
p,2

By following the same reasoning as in case 1–2 but switching the role of p and d, we obtain from equations (27),
(28) and (53) β′ = σ′p(σ

′
d,1 + σ′d,2) = σp(σd,1 + σd,2) = β.

• Set γ′ ← σ′d,1σ
′
p,2 + σ′d,2σ

′
p,1

By following the same reasoning as in case 1–2 but switching the role of p and d, we obtain from equations (27),
(28) and (53) γ′ = γ = β.

• Set δ′ ← σ′2d,1 + σ′2d,2
See case 1–1, δ′ = δ.

• Set η′ ←
√
β′2u′22,2 + γ′2u′21,2

See case 1–2, η′ = β′ = β = η.

• Set α′ ← η′

δ′

See case 1–2, α′ = η
δ = α since η′ = η and δ′ = δ.

• Set Z′ ← diag
(

1
η′ [β′, γ′]× � U′, det(U′) det(V′d) det(V′p)

)
Following case 1–2, and using equations (25), (52) and (54), the leading block is expanded to Ed diag(sd,1sd,2)UCp
and the bottom right entry to sd,3sp det(U) det(Vd) det(Vp).

• Set R′ ← V′dZ
′V′>p

By replacing Z′ by its expression directly above, and using equations (25) and (52), we show with similar steps
to case 1–2 that R′ = VdZV

>
p = R.

In case 2–1 the solution is thus unique. The optimal cost simplifies to
σ2
p

σ2
d,1+σ2

d,2
(σd,1 − σd,2)2.

Case 2–2: σp,1 = σp,2 > 0, σd,1 = σd,2 > 0. We define σp
def
= σp,1 = σp,2 and σd

def
= σd,1 = σd,2.

• Set (U′p, Σ
′
p, V
′
p)← SVD(P), Σ′p = [diag(σ′p,1, σ

′
p,2) 0]

See case 2–1.

• Set (U′d, Σ
′
d, V
′
d)← SVD(D), Σ′d = [diag(σ′d,1, σ

′
d,2) 0]

See case 1–2.

• Set U′ ← U′>d U′p
From equations (37) and (50) we obtain:

U′ = C>d UCp. (55)

• Set β′ ← σ′d,1σ
′
p,1 + σ′d,2σ

′
p,2

From equations (40) and (53) we obtain β′ = 2σ′dσ
′
p = 2σdσp = β.

• Set γ′ ← σ′d,1σ
′
p,2 + σ′d,2σ

′
p,1

From equations (40) and (53) we obtain γ′ = 2σ′dσ
′
p = 2σdσp = γ. We note that γ′ = γ = β = β′.

• Set δ′ ← σ′2d,1 + σ′2d,2
See case 1–2, δ′ = δ.
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• Set η′ ←
√
β′2u′22,2 + γ′2u′21,2

See case 1–2 and case 2–1, η′ = η and η = γ = β.

• Set α′ ← η′

δ′

We have α′ = η
δ = α since η′ = η and δ′ = δ.

• Set Z′ ← diag
(

1
η′ [β′, γ′]× � U′, det(U′) det(V′d) det(V′p)

)
Following case 1–2, and using equations (39), (52) and (55), the leading block is rewritten as U′ = C>d UCp. The
bottom right entry is rewritten as sdsp det(U) det(Vd) det(Vp).

• Set R′ ← V′dZ
′V′>p

By replacing Z′ by its expression directly above, and using equations (39) and (52), we obtain:

R′ = Vd diag(Cd, sd) diag
(
C>d UCp, sdsp det(U) det(Vd) det(Vp)

)
diag(C>p , sp)V

>
p = VdZV

>
p = R.

In case 2–2 the solution is thus unique. The optimal cost vanishes, which means that this is an instance of
the exact weak-perspective case.

Case 2–3: σp,1 = σp,2 > 0, σd,1 > σd,2 = 0. We define σp
def
= σp,1 = σp,2.

• Set (U′p, Σ
′
p, V
′
p)← SVD(P), Σ′p = [diag(σ′p,1, σ

′
p,2) 0]

See case 2–1.

• Set (U′d, Σ
′
d, V
′
d)← SVD(D), Σ′d = [diag(σ′d,1, σ

′
d,2) 0]

See case 1–3

• Set U′ ← U′>d U′p
From equations (44) and (50) we obtain:

U′ = Ed diag(sd,1, sd,2)UCp. (56)

• Set β′ ← σ′d,1σ
′
p,1 + σ′d,2σ

′
p,2

From equations (47), (48) and (53) we obtain β′ = σpσd,1 = β.

• Set γ′ ← σ′d,1σ
′
p,2 + σ′d,2σ

′
p,1

From equations (47), (48) and (53) we obtain γ′ = σpσd,1 = γ. We note that γ′ = γ = β = β′.

• Set δ′ ← σ′2d,1 + σ′2d,2

From equations (47) and (48) we obtain δ′ = σ′2d,1 = σ2
d,1 = δ.

• Set η′ ←
√
β′2u′22,2 + γ′2u′21,2

See case 1–2 and case 2–1, η′ = η and η = γ = β.

• Set α′ ← η′

δ′

We have α′ = η
δ = α since η′ = η and δ′ = δ.

• Set Z′ ← diag
(

1
η′ [β′, γ′]× � U′, det(U′) det(V′d) det(V′p)

)
Following case 1–2, and using equations (46), (52) and (56), the leading block simplifies to U′ =
Ed diag(sd,1, sd,2)UCp. The bottom right entry is rewritten sd,2sp det(Cd) det(U) det(Vd) det(Vp).
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• Set R′ ← V′dZ
′V′>p

By replacing Z′ by its expression directly above, and using equations (46) and (52), we obtain:

R′ = Vd diag(sd,1, Cd) diag(Ed, 1)

diag (Ed diag(sd,1, sd,2)UCp, sd,2sp det(Cd) det(U) det(Vd) det(Vp)) diag(C>p , sp)V
>
p

= Vd diag(1, Cd) diag (diag(1, sd,2)U, sd,2 det(Cd) det(U) det(Vd) det(Vp)) V
>
p

= Vd diag(1, Gd)ZV
>
p ,

with, as in case 1–3, Gd ∈ SO2, Gd
def
= sd,2Cd diag(1,det(Cd)).

In case 1–3, the estimated scale α is thus unique, but the rotation R has an ambiguity of type Ad ≡ SO2.
Choosing Gd = I leads to R′ = R, implying that the solution R returned by the algebraic procedure always
lies in the solution space. The optimal cost simplifies to σ2

p.

*Case 2–4: σp,1 = σp,2 > 0, σd,1 = σd,2 = 0. In case 2–4, D = O ∈ R2×3, and no information can be
retrieved on the scale and the rotation, since they both vanish from the cost function, as studied in §5.4.

The overall ambiguity space is thus SO3 × R+. Defining σp
def
= σp,1 = σp,2, the optimal cost is 2σ2

p.

Case 3–1: σp,1 > σp,2 = 0, σd,1 > σd,2 > 0. In case 3–1 almost all the early steps are similar to case 1–1.
In fact, they could be further simplified owing to σp,2 = 0, but this is not necessary for the demonstration.
We thus here only give the steps which differ from case 1–1.

• Set (U′p, Σ
′
p, V
′
p)← SVD(P), Σ′p = [diag(σ′p,1, σ

′
p,2) 0]

From table 2 we have, for Cp ∈ O2 and sp,1, sp,2 ∈ {−1, 1}:

U′p = Up diag(sp,1, sp,2)Ep (57)

Σ′p = EpΣp diag(Ep, 1) (58)

V′p = Vp diag(sp,1, Cp) diag(Ep, 1) (59)

σ′p,1 = epσp,1 (60)

σ′p,2 = (1− ep)σp,1. (61)

• Set Z′ ← diag
(

1
η′ [β′, γ′]× � U′, det(U′) det(V′d) det(V′p)

)
The leading block is expanded as in case 1–1. From equations (25), (29) and (59) we simplify the bottom right
entry to:

sd,3sp,2 det(Cp) det(U) det(Vd) det(Vp). (62)

• Set R′ ← V′dZ
′V′>p

Using equations (25), (35), (59) and (62) we obtain:

R′ = Vd diag(sd,1, sd,2, sd,3) diag(Ed, 1)

diag

(
1

η
Ed([β, γ]× � (diag(sd,1, sd,2)U diag(sp,1, sp,2)))Ep, sd,3sp,2 det(Cp) det(U) det(Vd) det(Vp)

)
diag(Ep) diag(sp,1, C

>
p )V>p

= Vd diag

(
1

η
[β, γ]× � U diag(1, sp,2), sp,2 det(Cp) det(U) det(Vd) det(Vp)

)
diag(1, C>p )V>p

= VdZ diag(1, G>p )V>p ,

with Gp ∈ SO2, Gp
def
= sp,2Cp diag(1,det(Cp)).

In case 3–1, the estimated scale α is thus unique, but the rotation R has an ambiguity of type Ap ≡ SO2.
Choosing Gp = I leads to R′ = R, implying that the solution R returned by the algebraic procedure always

lies in the solution space. The optimal cost simplifies to
σ2
p,1

σ2
d,1+σ2

d,2
(σ2
d,1u

2
1,2 + σ2

d,2u
2
2,2).

31



Case 3–2: σp,1 > σp,2 = 0, σd,1 = σd,2 > 0. In case 3–2 almost all the early steps are similar to case

1–2. In fact, they could be further simplified owing to σd
def
= σd,1 = σd,2, but this is not necessary for the

demonstration. We thus only give the steps which differ from case 1–2.

• Set (U′p, Σ
′
p, V
′
p)← SVD(P), Σ′p = [diag(σ′p,1, σ

′
p,2) 0]

See case 3–1.

• Set (U′d, Σ
′
d, V
′
d)← SVD(D), Σ′d = [diag(σ′d,1, σ

′
d,2) 0]

See case 1–2

• Set Z′ ← diag
(

1
η′ [β′, γ′]× � U′, det(U′) det(V′d) det(V′p)

)
The leading block is expanded as in case 1–2. From equations (39), (41) and (59), we simplify the bottom right
entry to:

sdsp,2 det(Cp) det(U) det(Vd) det(Vp). (63)

• Set R′ ← V′dZ
′V′>p

Using equations (39), (42), (59) and (63) we obtain:

R′ = Vd diag(Cd, sd) diag
(
C>d U diag(sp,1, sp,2)Ep, sdsp,2 det(Cp) det(U) det(Vd) det(Vp)

)
diag(Ep, 1) diag(sp,1, C

>
p )V>p

= VdZdiag(1, G>p )V>p ,

with Gp ∈ SO2, Gp
def
= sp,2Cp diag(1,det(Cp)).

In case 3–2, the estimated scale α is thus unique, but the rotation R has an ambiguity of type Ap ≡ SO2.
Choosing Gp = I leads to R′ = R, implying that the solution R returned by the algebraic procedure always

lies in the solution space. The optimal cost simplifies to
σ2
p,1

2 .

Case 3–3: σp,1 > σp,2 = 0, σd,1 > σd,2 = 0. In case 3–3 almost all the early steps are similar to case
1–1. In fact, they could be further simplified owing to σp,2 = σd,2 = 0, but this is not necessary for the
demonstration. We thus only give the steps which differ from case 1–1.

• Set (U′p, Σ
′
p, V
′
p)← SVD(P), Σ′p = [diag(σ′p,1, σ

′
p,2) 0]

See case 3–1.

• Set (U′d, Σ
′
d, V
′
d)← SVD(D), Σ′d = [diag(σ′d,1, σ

′
d,2) 0]

See case 1–3

• Set Z′ ← diag
(

1
η′ [β′, γ′]× � U′, det(U′) det(V′d) det(V′p)

)
The leading block is expanded as in case 1–1. From equations (29), (46) and (59) we simplify the bottom right
entry to:

sd,2sp,2 det(Cd) det(Cp) det(U) det(Vd) det(Vp). (64)

• Set R′ ← V′dZ
′V′>p

Using equations (35), (46), (59) and (64) we obtain:

R′ = Vd diag(sd,1, Cd) diag(Ed, 1)

diag

(
1

η
Ed([β, γ]× � (diag(sd,1, sd,2)U diag(sp,1, sp,2)))Ep, sd,2sp,2 det(Cd) det(Cp) det(U) det(Vd) det(Vp)

)
diag(Ep, 1) diag(sp,1, C

>
p )V>p

= Vd diag(1, Gd)Z diag(1, G>p )V>p ,

with Gd, Gp ∈ SO2, Gd
def
= sd,2Cd diag(1,det(Cd)) and Gp

def
= sp,2Cp diag(1,det(Cp)).
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In case 3–3, the estimated scale α is thus unique, but the rotation R has an ambiguity of type Adp ≡ SO2
2.

Choosing Gd = Gp = I leads to R′ = R, implying that the solution R returned by the algebraic procedure
always lies in the solution space. The optimal cost simplifies to σ2

p,1u
2
1,2.

*Case 3–4: σp,1 > σp,2 = 0, σd,1 = σd,2 = 0. In case 3–4, D = O ∈ R2×3, and no information can be
retrieved on the scale and the rotation, since they both vanish from the cost function, as studied in §5.4.
The overall ambiguity space is thus SO3 × R+. The optimal cost is σ2

p,1.

*Cases 4–{1,2,3}: σp,1 = σp,2 = 0, σd,1 > 0, σd,1 ≥ σd,2 ≥ 0. In cases 4–1, 4–2 and 4–3 P = O ∈ R2×3.
No information can be recovered on the rotation, but the optimal scale is α′ = α = 0, as studied in §5.4.
The overall ambiguity space is thus SO3. The optimal cost vanishes.

*Case 4–4: σp,1 = σp,2 = 0, σd,1 = σd,2 = 0. In case 4–4, P = D = O ∈ R2×3, and no information can be
retrieved on the scale and the rotation, since they both vanish from the cost function, as studied in §5.4.
The overall ambiguity space is thus SO3 × R+. The optimal cost vanishes.
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