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Abstract

We study a problem that we call Shape-from-Template, which is the problem of reconstructing the shape of a

deformable surface from a single image and a 3D template. Current methods in the literature address the case of

isometric deformations, and relax the isometry constraint to the convex inextensibility constraint, solved using the

so-called maximum depth heuristic. We call these methods zeroth-order since they use image point locations (the

zeroth-order differential structure) to solve the shape inference problem from a perspective image.

We propose a novel class of methods that we call first-order. The key idea is to use both image point locations

and their first-order differential structure. The latter can be easily extracted from a warp between the template and

the input image. We give a unified problem formulation as a system of PDEs for isometric and conformal surfaces

that we solve analytically. This has important consequences. First, it gives the first analytical algorithms to solve

this type of reconstruction problems. Second, it gives the first algorithms to solve for the exact constraints. Third,

it allows us to study the well-posedness of this type of reconstruction: we establish that isometric surfaces can be

reconstructed unambiguously and that conformal surfaces can be reconstructed up to a few discrete ambiguities

and a global scale. In the latter case, the candidate solution surfaces are obtained analytically.

Experimental results on simulated and real data show that our isometric methods generally perform as well as

or outperform state of the art approaches in terms of reconstruction accuracy, while our conformal methods largely

outperform all isometric methods for extensible deformations.
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1 Introduction

The reconstruction of 3D shape from monocular video data has been an extremely important research topic in

computer vision for decades. It has been established that the scene shape may be recoverable from image mo-

tion. Crucially, the degree to which it can be uniquely recovered depends on the assumption made on the shape’s

(temporal) deformation and on the camera projection function to some extent. It has been established that if the

shape is rigid (does not change over time) it is then uniquely recoverable, as well as camera motion and intrinsic

parameters (Faugeras et al., 2001; Hartley and Zisserman, 2003) by rigid Shape-from-Motion (SfM). When the shape

is deformable (changes over time) however, the problem is still largely open, since modeling deformation priors is

substantially more difficult than using simple rigidity, and recovering time-varying shape is very weakly constrained

as compared to recovering rigid shape. Efforts have been recently made by the community towards solving this

problem known as Non-Rigid SfM (NRSfM) (Bregler et al., 2000; Del Bue, 2008; Russell et al., 2011; Torresani et al.,

2008; Vicente and Agapito, 2012) under various assumptions and deformation priors.

We are here interested in a specific setup which has been known as template-based deformable 3D reconstruc-

tion (Brunet et al., 2010; Chhatkuli et al., 2014; Ecker et al., 2008; Gumerov et al., 2006; Malti et al., 2011a,b;

Moreno-Noguer et al., 2009, 2010; Perriollat et al., 2011; Salzmann and Fua, 2009, 2011; Salzmann et al., 2007a,b,

2008; Shaji et al., 2010; Vicente and Agapito, 2012) and that we shall here call Shape-from-Template (SfT), as argued

below. This setup is interesting since it resolves 3D shape from one input image only. In SfT, one wishes to recon-

struct the apparent surface of an object for which a reference 3D shape –called the template– is available, and under

a specific deformation constraint. Most of the recent work tackles the IsoPSfT problem (Isometric Perspective SfT):

they make the assumption that the surface deforms isometrically and that the camera can be modeled by perspective

projection. They also make the assumption that 3D to 2D point correspondences can be established between the

template and the input image. We call these methods zeroth-order methods. Isometry implies that the geodesic

between any two points on the surface remains constant; this is a non-convex constraint. The current literature

proposes numerical methods to solve convex relaxations of the isometric deformation constraint. Isometry has also

been combined with shading (Moreno-Noguer et al., 2010), the problem’s dimensionality reduced by learning the

admissible shape space (Moreno-Noguer et al., 2010) (originally proposed in (Salzmann et al., 2007c)) or stitching

multiple local surface patches of low complexity (Salzmann and Fua, 2011). Some other works reconstruct elastic

surfaces using shading (Moreno-Noguer et al., 2009), quasi-conformal deformations (Malti et al., 2011a) or temporal

smoothness (Salzmann et al., 2007a).

Our work tackles the problem with a different modeling. Instead of using point correspondences, we assume that

a warp can be established that maps points from the template to the input image. The literature on warp estimation

is well-advanced. In our approach, the surface is detected in the input image and a warp may be computed following
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the feature-based approach (Pilet et al., 2008), the pixel-based approach (Gay-Bellile et al., 2010) or a combination

or both (Pizarro and Bartoli, 2012). In essence, a warp captures and densifies the 3D to 2D point correspondences

used in other approaches. But in our approach, the warp needs not be dense or continuous, provided that it gives

the first-order differential structure around each point to be reconstructed. We give a differential formulation of the

shape inference problem and show that it leads to a class of first-order methods. This formulation constrains the

surface to be continuously differentiable at each point to be reconstructed, which must thus not be located on a sharp

fold or on a tear. It allows us to achieve three major steps forward:

• Beyond isometric deformation. We relax isometric deformation (distance-preserving) to conformal defor-

mation (angle-preserving). While an isometry is also a conformity, the opposite is not always true. This way,

we show that some types of extensible surfaces can be reconstructed from image motion only.

• Beyond convex relaxations. We solve the exact non-convex differential constraints without relaxing them,

in both the isometric and conformal deformation cases.

• Beyond numerical results. We provide analytical solutions to the problem and prove that for the isometric

deformation a unique solution exists, while for conformal deformations a finite number of solutions exists, each

recoverable up to a global scale ambiguity. Despite the amount of recent literature concerned with solving SfT,

very little effort has been devoted to analyzing the problem’s well-posedness from a theoretical standpoint.

Our approach handles non-developable surfaces, modeled by non-flat templates, and thus applies to the surface of

objects such as a balloon, a cushion and an organ, which cannot be physically flattened.

The present article is a fully rewritten extension of one of our conference articles (Bartoli et al., 2012). It features

several significant novelties. First, our novel framework handles generic template parameterization (while our previous

framework handles only conformal parameterizations). This is important since only quasi-conformal (and not exactly

conformal) flattening can be computed from discrete shape representations such as meshes. The results obtained by

our novel framework are independent of the actual flattening. This is because no assumptions are made on the type

of flattening. This allows us to use an image of the object registered to a 3D model to serve as flattened template

and 3D template, respectively. Second, we derive all our main results in a more general framework which clearly

identifies the solutions as eigenvalues and eigenvectors of (2 × 2) matrices. We recently published a study of the

solutions’ stability with respect to the imaging geometry (Chhatkuli et al., 2014). This study shows that the depth

solution is stable for a perspective camera but degrades as the camera becomes affine. We also used the principle of

first-order shape inference methods in order to solve for the camera’s focal length. Our first solution optimizes the

shape’s global isometricity by sampling the focal length (Bartoli and Collins, 2013). Our second solution solves for

the focal length in closed-form by using a simplified camera model (Bartoli et al., 2013). Third, we identify that there
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exist singular points in the conformal deformation case which correspond to surface patches whose normal coincides

with the line of sight.

We demonstrate our algorithms and compare them to existing ones using simulated data and three real datasets.

These experiments show that our algorithms compete with and often outperform state of the art approaches. They

also show that 3D reconstruction for extensible surfaces is possible with the conformal deformation model.

Naming template-based monocular 3D reconstruction as Shape-from-Template. The scope of template-

based monocular 3D reconstruction is to find the 3D shape of a deformable surface under a simple physics-based

deformation model. This problem has been studied over the last decade, but still the class of methods has not so

far been given a specific name. We believe that Shape-from-Template (SfT), which we use in this paper, would be

an appropriate name. SfT is related to the Shape-from-X type of names, and emphasizes the fact that the problem

leads to reconstructing shape. We noted that the acronym SfT also holds for Shape-from-Texture (Ikeuchi, 1984;

Ohta et al., 1981). This is actually fortunate since one may easily realize that texton-based Shape-from-Texture is a

very similar problem to Shape-from-Template: imagine that the texton is a small part of the template, and that the

set of textons thus forms the template up to some planar rearrangement.

Notation. We use greek characters for functions (such as ϕ) and bold latin for vectors and matrices (such as u).

We write scalars with either greek or latin italic characters. We use Cr(X ,Y) for the space of r times continuously

differentiable functions with domain X and range Y. The first derivative operator is written J (such as Jϕ). We

write S as the set of (2 × 2) Symmetric Positive Definite (SPD) matrices. We use λ1 and λ2 as two functions

giving the eigenvalues of some (2 × 2) matrix, with λ1 ≥ λ2, and ε1 and ε2 as two functions giving the associated

eigenvectors in an orthonormal basis. For A ∈ S, we have A = PΣP> with P = (ε1(A) ε2(A)), PP> = I and

Σ = diag(λ1(A), λ2(A)). Homogeneous coordinates are written with a tilde (such as ũ, with ũ>
def
= (u> 1)).

2 Problem Formulation

2.1 Geometric Modeling

Our problem modeling is illustrated in figure 1. The known template shape T ⊂ R3 is related to the unknown

deformed shape S ⊂ R3 by an unknown continuously differentiable 3D deformation Ψ ∈ C1(T ,R3). In other words,

Ψ maps a point P ∈ T to the corresponding point Q = Ψ(P) ∈ S. We assume that T and S share the same topology.

Therefore, they also share a parameterization space P ⊂ R2, which can be obtained by conformal flattening of T , for

instance. The known template embedding ∆ ∈ C1(P, T ) is an invertible function that maps a point p ∈ P to the

3D point P ∈ T . The unknown deformed embedding ϕ ∈ C1(P,R3) maps a point p ∈ P to the 3D point Q ∈ S. It
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Figure 1: Geometric modeling of SfT. We propose to use a deformed embedding to model SfT. This function
maps a 2D template parameterization obtained from the 3D template to the unknown 3D deformed surface. In our
algorithms, any C1 2D parameterization can be used.

is defined as:

ϕ
def
= Ψ ◦∆. (1)

It is thus clear that estimating ϕ and Ψ are two different ways to solve SfT.

The input image space is written I ⊂ R2. The known camera operator Π ∈ C∞(R3,R2) maps a point Q ∈ S to

q = Π(Q) ∈ I using perspective projection1. We assume that the camera has been intrinsically calibrated and that

the effect of the intrinsics are ‘undone’ in the image. Writing q> = (x y) and Q> = (X Y Z), the projection

operator is thus simply:

Π(Q)
def
=

1

Z

X
Y

 . (2)

The known warp function is written η ∈ C1(P, I). It maps a point p ∈ P to q = η(p) ∈ I. In our method, the

warp function can be continuously defined in P or only at some sparse points, along with its first-order differential

structure Jη. Practical details on warp estimation are given in §8.

1Strictly speaking, Π is not defined at the camera centre, but if the observed surface would contain that point, it would anyway not be
imaged.
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2.2 The Parameterization Space

The parameterization space P ⊂ R2 is obtained from the template shape T prior to running SfT. We distinguish

two cases. The first case concerns developable surfaces, such as a piece of paper, which can be isometrically (and

physically) flattened. This case has been the focus of many SfT methods in the literature. For these surfaces, the

template embedding is a trivial function and may for instance be chosen as the identity. The second case concerns

non-developable surfaces, such as a cushion, which cannot be physically flattened. We use rigid SfM to reconstruct

the template shape, but any other shape reconstruction method could be used instead. Our SfT solution can use

any continuously differentiable parameterization space. We have tried two solutions to form the parameterization

space. The first one is to simply identify one of the images used in rigid SfM to the parameterization space. The

main drawback of this solution is that some objects cannot be made entirely visible in a single perspective image.

The second solution is to use quasi-conformal flattening. This is a very well-established technique in the computer

graphics community, where it has been extensively used for texture-mapping purposes (Sheffer et al., 2005).

2.3 Differential Algebraic Modeling

The goal of SfT is to compute the 3D deformation Ψ or equivalently the embedding ϕ from image data which is here

captured by the warp η. SfT is based on two types of constraints: the reprojection constraint and the deformation

constraint. The former models compatibility with the image data and the latter models priors on the 3D deformation.

We are here interested in isometric and conformal 3D deformations, which are first-order differential deformation

priors that can both be written in terms of the deformation’s local structure tensor J>Ψ,T JΨ,T . The notation JΨ,T refers

to the first-order derivative operator acting on the tangent space2 of T . Isometric deformations preserve distances and

are modeled by J>Ψ,T JΨ,T = I while conformal deformations preserve angles and are modeled by J>Ψ,T JΨ,T ∝ I since

local scaling varies isotropically. Both types of deformations can thus be written as J>Ψ,T JΨ,T = βI by introducing a

local scaling function β ∈ C1(T ,R+∗) with β = 1 in the isometric case and β unknown in the conformal case. The

Isometric and Conformal Perspective SfT problems, respectively named as IsoPSfT and ConPSfT, can therefore be

stated as:

IsoPSfT – Initial formulation

Find Ψ ∈ C1(T ,R3) s.t.

 Π ◦Ψ ◦∆ = η (reprojection constraint)

J>Ψ,T JΨ,T = I (deformation constraint)
(3)

2For a smooth surface embedded in the 3D space the tangent space is a plane which linearly approximates the local shape.
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ConPSfT – Initial formulation

Find

 Ψ ∈ C1(T ,R3)

β ∈ C1(T ,R+∗)
s.t.

 Π ◦Ψ ◦∆ = η (reprojection constraint)

J>Ψ,T JΨ,T = βI (deformation constraint)
(4)

Each system in IsoPSfT and ConPSfT has five distinct PDEs, given by two matrix-valued PDEs, the reprojection

and the deformation constraints. The former accounts for two PDEs, and the latter for three.

2.4 Overview of the Solutions’ Derivation

As can be seen in their initial formulations, IsoPSfT and ConPSfT are first-order quadratic systems of PDEs. All

systems of PDEs obtained by reformulating these formulations will be of the same kind. Our solutions’ derivation

follows a common framework for both problems with four main steps. The solution to IsoPSfT is obtained after the

third step; the fourth step is specific to ConPSfT. Our goal is to reformulate both problems in such a way that the

number of unknowns locally matches the number of independent PDEs. In the initial formulations, the systems of

PDEs are not locally solvable: the number of local unknowns is greater than the number of PDEs. The first two steps

we take are reformulations, which reduce the number of local unknowns, combine the reprojection and deformation

constraints and introduce the first-order deformation constraint:

Step 1 (§3.1) This first reformulation substitutes the deformation function Ψ by the embedding function ϕ. This step

prepares the next one by introducing the parameterization space in the formulation.

Step 2 (§3.2) This second reformulation substitutes the embedding function ϕ by the depth function γ. It allows us to

combine the two matrix-valued PDEs forming each system into single matrix-valued PDEs, forming a system

of three independent PDEs for each problem. Importantly, this combination uses the first-order derivatives of

the reprojection constraint, and thus introduces the warp’s first-order derivatives in the PDEs.

The resulting systems of PDEs are locally solvable for IsoPSfT, and ConPSfT to some extent. They are nonlinear,

however, and deriving their analytical solutions requires two changes of variable:

Step 3 (§4) This first change of variable eliminates some of the nonlinear terms in the PDEs by introducing a novel

unknown function θ and its first-order derivatives Jθ. It leaves three nonlinear terms in the formulation. Because

the systems of PDEs are formed of three independent PDEs, the three nonlinear terms can be solved locally

for IsoPSfT, as what we call a rank-1 equation of type 1 (§5). At this stage, we can show that the solution to

θ, and thus to γ, ϕ and Ψ, is unique. ConPSfT however has a fourth term, the local scaling function, and can

thus not be solved locally at this stage.

Step 4 (§6) This second change of variable eliminates function θ and its derivatives by introducing a novel unknown

function µ. It turns out that only the first-order derivatives Jµ of µ appear in the resulting PDEs, not µ itself.
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The system of PDEs can thus be solved locally, as what we call a rank-1 equation of type 2 (§7). At this stage,

we can show that the solution to Jµ is two-fold ambiguous. This solution implies that the final algorithm must,

once having solved for Jµ, integrate it to find µ, while coping with the local two-fold ambiguity, and only then

proceed to recover γ, ϕ and Ψ.

Our methods solve the problems locally -or semi-locally for ConPSfT- and obtain numerically stable results. The

price to pay for the local solutions is the use of the warp’s first-order derivatives. Once the warp is computed, for

instance from point correspondences, its first-order derivatives can be obtained analytically for most warp models

such as the Thin-Plate Spline. This implies that the warp must be differentiable, at least locally around the points

to be reconstructed. Our methods can thus not reconstruct sharp folds, nor can it deal with changes of topology.

3 Problem Reformulation

The main goals of reformulation is to introduce the depth function γ ∈ C1(P,R), in place of the deformation function

Ψ, and the first-order reprojection constraint. This is an essential step to then solve the problems locally. This is

because the depth function is a simpler function to work with than the deformation function, essentially because its

dimensions are lower, and because the resulting problem formulation lends itself to local solutions. We first introduce

the embedding function, and then the depth function.

3.1 Formulation with the Embedding

The deformation function, used as main unknown, does not depend on the parameterization space. The depth

function -whose domain is the parameterization space- can thus not be introduced directly, and requires us to first

introduce the embedding function. This can be done quite directly since the deformation function can be expressed in

terms of the embedding function ϕ using equation (1) as Ψ = ϕ◦∆−1. It is straightforward to rewrite the reprojection

constraint in terms of ϕ as Π ◦ ϕ = η, or simply ϕ = γη̃.

A novel deformation constraint, expressed on the embedding function, and independent of the deformation func-

tion, is formed as follow. The idea is first to differentiate the embedding’s definition, and then to eliminate the

deformation function using its deformation constraint. Differentiating the embedding’s definition (1) gives:

Jϕ = (JΨ ◦∆) J∆.

Multiplying each side of the equation to the left by its transpose -so as to use the deformation constraint on Ψ- leads

to:

J>ϕJϕ = J>∆ (JΨ ◦∆)> (JΨ ◦∆) J∆ = (β ◦∆) J>∆J∆ = νJ>∆J∆,
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with ν
def
= β ◦ ∆, ν ∈ C1(P,R+∗) being a local scaling function (known in the isometric case and unknown in the

conformal case) and J>∆J∆ ∈ C0(P, S) is a known function depending on the chosen parameterization. The two SfT

problems at hand can thus be rewritten as:

IsoPSfT and ConPSfT – Formulation with the deformed embedding ϕ

Find

 ϕ ∈ C1(P,R3)[
ν ∈ C1(P,R+∗)

] s.t.

 Π ◦ ϕ = η (reprojection constraint)

J>ϕJϕ = νJ>∆J∆ (deformation constraint)
(5)

Note: the local scaling function ν is given by ν = 1 for IsoPSfT and is unknown for ConPSfT.

3.2 Formulation with the Depth Function

From the formulation with the embedding function, we can now introduce the depth function. This can be done quite

directly, using the projection function. Our reformulation combines the reprojection and deformation constraints.

This is done by introducing the first-order reprojection constraint, which, importantly, increases the number of

independent PDEs and facilitates the derivation of local solutions.

Using the definition (2) of the projection function, the reprojection constraint can be simply rewritten as:

ϕ = γη̃. (6)

Using the depth function γ as unknown thus enforces the reprojection constraint exactly, and our goal then becomes

to find constraints on γ from the deformation constraint:

J>ϕJϕ = νJ>∆J∆. (7)

This requires us to introduce the first-order reprojection constraint, obtained by differentiating the reprojection

constraint (6):

Jϕ = η̃Jγ + γJη̃. (8)

We note that:

Jη̃ =

Jη

0 0

 , J>η̃ Jη̃ = J>η Jη and η̃>Jη̃ = η>Jη.

Substituting Jϕ from equation (8) into the deformation constraint (7) we obtain the Perspective SfT PDE:

‖η̃‖22J>γ Jγ + γ2J>η Jη + γ
(
J>γ η

>Jη + J>η ηJγ

)
= νJ>∆J∆. (9)
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It leads to the following new formulation:

IsoPSfT and ConPSfT – Formulation with the depth function γ

Find

 γ ∈ C1(P,R+∗)[
ν ∈ C1(P,R+∗)

] s.t. ‖η̃‖22J>γ Jγ + γ2J>η Jη + γ
(
J>γ η

>Jη + J>η ηJγ

)
= νJ>∆J∆ (10)

Note: the local scaling function ν is given by ν = 1 for IsoPSfT and is unknown for ConPSfT.

This new formulation is based on a first-order quadratic matrix-valued PDE in γ forming a system of three

PDEs. In the case of IsoPSfT, this formulation suggests the existence of a local solution, obtained by neglecting the

relationship between γ and Jγ : there are three local unknowns -one for γ and two for Jγ- and three PDEs. However,

the system involves nonlinear terms in J>γ Jγ , γ2 and γJγ . Our solution involves a change of variable required to

cancel the term γJγ . In the case of ConPSfT, this formulation suggests that no local solution can be found: there

are four local unknowns -one for γ, two for Jγ and one for ν- and three PDEs. However, we show that with a second

change of variable, a formulation with no zeroth-order term in the unknown function can be obtained, and solved

locally for the unknown function’s first-order partial derivatives. This final formulation shows that in ConPSfT there

is locally no difference between depth and rescaling.

4 First Change of Variable

The goal of this first change of variable is to eliminate the mixed terms, the products between the unknown function

and its first-order derivatives. The resulting formulation is still nonlinear, but can be locally solved analytically. The

new variable is a function θ which we define shortly. We first need to introduce ε
def
= ‖η̃‖2 ∈ C1(P,R+∗), implying:

Jε =
1

ε
η>Jη and εJε = η>Jη.

Substituting into the Perspective SfT PDE (9) we obtain:

ε2J>γ Jγ + γ2J>η Jη + γ
(
J>γ Jε + J>ε Jγ

)
= νJ>∆J∆.

We now proceed to our first change of variable. We substitute γ for θ ∈ C1(P,R), with:

θ
def
= γε, γ =

θ

ε
and Jγ =

1

ε2
(εJθ − θJε) . (11)
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We note that ε ≥ 1 and thus the change of variable always works. Function θ is defined as the product of the depth

and ε, defined as the norm of η̃, the line of sight3. Therefore, as can be easily verified, θ = ‖ϕ‖2, and may be

interpreted as giving the distance of a surface’s point to the camera centre. We show below that posing Perspective

SfT problems with θ rather than γ allows one to avoid mixed terms involving the product of γ and Jγ . Introducing

θ gives the following rewriting of the Perspective SfT PDE:

1

ε2

(
ε2J>θ Jθ + θ2J>ε Jε − εθ

(
J>θ Jε + J>ε Jθ

))
+
θ2

ε2
J>η Jη +

θ

ε2

(
εJ>θ Jε − θJ>ε Jε + εJ>ε Jθ − θJ>ε Jε

)
= νJ>∆J∆.

Expanding and simplifying this equation leads to:

J>θ Jθ +
1

ε2

(
J>η Jη − J>ε Jε

)
θ2 = νJ>∆J∆.

Replacing ε and Jε by their definition, we finally arrive at:

J>θ Jθ + ξθ2 = νJ>∆J∆ with ξ
def
=

1

‖η̃‖22

(
J>η Jη −

1

‖η̃‖22
J>η ηη

>Jη

)
. (12)

We have that ξ ∈ C0(P, S). First, because η ∈ C1(P,R2) and ‖η̃‖22 ≥ 1, it is clear that ξ ∈ C0(P,R2×2). Second,

lemma 1 given in appendix A shows that ξ(p) ∈ S, for p ∈ P. Equation (12) shows how the distance of the surface’s

points to the camera centre must vary under isometric and conformal deformations to comply with a given warp. It

represents a first-order quadratic PDE, as the original Perspective SfT PDE (9). However, it only depends on J>θ Jθ

and θ2, and is thus now in a shape which can be solved analytically. The new problem formulation is given by:

IsoPSfT and ConPSfT – Formulation with the θ function

Find

 θ ∈ C1(P,R+∗)[
ν ∈ C1(P,R+∗)

] s.t. J>θ Jθ + ξθ2 = νJ>∆J∆ (13)

Note: the local scaling function ν is given by ν = 1 for IsoPSfT and is unknown for ConPSfT.

5 Isometric Solution

Equation (12) gives three constraints; the three unknowns in Jθ and θ2 can thus be solved for at each point indepen-

dently. This last point is important to facilitate a fast implementation of the solution on a parallel architecture.

3We may interpret η̃ ∝ ϕ as giving the coordinates of a point’s line of sight.



6 Second Change of Variable 13

5.1 Well-Posedness

Theorem 1 (Space of solutions for the IsoPSfT problem). The IsoPSfT problem (3) has a unique solution.

Proof. We start from formulation (13) of the IsoPSfT problem. For a point p ∈ P, we define u
def
= J>θ (p) ∈ R2×1,

G
def
= ξ(p) ∈ S, z

def
= θ(p)2 > 0 and K

def
= J>∆(p)J∆(p) ∈ S. The PDE at point p is then rewritten as the following

matrix equation:

uu> + zG = K.

We call this equation a rank-1 equation of type 1. Proposition 1 in appendix C shows that there is always a single

solution for z, implying that function θ is uniquely defined.

5.2 Algorithm

We derive our numerical algorithm based on the solution to the rank-1 equation of type 1 given in proposition 1 in

appendix C. In practice we define a set of points A at which the deformed shape is to be reconstructed. This set

depends on the nature of the warp and may thus be dense or sparse. Our algorithm is given in table 1.

B Inputs: warp η, template embedding ∆, point set A ⊂ P

B Outputs: deformed embedding ϕ for points in A

• For p ∈ A set

ϕ(p)←

√√√√λ2

(
J>∆(p)J∆(p)

(
J>η (p)Jη(p)− 1

‖η̃(p)‖22
J>η (p)η(p)η(p)>Jη(p)

)−1
)
η̃(p)

Table 1: Algorithm implementing our analytical solution to IsoPSfT. Each point may be reconstructed
independently of the others. There is no restriction on the point set A ⊂ P, which may result of a sparse or dense
discretization of the template to image registration.

6 Second Change of Variable

Our first change of variable allowed us to solve the IsoPSfT problem analytically. The ConPSfT problem requires

a second change of variable to be solved: because the local scaling function ν is unknown, equation (12) cannot be

solved locally (it gives three constraints and has four unknowns per point, the fourth one being the local scale factor).

We thus substitute θ for µ ∈ C1(P,R) in equation (12), with:

µ
def
= ln θ, θ = exp(µ) and Jθ = exp(µ)Jµ = θJµ. (14)

We note that θ > 0 and thus the change of variable always works. Function µ is the natural logarithm of the distance

between the surface’s points and the camera centre. The fact that Jθ = θJµ is the fundamental property allowing us
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to solve ConPSfT. This allows us to factor θ on the left-hand side of equation (12) as:

J>µ Jµθ
2 + ξθ2 = νJ>∆J∆.

Once θ is factored, we can simply define a new variable ζ, combining the effect of the distance θ and function ν,

essentially accounting for the conformal scale. Importantly, this means that in ConPSfT, the effect caused by the

distance to the camera (translation along the line of sight of a surface path) and the effect caused by conformal

rescaling cannot be distinguished. Defining ζ
def
= ν

θ2
∈ C1(P,R+∗), we arrive at:

J>µ Jµ + ξ = ζJ>∆J∆.

This is a first-order quadratic PDE in Jµ and ζ. This equation indicates how the natural logarithm of the distance

between the surface’s points and the camera centre must vary under conformal deformations to comply with a given

warp. It can be solved locally as it involves three unknowns and three PDEs. However, as we noted, only the

combined effect of depth and conformal scaling can be recovered through function ζ. This suggests that the depth

-and thus ϕ and Ψ- may not be directly recoverable, but require a further processing step of integrating the local

estimates of Jµ to first find µ. This of course introduces ambiguities in the solution.

ConPSfT – Formulation with the µ function

Find

 µ ∈ C1(P,R+∗)

ζ ∈ C1(P,R+∗)
s.t. J>µ Jµ + ξ = ζJ>∆J∆ (15)

7 Conformal Solution

Equation (15) gives three constraints; the three unknowns in Jµ and ζ can thus be solved for at each point indepen-

dently. However, we show below that only the analog of the shape’s normal function in the µ space may be recovered

up to sign at this point, and that integration has to be carried out first to recover the deformed embedding ϕ.

7.1 Well-Posedness

Theorem 2 (Space of solutions for the ConPSfT problem). The ConPSfT problem (4) has a set of discrete solutions

(at least two), each defined up to a global scale.

Proof. We start from formulation (15) of the ConPSfT problem. For a point p ∈ P, we define u
def
= J>µ (p) ∈ R2×1,

G
def
= J>∆(p)J∆(p) ∈ S, z

def
= ζ(p) > 0 and K

def
= ξ(p) ∈ S. The PDE at point p is thus rewritten as the following
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matrix equation:

−uu> + zG = K.

We call this equation a rank-1 equation of type 2. Proposition 2 in appendix D shows that there is always a single

solution for z and two solutions for u. Because µ ∈ C1(P,R), Jµ ∈ C0(P,R1×2). Therefore, each of the two entries of

Jµ may change sign only at those points where Jµ = 0>. In other words, the entries of Jµ have a constant sign over

connected components in the 2D parameterization separated by closed curves (or cutting the domain’s boundary)

defined by Jµ = 0>. The number b of such connected components depends on the deformed shape, and is usually

small. The number of possible sign flips in the entries of Jµ, and thus of possible solutions to ConPSfT, is n = 2b ≥ 2.

Each solution is defined up to an unknown global scale. This is because µ is obtained up to an unknown additive

constant a, that carries over as a multiplicative factor to θ as exp(a + µ) = exp(a) exp(µ) = exp(a)θ and to γ as

exp(a) θε = exp(a)γ.

There are large differences in the number of solutions established in theorems 1 and 2, despite the strong sim-

ilarities of the IsoPSfT and ConPSfT problems. These differences stem from the fact that in the conformal case,

only the shape’s gradient (transposed to some space with the two changes of variables) can be locally computed up

to a two-fold ambiguity, because depth and conformal scale cannot be locally distinguished. In the isometric case

however, while the same gradient may be computed, it is discarded since the depths (also transposed to some space

with the first change of variable) can be locally computed uniquely.

7.2 Sign Ambiguities

Following the above discussion, sign ambiguities arise at the boundary of connected components where Jµ = 0>.

These boundaries are curves made of conformal singular points. The surface’s normal at these points passes at the

camera centre, as we prove in appendix E. This is also equivalent to having λ1(A) = λ2(A) and thus A ∝ I in the

proof of proposition 2 in appendix D. In other words, this happens for J>∆J∆ ∝ ξ. It is then easy to show that

conformal reparameterization does not change those singular points. Let τ
def
= ‖Jµ‖2, τ ∈ C0(P,R+). Connected

components where the sign of both entries of Jµ does not change simultaneously can thus be theoretically found

using the fact that τ = 0 at their boundaries and τ > 0 in their interior.

7.3 Algorithm

Our algorithm has three key steps. It is summarized in table 2.

Finding Jµ up to sign. This is a straightforward step, that we implement based on the solution to the rank-1

equation of type 2 given in proposition 2 in appendix D. In practice, we evaluate the solution independently at each
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B Inputs: warp η, template embedding ∆, point set B ⊂ P

B Outputs: number of solutions n, deformed embeddings ϕi, i = 1, . . . , n for points in B

• Find Jµ up to sign

For p ∈ B

Compute the Cholesky factor V ∈ R2×2 such that J>∆(p)J∆(p) = VV>

Set A← 1
‖η̃(p)‖22

V−1
(
J>η (p)Jη(p)− 1

‖η̃(p)‖22
J>η (p)η(p)η(p)>Jη(p)

)
V−>

Set Jµ(p)←
√
λ1(A)− λ2(A)Vε2(A) (where ε2(A) is sign-normalized)

• Find connected components C1, . . . , Cb

Instantiate function τ̂ ∈ C2(P,R+) by fitting a Thin-Plate Spline to {‖Jµ(p)‖2}, p ∈ B

Use sign(∇uτ̂) and sign(∇v τ̂) to label connected components in U(p) and V(p), p ∈ B

Merge components whose boundary does not satisfy λ1

(
∂2τ̂
∂p2

)
≥ 0 in U and V

Blend U and V to C by keeping all possible components

Suppress components in C whose support is smaller than 10 px

Set b← size(C) and n← 2b

• Integrate each connected component and combine them to form ϕi, i = 1, . . . , n

For s = 1, . . . , b

Integrate Jµ in the least-squares sense to find µs(p), p ∈ Cs

For p ∈ Cs, Set θs(p)← exp(µs(p))

For i = 1, . . . , n

Set {δ1, . . . , δb} ← bin(i− 1) (where bin forms the binary representation of an integer)

Compute d2, . . . , db so that {d1θ
δ1
1

1
ε η̃, . . . , dbθ

δb
b

1
ε η̃} best agree in the least-squares sense, with d1 = 1

For p ∈ B, Set ϕi(p)← dsθ
δs
s (p) 1

ε(p) η̃(p) for p ∈ Cs

Table 2: Algorithm implementing our analytical solution to ConPSfT. While Jµ may be computed up to
sign at each point independently, computing the embedding ϕ requires integrating over the whole surface. Here
B ⊂ P is a dense discretization for which we use the pixel grid in practice.
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point of a dense set B ⊂ P. This solution involves computing the least eigenvector ε2(A) of some matrix A ∈ S.

The sign of this eigenvector is undetermined and we arbitrarily sign-normalize it by ensuring that its element with

largest magnitude is positive, to avoid discontinuities.

Finding connected components C = {C1, . . . , Cb} with non-zero τ . This part of our algorithm is illustrated

in figure 2. As we saw in §7.2, the theorerical criterion which characterizes the boundary between two neighboring

components in P is τ = 0, where τ is a known non-negative function. In practice this theoretical criterion is never

exactly met due to noise. Our first attempt to overcome this issue has been to define a threshold c ∈ R+, with the

hope that τ ≤ c would allow us to detect the boundaries. In practice, this does not work: the criterion turns out to

be extremely sensitive to the value of the threshold c, for which a typical value does not seem to exist. We now show

how the theoretical criterion τ = 0 can be relaxed to a practical criterion. The relaxation handles noise, does not

require one to define a threshold, and guarantees that a superset of the true connected components is found. We first

reconstruct a continuous version of τ called τ̂ . For that purpose, we sample τ at a dense grid of points and form τ̂

as the Thin-Plate Spline interpolant (Duchon, 1976). The theoretical criterion simply becomes τ̂ = 0. Because τ̂ is a

continuous differentiable and non-negative function, τ̂ = 0 corresponds to valleys of the τ̂ function, where τ̂ reaches

zero perfectly. In the presence of noise, this is this last part of the criterion which is not met. We thus make a first

step of relaxation by detecting all the valleys of the τ̂ function, including valleys for which τ̂ > 0. Mathematically,

we have that τ̂ = 0 implies ∇τ̂ = 0, λ1(H) ≥ 0 and λ2(H) = 0, where H def
= ∂2τ̂

∂p2 . The first two conditions, ∇τ̂ = 0

and λ1(H) ≥ 0, characterize valleys. The third condition, λ2(H) = 0, comes from the fact that the curvature of τ̂

must vanish along the valley representing the boundary. This, again, is a theoretical condition, which is not met

in practice: it implies that τ̂ has a strictly constant value along the boundary which, in the presence of noise, does

obviously not happen. Our second step of relaxation is to simply ignore this constraint, in order to avoid defining

a threshold on the value of λ2(H). It means that the value of τ̂ may oscillate along the boundary, which is exactly

what is expected to happen in the presence of noise.

In practice, our criterion for detecting the boundaries of connected components is thus ∇τ̂ = 0 and λ1(H) ≥ 0.

We implement it as follows. The condition ∇τ̂ = 0 is equivalent to ∇uτ̂ = 0 and ∇v τ̂ = 0. We use each of these two

equations to define two sets of components, namely U and V, using respectively sign(∇uτ̂) and sign(∇v τ̂) to define

boundaries. We then merge regions in U and V whose boundary is a local maximum by checking λ1(H) ≤ 0. Finally,

we blend U and V in a single component set C by keeping all possible components. Components with small support

are merged with their neighbours, and we set the number of components to b← size(C). This algorithm ensures that

P = ∪bs=1Cs. In practice, we have found that it does a very good job at finding the connected components.

Integrating and combining connected components. Let δs ∈ {−1; 1} be a constant but unknown multiplica-

tive factor of Jµ on Cs, representing the two-fold sign ambiguity. It is clear that because there are b connected
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2D parameterization

𝒞1

• True 𝑏 =3 connected components
• True 𝑛 = 2𝑏 = 8 shape solutions 

True boundaries

 𝜏 in practice (noise-contaminated case)

 𝜏 in theory (noise-free case)

Estimated boundaries along slice 𝒦

Slice 𝒦

Slice 𝒦

Values of  𝜏
along slice 𝒦

2D parameterization

𝒞2

• Estimated 𝑏 = 4 connected components
• Estimated 𝑛 = 2𝑏 = 16 shape solutions 

Estimated boundaries

Slice 𝒦

True boundaries along slice 𝒦

 𝜏 = 0

∇  𝜏 = 𝟎, 𝜆1
𝜕2  𝜏

𝜕𝐩2
≥ 0

Theoretical criterion

Practical criterion

a

c

b

𝒞2 𝒞3

𝒞1

𝒞3
𝒞4

𝒞1 𝒞2 𝒞3

𝒞2𝒞1 𝒞3 𝒞4

Figure 2: Finding connected components in ConPSfT. (a) shows a case where the 2D parameterization is
theoretically divided up in 3 connected components, leading to 8 solutions. (b) shows an example of result on this
case, where our practical criterion leads to the detection of 4 connected components, and thus to 16 solutions. Our
algorithm based on this criterion guarantees that the 3 true connected components are, up to noise, included into
the 4 detected ones. (c) uses a 1D slice of the 2D parameterization to illustrate the theoretical and practical criteria.
We observe that the theoretical criterion τ̂ = 0, which would apply well to a noise-free estimate of τ̂ (in dashed red),
cannot be used on a noise-contaminated estimate of τ̂ (in full blue). It would not indeed find any of the connected
components. Numerical tests also showed that one cannot find a constant threshold on the value of τ̂ to cope with

noise. Our practical criterion ∇τ̂ = 0 and λ1

(
∂2τ̂
∂p2

)
≥ 0 is a relaxation of the theoretical criterion, which does not

involve setting a threshold value, and still applies well to noise-contamined data. Our experimental results show the
number of detected connected components is always small, being typically b = 3.
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components this leaves n = 2b possible combinations and as many solutions to ϕ. A straightforward way to compute

all solutions would be to loop through all of the n possible sign combinations, and solve n times for ϕ. Solving for ϕ

from Jµ requires one to first integrate Jµ to find µ and then undo the two changes of variables. A computationally

much faster strategy is to first solve for ϕ̄s, defined as the restriction of ϕ to component Cs ⊂ P, for s = 1, . . . , b, and

combine these component-wise estimates a posteriori. The cost of this is basically equivalent to the cost of solving

for ϕ for only one sign configuration, and is therefore n times faster than the straightforward approach. This is

because assembling the component-wise estimates for some sign configuration requires one to solve for only b − 1

scalars through simple linear least-squares. This step is illustrated in figure 3, and explained in detail below.

Let µs be the restriction of µ to component Cs ⊂ P. We obtain µs up to an additive constant cs ∈ R by integrating

Jµ on Cs in the least-squares sense, by solving arg minµs
∫
Cs ‖Jµs − Jµ‖22 dp. This is the most expensive part of the

computation, which is solved only once for each component. We thus end up with function δsµs + cs on component

Cs. Using the second change of variable (14) we define θs
def
= exp(µs) and ds

def
= exp(cs), which combine as dsθ

δs
s .

Using the first change of variable (11) and then the reprojection constraint (6), we arrive at ϕ̄s = dsθ
δs
s

1
ε η̃. We

fix the arbitrary global scale by setting d1 = 1. For each of the n possible sign configurations we then find the

scales d2, . . . , db which maximize the agreement of the component-wise embeddings at the components’ boundaries.

In practice, we solve the following linear least-squares problem:

arg min
d2,...,db

b∑
s=1

b∑
s′=1
s′ 6=s

∫
Cs∩Cs′

‖dsϕ̄s − ds′ϕ̄s′‖22dp with d1 = 1.

This part is computationally cheap since b is usually small. It is solved n times to compute the n possible solutions

ϕ1, . . . , ϕn for all combinations of the signs δ1, . . . , δb.

8 Experimental Results

We here compare our algorithms with existing zeroth-order algorithms. We use simulated and real data.

8.1 Compared Algorithms

The compared algorithms are listed below. The first batch of algorithms are zeroth-order convex initialization

algorithms based on the inextensibility relaxation and the maximum depth heuristic:

• PeIso an iterative solution tightening upper bounds on depth from point pairs (Perriollat et al., 2011)

• SaIso a convex solution (Salzmann and Fua, 2009)

• BrIso an SOCP solution (Brunet et al., 2010)
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2D parameterization

• Estimated 𝑏 = 4 connected components
• Estimated 𝑛 = 2𝑏 = 16 shape solutions 

Estimated boundaries

True 3D 
deformed surface

2D image

𝒞2

𝒞1

𝒞3

𝒞4

Two solutions for  𝜑1, 
defined up to scale

Figure 3: Combining the connected components in ConPSfT. The left part shows an example of 4 estimated
connected components. The right part illustrates, on component C1, that after integration, the restriction ϕ̄1 of the
embedding function ϕ to C1, is recovered up to a two-fold ambiguity and up to scale. The 16 up to scale solutions
for the embedding ϕ are obtained by forming all possible configurations of two-fold component-wise ambiguities,
and computing the best scale for each component so that the recovered embeddings agree as best possible along the
components’ boundaries, here the blue curves between C1/C2, C2/C3, and C3/C4.

The second batch of algorithms are the proposed first-order analytical initialization algorithms:

• AnIso the isometric solution with algorithm in table 1

• AnCon the conformal solution with algorithm in table 2

Finally, we have a gold standard, the non-analytical and non-convex solution minimizing reprojection error of a

smooth surface:

• ReIso isometric refinement (Brunet et al., 2010)

• ReCon an extension of ReIso to conformal refinement

8.2 Simulated Data

Simulation setup. We simulate a calibrated pin-hole camera with intrinsic parameters diag(500, 500, 1) (where

500 is thus the focal length in px) with VGA image resolution (640 × 480 px). This camera observes a deformable

surface whose template has size 100× 100 mm. We randomly draw m points on the surface and create their image,

with default value m = 50, to which we add centred Gaussian noise with variance σ px, with default value σ = 1 px.

The simulated surface is located approximately 1 m away from the camera. We investigate two kinds of deformations:

isometric and conformal. Examples are shown in figure 4. In the former case we use a paper model (Perriollat and
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Bartoli, 2013) to create an isometric embedding of the data points lying on the 2D square template. In the latter

case we apply a 2D conformal deformation of the template prior to an isometric embedding. This deformation

is generated by changing the template’s rectangular boundary with conformal interpolation inside it. The target

boundary is obtained by blending the original template boundary with a circle. The blending is controlled by a

parameter w ∈ R with 0 ≤ w ≤ 1 which allows us to choose the amount of conformity in the generated surface:

w = 0 creates an isometric deformation while w = 1 creates a highly conformal deformation. The default value

is chosen as w = 0.6. For our methods AnIso and AnCon, which require a warp as input, we fit a Thin-Plate

Spline warp using a standard method (Bookstein, 1989). For all experiments, we measure the 3D error in mm as

the average distance between the simulated and the reconstructed 3D points. For each configuration we keep the

average over 100 trials. For conformal surfaces, because the absolute scale cannot be reconstructed, we proceed to a

best-fit least-squares scale adjustment before computing the 3D error. We use the lowest 3D error over the multiple

solutions returned by AnCon. To keep the comparison fair, we also proceed to this scale adjustment on the results

of the isometric algorithms, when used on conformal surfaces.

Isometric deformations Conformal deformations

Figure 4: Examples of simulated surfaces. The four isometric deformation examples are all different, while the
conformal ones illustrate the effect of the parameter w controlling the amount of conformity, with s chosen, from left
to right, as 0, 0.25, 0.5 and 0.75.
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Figure 5: Experimental results using simulated isometric deformations – noise and number of point
correspondences. The 3D error in mm is shown as a function of noise on the point correspondences and of the
number of point correspondences for simulated isometric deformations and isometric SfT methods.
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Isometric deformations. Results for isometric deformations and isometric methods are shown in figure 5. The

accuracy of all methods degrades when noise increases. In the absence of noise, SaIso rivals ReIso, both achieving

a very small error. The other methods’ accurary is within 5 mm. For a moderate amount of noise, namely less than

0.25 px, all methods provide an accurate shape, with 3D errors lower than 5 mm, and SaIso quickly degrading. When

noise increases beyond 0.5 px, the accuracy of BrIso significantly degrades. The same phenomenon can be observed

for PeIso when noise approaches 1 px. Eventually, BrIso, SaIso and PeIso end up with large errors for a 2 px

noise, of several dozens of mm. We observe than AnIso does not have a breakdown in accuracy as noise increases,

simply degrading linearly. It ends up with a 3D error of less than 10 mm for 2 px noise. It is clear that ReIso gives

a significant improvement to its initial solution, showing the same behaviour as AnIso, but reaching a 3D error of

less than 5 mm for 2 px noise. The accuracy of BrIso and PeIso decreases when the number of correspondences

increases. This is due to their use of a neighborhood including a fixed number of points to express the inextensibility

constraints. When the point density increases, the neighborhood size shrinks, thereby weakening the constraints.

The accuracy of SaIso degrades up to about 50 point correspondences, peaking at a 3D error of about 18 mm,

and then steadily improves, with a 3D error smaller than 10 mm for more than about 130 point correspondences.

Finally, we observe that the accuracy of AnIso and ReIso is consistently improved by increasing the number of

point correspondences. Both methods seem to stabilize at about 4 mm and 1 mm in 3D error, respectively.
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Figure 6: Experimental results using simulated conformal deformations – noise and number of point
correspondences. The 3D error in mm is shown as a function of noise on the point correspondences and of the
number of point correspondences for simulated conformal deformations and isometric and conformal SfT methods.

Conformal deformations. Results for conformal deformations and isometric and conformal methods are shown in

figure 6. As expected, conformal methods perform much better than isometric methods. The accuracy of all methods

degrades when noise increases. For less than 1 px noise, BrIso, PeIso and SaIso are more accurate than AnIso and

ReIso. The first three however quickly degrade beyond 1 px noise while the last two degrade steadily and linearly.

Because the simulated surface is here not isometric, relaxing the isometric constraint as BrIso, PeIso and SaIso do
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performs better than enforcing it more strongly, as AnIso and ReIso do. However, as noise increases, the isometric

constraint becomes useful to resolve the surface, causing the crossover between the two groups of methods. The two

conformal methods AnCon and ReCon are indistinguishable. Their 3D error is around 2 mm for zero noise, and

linearly increases to 3 mm for 2 px noise. When the number of point correspondences increases, we observe the same

behaviour as in the isometric case, with the difference that SaIso performs slightly better than ReIso, stabilizing

at a 4 mm 3D error. Conformal methods still perform very well, and stabilize at a 3 mm 3D error beyond 30 point

correspondences.
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Figure 7: Experimental results using simulated conformal deformations – amount of conformity. (left)
3D error in mm is shown as a function of the amount of conformity for simulated conformal surfaces and isometric
and conformal SfT methods. (right) Non-conformity due to surface discretization is shown as the average angle
variation (in degrees) of the simulated surfaces as a function of conformity.

More results for conformal deformations and isometric and conformal methods are shown in figure 7. The

accuracy of all methods degrade with the amount of conformity. While AnIso and ReIso perform better than the

other isometric methods, they degrade quicker. Again, this is explained by the fact that they enforce isometry as

opposed to relaxing it as BrIso, PeIso and SaIso do. Conformal methods perform much better than isometric

methods. However, their accuracy linearly degrades with the amount of conformity. This may seem counterintuitive,

and the reason has to be found in the discrete mesh used to simulate the surface. Because of discretization, conformity

is only approximated, and the larger the amount of conformity, the stronger the approximation. We quantify this

effect by computing the average angle difference in degrees between the original and conformally deformed meshes.

This can be interpreted as a deviation from conformity, and is clearly visible in figure 7.

Finally, we monitor the number of solutions returned by AnCon, as a function of the number of correspondences

and noise level, and give its average and standard deviation in the next table:
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Noise σ (px)
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m 10 6.68± 3.13 7.38± 3.26 8.30± 5.69 8.22± 4.87 8.72± 5.39

50 8.08± 1.26 8.16± 1.12 8.44± 1.95 9.12± 3.10 10.44± 5.77

100 8.00± 0.00 8.00± 0.00 8.16± 1.12 8.92± 3.29 8.60± 2.22

200 8.00± 0.00 8.00± 0.00 8.08± 0.80 8.08± 0.80 8.48± 1.90

We observe that the typical number of solutions found is n = 8, meaning that the typical number of connected

components is b = 3. Logically, the standard deviation increases with noise and decreases with the number of

correspondences.

Influence of the warp’s regularization weight. Our methods AnIso and AnCon rely on a warp -here a

Thin-Plate Spline- computed to smoothly interpolate the point correspondences. It is standard in warp computation

to balance a data term and a regularizer (Bookstein, 1989). The former measures how well the warp interpolates

the point correspondences using the transfer error (the sum of squared distances between the points observed in

the image, and the points transferred from the template). The regularizer measures how smooth is the warp using

the integral of the Frobenius norm of its second derivatives. Both terms are linear least-squares and can be easily

minimized. However, their combination is a tradeoff, governed by the regularization weight, a positive factor applied

to the regularizer. Choosing the regularization weight too low causes overfitting, while choosing it too high causes

underfitting. Because the warp is the main input to our analytical methods, we monitore the influence of the

regularization weight on the reconstruction 3D error for the default isometric and conformal simulation setups. Our

results are shown in figure 8. We observe that the empirically optimal regularization weight is 1, for both AnIso

on isometric deformations and AnCon on conformal deformations. A small improvement is observed for AnIso on

conformal deformations by choosing 103 for the regularization weight. More importantly, we observe that there is

a substantial tolerance in choosing the regularization weight: AnIso and AnCon are both stable and give close to

optimal results for a regularization weight chosen between 10−2 and 104. In practice we use the value of 1 in all our

experiments.

Computation time. We give statistics on the computation time required by the different methods for a varying

number of points in table 3. These times are measured with Matlab implementations, running on an Intel Core i7-

3770 CPU at 3.40GHz. We can clearly see that the two refinement algorithms, ReIso and ReCon, are much slower

that all the other algorithms, taking on average between 20 and 25 seconds per run, independently of the number

of points. This is due to the fact that they model the surface densely, so as to globally enforce the isometric and

conformal deformation constraints, respectively. In the initialization algorithms, SaIso and our conformal algorithm

AnCon reach the same order of running time, approximately 1.5 seconds, and are quite independent of the number
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Figure 8: Experimental results using simulated isometric and conformal deformations – regularization
weight. 3D error in mm is shown as a function of the regularization weight for simulated isometric and conformal
deformations. The vertical bars represent the standard deviation.

of points. There is then a group of two isometric initialization algorithms, BrIso and PeIso, with run times of

0.25 to 1.83 seconds for the former, and 0.14 to 0.22 seconds for the latter, both increasing with the number of

points. Finally, the fastest algorithm is AnIso. We add the computation time required to compute the input warp,

so as to make the comparison fair with the other algorithms, requiring, to the exception of AnCon, only point

correspondences. This results in run times between 1.2× 10−3 to 1.5× 10−2 seconds on average, and increasing with

the number of points. Our algorithm AnIso is thus much faster than the other isometric initialization algorithms,

namely, two orders of magnitude faster than BrIso and PeIso, and between two and three orders of magnitude

faster than SaIso.

Average computation time (ms)

Number of points

10 50 100 200
Method

BrIso 245.34 462.71 707.05 1834.16
PeIso 145.80 181.97 195.03 224.51
SaIso 1426.19 1539.45 1412.17 1573.00
AnIso 0.26 1.49 2.90 5.14
ReIso 21895.45 24424.24 24346.94 22208.08
AnCon 1525.79 1775.88 1736.10 1439.95
ReCon 19820.33 22207.36 22118.35 19927.76

Warp 0.96 2.60 4.89 10.07

Table 3: Computation time. Average computation time for all methods for a varying number of points, in ms.
The computation time of warp estimation from the point correspondences is also given on the last row.
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8.3 Real Data

We show algorithm comparison results on three datasets. Each dataset is different of the others in terms of the

observed surface characteristics, and it thus important on its own. For each dataset, keypoint correspondences are

established using a specific method. In all cases, a Thin-Plate Spline warp is then fitted (Bookstein, 1989).

8.3.1 CVLab’s Paper Dataset

This dataset is provided by the CVLab (Varol et al., 2012). It is captured with the Kinect sensor, providing some

groundtruth measurement of the shape for every frame, and allowing one to monitor 3D error. It shows a piece of

paper being gently bent in front of the camera without occlusions. Results are shown in figure 9.
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Figure 9: Experimental results using real isometric deformations – CVLab’s paper dataset. (left) 3D
error in mm with respect to groundtruth is shown for all frames for isometric SfT methods. Note that the error is
off the y axis for PeIso. (right) The original images and the estimated warp.

The template is defined from the first frame of the dataset, where the surface is shown approximately planar.

Note that because the surface’s groundtruth shape is provided, we could use any other frame and build a 3D template

for our algorithms, though this would not allow us to run PeIso and BrIso, which both require a flat template. We

clean the point correspondences provided with the images which contain false correspondences with our robust warp

estimation method (Pizarro and Bartoli, 2012). On average, 1026 point correspondences per image are kept. The

3D error is computed as the average distance between these points on the groundtruth shape and their reconstructed

positions. The following table gives 3D error statistics extracted from all frames for the paper dataset:

Method BrIso PeIso SaIso AnIso ReIso

Average 3D error (mm) 9.29 92.48 6.17 6.47 3.79

Standard deviation (mm) 8.50 51.70 4.95 2.44 1.22

We observe that PeIso fails on every images of this dataset. BrIso gives results which reach the same accuracy as

SaIso, AnIso and ReIso though it fails on some images, degrading its average 3D error and its general reliability.
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The three other isometric methods –SaIso, AnIso and ReIso– all give sensible results. We observe that while the

average 3D errors for SaIso and AnIso are very similar, and slightly better for SaIso, AnIso has approximately

half the standard deviation of SaIso, and is thus the best initialization method. This is also clearly visible on the

corresponding 3D error graph. Finally, we observe that ReIso has a significantly lower 3D error, and approximately

half the standard deviation of AnIso.

8.3.2 The Cushion Dataset

We propose this new dataset which uses a 3D template of an object undergoing close to isometric deformations. We

build the 3D template using dense SfM from multiple images of a cushion shown in figure 10. Specifically, we use

the commercial software Photoscan. We keep both the reconstructed 3D template and one of the input images so

as to be able to easily match a deformed input image against the template. We repeat this procedure for three

Figure 10: Experimental results using real isometric deformations – the cushion dataset, construction
of the template. The left part shows some of the 20 images we use to reconstruct the 3D template shown on the
right part with SfM.

Deformation 1 Deformation 2 Deformation 3

336 keypoint correspondences 1126 keypoint correspondences 210 keypoint correspondences

17 images 16 images 16 images

Figure 11: Experimental results using real isometric deformations – the cushion dataset, input images
and correspondences. (top) A representative image for each of the three deformations is shown, overlaid with the
automatically established keypoint correspondences to a template image, used as the flattened template. (bottom)
Each deformation is photographed from 17, 16 and 16 viewpoints respectively, giving a total of 49 differents images.

sets of isometric deformations of the cushion. This way, we obtain groundtruth using dense SfM, and test isometric
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SfT procedures using only one of the input frames while being able to measure 3D error. Concretely, a total of 49

images is available, and we use all of them in turn to test SfT and to be able to report statistical results. Some

selected of these inputs images are shown in figure 11. We establish point correspondences automatically, using

SIFT (Lowe, 2004) followed by our robust correspondence filtering method (Pizarro and Bartoli, 2012). These are

shown in figure 11 for three selected images. The computed image warps are shown in figure 12 for the same three

images. We then proceed to apply the reconstruction algorithms. For our methods, the template image is here used

as a flattening of the template. This is possible since our algorithm can use any type of flattening, and not only

conformal flattening. Each or several of the images used to reconstruct the template by dense SfM, and thus having

a depth associated to each pixel, can therefore be used as a flattened template, provided they together cover all parts

of the object’s surface. The 3D error is computed as the average distance between the groundtruth position of these

point correspondences previously obtained by dense SfM, and their reconstructed positions. We run three methods

on this dataset: SaIso, AnIso and ReIso. The other methods, PeIso and BrIso, only work for a flat template,

and could thus not be applied on the cushion dataset.

Template image Deformation 1 Deformation 2 Deformation 3

Figure 12: Experimental results using real isometric deformations – the cushion dataset, the computed
image warps. (right) A representative image for each of the three deformations is shown overlaid with a grid
representing the warp to the template image (left) computed from keypoint correspondences. For deformation 3,
there are no correspondences at the bottom of the cushion. In this area, the warp is thus controlled by the smoothing
term in the warp estimation method (Bookstein, 1989).

Qualitative and quantitative results are shown in figures 13, 14 and 15, for the three deformations and the three

compared methods, as well as groundtruth. The 3D models’ snapshots are generated from the same set of viewpoints

to allow one to easily assess their visual similarity. The visual difference between groundtruth and the three compared

methods is very small, and indistinguishable in some cases and for some viewpoints. Quantitatively, we observe that

SaIso and AnIso give very similar results, SaIso being more accurate for Deformation 1, and less accurate for

Deformation 2 and Deformation 3. We also observe that ReIso gives a significant reduction of the 3D error.

8.3.3 The Balloon Dataset

We propose this new dataset which uses a 3D template of an object undergoing close to conformal deformations. We

build the 3D template by fitting a sphere to a set of points obtained using SfM from multiple images of a balloon

shown in figure 16. We then gently deform the balloon by pressing onto it, and track features using KLT (Shi and
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Figure 13: Experimental results using real isometric deformations – the cushion dataset, the recon-
structed 3D models for Deformation 1. The 3D error is computed with respect to SfM, which is here the
groundtruth, for 17 images.
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Figure 14: Experimental results using real isometric deformations – the cushion dataset, the recon-
structed 3D models for Deformation 2. The 3D error is computed with respect to SfM, which is here the
groundtruth, for 16 images.
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Figure 15: Experimental results using real isometric deformations – the cushion dataset, the recon-
structed 3D models for Deformation 3. The 3D error is computed with respect to SfM, which is here the
groundtruth, for 16 images.

Figure 16: Experimental results using real conformal deformations – the balloon dataset, construction
of the template. The left part shows some of the 8 images we used to reconstruct the 3D template shown on the
right part with SfM.
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Tomasi, 1994) through the deformation video. This way, 262 points are successfully tracked. We finally hold the

balloon still, and compute groundtruth for the end of the video using dense SfM. The point correspondences and

the estimated warp are shown in figure 17. We run five methods on this dataset: the two conformal ones AnCon

and ReCon, and the three isometric ones which handle a 3D template, SaIso, AnIso and ReIso. The 3D error is

computed as the average distance to the point correspondences’ groundtruth position previously obtained by dense

SfM. The 3D error computation is combined with least-squares recovery of the 3D reconstruction’s scale. This is

because in conformal deformations the scale is not recoverable. The conformal method returns eight solutions; we

keep the one closest to groundtruth.

Figure 17: Experimental results using real conformal deformations – the balloon dataset, the input
image. (left) The input image is shown overlaid with automatically established point correspondences to the template
image, used as the flattened template. (right) The corresponding image warp, represented by a grid.
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3D error −→ 5.0 mm 21.5 mm 7.1 mm 3.8 mm 3.7 mm

Figure 18: Experimental results using real conformal deformations – the balloon dataset, the recon-
structed 3D models. The 3D error is computed with respect to SfM, which is here the groundtruth.

Qualitative and quantitative results are shown in figure 18 for the five compared methods, as well as groundtruth.

As for the cushion, the snapshots are generated from the same set of viewpoints. There are important discrepancies

between the different methods, both visually and in terms of 3D error. It is visually clear that isometric methods fail,
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while both conformal methods give a satisfying result. SaIso reconstructs a large part of the balloon well, which keep

the average 3D error to 5 mm, though it fails on the top and right hand side parts, as can be seen from viewpoints 1

and 2 for the former, and viewpoint 3 for the latter. AnIso largely fails, with a 3D error of 21.5 mm, because of the

isometric local modeling assumption being largely violated. ReIso also fails to recover a satisfying shape, and, as

expected, gives a surface that looks like a cloth sheet wrapped around a solid body, reflecting the fact that it enforces

isometry to a very good extent. AnCon and ReCon give visually indistinguishable results, with a 3D error of 3.8

mm and 3.7 mm respectively. Both shapes are visually very close to groundtruth.

9 Discussion and Conclusion

We have proposed a novel class of methods to tackle the Shape-from-Template problem. They are called first-order

methods since they exploit the first-order differential structure between the template and the input image. This

allowed us to derive proofs of existence and analytical solutions to the problem, while state of the art focused on

zeroth-order relaxations. We showed that for an isometric deformation, depth can be obtained pointwise, while for a

conformal deformation only some shape gradient in a transformed space can be obtained locally, and leads to several

discrete shape solutions after integration.

From the Perspective SfT PDE (9) it seems clear that one may be able to derive constraints on the warp rather

than on the 3D shape. This may be achieved by plugging the analytical solutions back into this equation. This should

lead to some second-order quartic polynomial PDE on the warp giving two constraints per point in the isometric

case, and one constraint per point in the conformal case. While this could be used to improve warp estimation by

including 3D consistency earlier in the process, this also tells us that there is a spare constraint which we have not yet

made use of, and which may be used to extend the framework to more flexible deformations including local shearing

and anisotropy, and thus to general first-order differential deformation priors. The properties, existence of solutions,

ambiguities and algorithms for each possibility will require a dedicated and careful study.

In terms of accuracy, the proposed isometric method competes with the previous best (Salzmann and Fua, 2009)

and outperforms others (Brunet et al., 2010; Perriollat et al., 2011). It is though the lightest method in terms of

computation, simply requiring one to apply an analytical formula at each point. Our experimental results show

that our isometric algorithm runs several orders of magnitude faster than state of the art algorithms. All isometric

methods break down in the presence of an elastic deformation, while the proposed conformal method performs well.

Nonlinear refinement brings substantial improvement to the result of isometric methods but marginal improvement

to the result of our conformal method. Studying this fact from a theoretical standpoint forms an interesting topic for

future work. Generalizing conformal deformations to locally anisotropic deformations would also form an interesting

model to study. Similarly, solving the problem of finding the conformal solution in the discrete set of solutions
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returned by our conformal method using extra visual cues such as shading would be a very interesting and important

topic for future work, which may be tackled with a graph-based formulation.
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A. Sheffer, B. Lévy, M. Mogilnitsky, and A. Bogomyakov. ABF++: Fast and robust angle based flattening. In

siggraph, 2005.

J. Shi and C. Tomasi. Good features to track. In International Conference on Computer Vision and Pattern

Recognition, 1994.

L. Torresani, A. Hertzmann, and C. Bregler. Non-rigid structure-from-motion: Estimating shape and motion with

hierarchical priors. ieee Transactions on Pattern Analysis and Machine Intelligence, 30(5):878–892, May 2008.

A. Varol, M. Salzmann, P. Fua, and R. Urtasun. A constrained latent variable model. In International Conference

on Computer Vision and Pattern Recognition, 2012.

S. Vicente and L. Agapito. Soft inextensibility constraints for template-free non-rigid reconstruction. In European

Conference on Computer Vision, 2012.



References 36

Biographies

Adrien Bartoli has held the position of Professor of Computer Science at Univer-
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d’Auvergne under Dr. Christophe Tilmant and Prof. Adrien Bartoli with a dual

affiliation to the ComSee group at Institut Pascal and ALCoV. His research inter-

ests include 3D reconstruction and its applications in colonoscopy.

Toby Collins received the MSc degree in Artificial Intelligence at the University of

Edinburgh (first in class) in 2005. In 2006 he began his PhD in Computer Vision

at the University of Edinburgh. Since 2009 he has been a full-time research fellow

in ALCoV. His research interests include nonrigid shape analysis, registration and

reconstruction, AR for deformable surfaces and computer assisted intervention.
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A Positive Definiteness of G

Lemma 1. Let W ∈ R2×2, q ∈ R2 and q̃>
def
= (q> 1). Given that det(W) 6= 0 and ‖q‖22 6= 0 we have:

G
def
=

1

‖q̃‖22

(
W>W − 1

‖q̃‖22
W>qq>W

)
∈ S,

and:

G = VV> with V
def
=

1

‖q‖2
1

‖q̃‖22
W>

(
q⊥ q

)‖q̃‖2
1

 ,

where q⊥
def
= (−q2 q1)>.

Proof. For q = 0 we have G = 1
‖q̃‖22

W>W ∈ S. For q 6= 0, the proof is trivial by expanding VV> and checking

equality with G.

B Eigendecomposition of A− λj (A) I for A ∈ S and j ∈ {1, 2}

Lemma 2. The eigenvalues of A− λj (A) I are given by λi (A− λj (A) I) = λi(A)− λj(A), giving:



λ1 (A− λ1 (A) I) = 0

λ2 (A− λ1 (A) I) = λ2 (A)− λ1 (A) ≤ 0

λ1 (A− λ2 (A) I) = λ1 (A)− λ2 (A) ≥ 0

λ2 (A− λ2 (A) I) = 0.

(16)

We also have that:  rank(A− λj (A) I) = 1 if λ1(A) 6= λ2(A)

A− λj (A) I = 0 otherwise,

that A− λ1 (A) I is symmetric negative semi-definite and that A− λ2 (A) I is symmetric positive semi-definite. The

eigenvectors are the same as those of matrix A:

εi(A− λj(A)I) = εi(A) (17)

Proof. We replace A by its eigendecomposition in A− λj(A)I:

A− λj(A)I = P diag(λ1(A), λ2(A)) P> − λj(A)I
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Because PP> = I we can factorize it as:

P diag(λ1(A)− λj(A), λ2(A)− λj(A)) P>,

from which we can trivially derive all the properties given in the lemma.

C Solution of the Rank-1 Equation of Type 1, uu> + zG = K

Proposition 1 (Rank-1 equation, type 1). Let G ∈ S and K ∈ S be two known matrices. The following matrix

equation defines three constraints on three unknowns in u ∈ R2×1 and z ∈ R+:

uu> + zG = K. (18)

Equation (18) has always a unique solution for z and one or two solutions for u. Let V ∈ R2×2 be an upper triangular

full rank matrix obtained from the Cholesky decomposition G = VV> and set A← V−1KV−>. The solution for z

is given by z = λ2(A). The two solutions for u are given by u = ±
√
λ1(A)− λ2(A)Vε1(A). They both vanish if

λ1(A) = λ2(A). We note that λi(A) = λi(KG−1), for i ∈ {1, 2}.

Proof. Because G ∈ S, we can always compute its Cholesky decomposition and rewrite equation (18) as:

dd> + zI = A, (19)

with d
def
= V−1u and A

def
= V−1KV−>, A ∈ S.

Since dd> = A− zI is rank-1 positive semi-definite, equation (19) is equivalent to:

λ1(A− zI) ≥ 0 (20)

λ2(A− zI) = 0. (21)

Equation (21) implies det(A− zI) = 0 and so ∃j ∈ {1, 2}, z = λj(A). Equation (20) and lemma 2 then imply that z

has a single solution given by z = λ2(A).

Multiplying equation (19) by d to the right gives us:

‖d‖22d = (A− zI)d.

This equation implies ‖d‖22 = λ1(A− zI) = λ1(A)− λ2(A). The last equality follows from lemma 2. This equation

also implies d ∝ ε1(A − zI) = ε1(A), where again, the last equality follows from lemma 2. We thus obtain d =
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±
√
λ1(A)− λ2(A)ε1(A) and:

u = ±
√
λ1(A)− λ2(A)Vε1(A).

It means that u has two opposite solutions, except for λ1(A) = λ2(A) for which both solutions vanish.

D Solution of the Rank-1 Equation of Type 2, −uu> + zG = K

Proposition 2 (Rank-1 equation, type 2). Let G ∈ S and K ∈ S be two known matrices. The following matrix

equation defines three constraints on three unknowns in u ∈ R2×1 and z ∈ R+:

−uu> + zG = K. (22)

Equation (18) has always a unique solution for z and one or two solutions for u. Let V ∈ R2×2 be an upper triangular

full rank matrix obtained from the Cholesky decomposition G = VV> and set A← V−1KV−>. The solution for z

is given by z = λ1(A). The two solutions for u are given by u = ±
√
λ1(A)− λ2(A)Vε2(A). They both vanish if

λ1(A) = λ2(A).

Proof. The proof is very similar to the proof of proposition 2. The conditions are now:

λ1(A− zI) = 0 (23)

λ2(A− zI) ≤ 0, (24)

from which we get z = λ1(A) using lemma 2 and u = ±
√
λ1(A)− λ2(A)Vε2(A).

E The Normals of Conformal Singular Points Pass at the Camera Centre

Proof. Let ω ∈ C0(P,R3), ‖ω‖2 = 1 be the surface normal function. Those points whose normal passes at the camera

centre are characterized by:

ω ∝ η̃.

The columns of Jϕ form a basis for the tangent plane, and we can thus rewrite this equation as:

J>ϕω = J>ϕ η̃ = 0.

Because ϕ = γη̃:

Jϕ =

η
1

Jγ + γ

Jη

0 0

 . (25)
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We start from Jµ = 0, which characterizes conformal singular points. Because θ > 0, and Jθ = θJµ, this condition

is equivalent to Jθ = 0 and to:

Jγ = − 1

ε2
θJε = − θ

ε3
η>Jη.

Replacing in equation (25) we obtain:

Jϕ = − θ

ε3

η
1

 η>Jη + γ

Jη

0 0

 =

− θ

ε3

η
1

 η> + γ

 I

0 0


Jη.

Transposing and multiplying to the right by η̃ we obtain:

J>η

(
−θ
ε

+ γ

)
η = J>η (−γ + γ) η = 0,

which completes the proof.


