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Abstract

The Prediction Sum of Squares statistic uses the principle of Leave-One-Out Cross-Validation in Linear

Least Squares regression. It is computationally attractive, as it can be computed non-iteratively. However,

it has limitations: it does not handle coupled measurements, which should be held out simultaneously,

and is specific to the principle of Leave-One-Out, which is known to overfit when used for selecting a

model’s complexity. We propose Multiple-Exclusion PRESS (MEXPRESS), which generalizes PRESS to

coupled measurements and other types of Cross-Validation, while retaining computational efficiency with

the non-iterative MEXPRESS formula. Using MEXPRESS, various strategies to resolve overfitting can

be efficiently implemented. The core principle is to exclude training data too ‘close’ or too ‘similar’ to

the validation data. We show that this allows one to select the number of control points automatically

in three cases: (i) the estimation of linear fractional warps for dense image registration from point

correspondences, (ii) surface reconstruction from a dense depth-map obtained by a depth sensor and (iii)

surface reconstruction from a sparse point cloud obtained by Shape-from-Template.
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1 Introduction

Cross-Validation (CV) is a useful principle to compare models and estimate hyper-parameters in regression.

It has been used in many different types of problems in statistical learning (Bishop, 1995; Hastie et al.,

2001; Schölkopf and Smola, 2001) and computer vision (Forsyth and Ponce, 2003), including problems in

super-resolution (Nguyen et al., 2001), visual recognition (Jurie and Triggs, 2005), quantification of the

perceptual image quality (Tang et al., 2011) and tracking (Sevilla-Lara and Learned-Miller, 2012). In

Linear Least Squares (LLS) regression, the concept of CV is more specifically known as Prediction Sum of

Squares (PRESS) (Allen, 1971). PRESS assumes that the fitting residuals are normal and IID, and can

thus only be computed for noisy datasets which do not contain blunders. We bring a set of new results

on the computation of PRESS. We apply these results in correspondence-based dense image registration,

substantially extending our previous work (Bartoli, 2008, 2009) on linear warps to the class of linear fractional

warps modeling perspective projection. We also apply these results in surface fitting with dense and sparse

data, obtained from two different sources, namely a depth sensor and Shape-from-Template (SfT).

CV produces a score quantifying the predictive ability or predictivity of a model with respect to a dataset,

independently of the actual model parameters. The basic principle is to split the data in two subsets: the

training set and the validation set. The model is fitted to the training set and its predictivity is then measured

on the validation set. Most CV scores average predictivity over multiple training and validation splits of

the data. One of the most popular types of CV is Leave-One-Out CV (LOOCV), which uses each of the n

data in turn as validation sets and the remaining n− 1 data as training sets. Computing the LOOCV score

may be expensive as directly applying the basic principle requires one to fit the model n times. Fortunately,

this is not the case in LLS regression as the LOOCV score corresponds to the PRESS statistic which may

be computed by the non-iterative PRESS formula (Yan and Su, 2009). Non-iterative means that the model

does not have to be fitted repeatedly but only once, to the complete dataset. The PRESS formula is thus

extremely interesting from a computational stand-point. It has however two main limitations. First, it

is specific to LOOCV. Second, it makes the one-datum-one-measurement hypothesis. In the dataset each

datum corresponds to a physical entity, such as a point correspondence in image registration. A measurement

however is represented by a single ‘equation’ or ‘constraint’. The one-datum-one-measurement hypothesis

holds if the dataset is in one-to-one correspondence with the measurement set. In other words, it holds if a

datum provides only one measurement. However, a datum typically provides several measurements, one for

each of the g problem’s dimensions, and we therefore have m = gn measurements organized in groups of g

coupled measurements. In 2D image registration, a point correspondence provides two measurements, and

for n point correspondences we thus have m = 2n measurements (Hartley and Zisserman, 2003, Chapter
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4). The one-datum-one-measurement hypothesis typically holds in one-dimensional problems such as curve

fitting but may break in higher-dimensional problems such as correspondence-based image registration and

3D transformation fitting. In the PRESS statistic the measurements are held out individually, whereas they

should be held out in groups of size g corresponding to each datum to compute the LOOCV score. In

some special cases discussed in §2.2 however, the PRESS statistic may still give the LOOCV score in higher

dimensions.

We propose the Multiple-Exclusion PRESS (MEXPRESS) formula as a tool to generalize the PRESS

formula. Our goal is to handle models for which the one-datum-one-measurement hypothesis does not hold

and to compute PRESS statistics for other types of CV scores than LOOCV, all of them non-iteratively.

The MEXPRESS formula computes a model’s predictivity measured on any combination of training and

validation sets obtained by splitting the data, non-iteratively. In other words, the MEXPRESS formula does

not require one to fit the model specifically to the training set at hand. The MEXPRESS formula computes

the prediction residuals for any subset K ⊂ [1,m] of measurements given the residuals obtained by fitting

the model to all measurements, similarly to the PRESS formula, and is specific to LLS regression. The basic

use of the MEXPRESS formula is to compute the Leave-One-Out PRESS statistic non-iteratively when

the one-datum-one-measurement assumption does not hold. The MEXPRESS formula can also be used to

compute other forms of PRESS statistics non-iteratively, such as the k-Fold, Leave-p-Out and Random-

Sampling PRESS statistics, whether the one-datum-one-measurement hypothesis holds or not. LOOCV

(and thus the PRESS statistic) is an almost unbiased estimator for the prediction error but may have high

variance, while k-Fold CV has lower variance but may be significantly biased (Hastie et al., 2001). We

propose a new type of CV score, the Local-Exclusion CV score, which mitigates both effects, and instantiate

it as the Local-Exclusion PRESS statistic for LLS problems. Local-Exclusion CV resembles LOOCV as it

averages the model’s predictivity over n singleton validation sets formed by each of the n data. However, it

differs in that the model is not trained on the remaining n− 1 data: the training sets contain at most n− 1

data but may be smaller, as they exclude the data too close or too similar to the validation datum. The

notions of closeness and similarity have to be interpreted in a problem specific way. Using the MEXPRESS

formula, the Local-Exclusion PRESS statistic can be computed non-iteratively and does not require the

one-datum-one-measurement hypothesis to hold. We use the MEXPRESS formula to explicitly give three

PRESS formulas: the Coupled-Measurements, the k-Fold and the Local-Exclusion PRESS formulas, which

compute the corresponding PRESS statistics.

The proposed PRESS formulas can be used in correspondence-based dense image registration. The task

is to estimate a continuous smooth function mapping points from a source to a target image from n point
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correspondences. The function to be estimated is called image warp or simply warp and is often repre-

sented by a parametric model, typically a Thin-Plate Spline (TPS) (Bookstein, 1989) or a Bicubic B-Spline

(BBS) (Rueckert et al., 1999), which lie in the wider class of linear warps, and may be estimated by LLS

regression. The warp’s optimal number of control points may be selected automatically by LOOCV (Bar-

toli, 2008, 2009). We are interested in the computation of the class of linear fractional warps such as the

Deformable-Perspective warp constructed from the TPS (Bartoli et al., 2010) and the NURBS warp con-

structed from the BBS (Brunet et al., 2009). Linear fractional warps form a particularly important class

as the fractional part models perspective projection. The basic fitting principle is to transfer each of the

n source image points to the target image by applying the unknown warp and minimize their discrepancy

to the corresponding target image points. Though the linear fractional warps are nonlinear, they may be

estimated by LLS regression using the algebraic distance (Hartley and Zisserman, 2003, Chapter 4). Each

point correspondence yields g = 2 measurements. We show how the MEXPRESS formula allows one to

compute the LOO, k-Fold and Local-Exclusion CV scores non-iteratively for a linear fractional warp. We

then use these scores to select the warp’s number of control points automatically. The proposed PRESS

formulas can also be used in surface fitting. The task is to estimate a continuous smooth function embedding

a subset of the real plane to a surface in space. We considered two types of data from which this function

is to be estimated. The first type is dense depth-maps, obtained from a depth sensor. The second type

is sparse point clouds, obtained by SfT. In both cases, the function is represented by a parametric linear

model, and has control points placed automatically by a data-adaptive strategy inspired by similar strate-

gies from curve-fitting (Dierckx, 1981, 1993). We show how the MEXPRESS formula allows one to compute

the LOO, k-Fold and Local-Exclusion CV scores non-iteratively for the surface functions for both types of

data, namely the depth and the embedding functions. We then use these scores to select the function’s

number of control points automatically. As expected, the higher the number of control points, the lower

the fitting residual, which therefore cannot be used to select the number of control points. Using a PRESS

statistic to select the number of control points is also motivated by the fact that one cannot easily compute

a measure of statistical significance required to use, for instance, the fitting residual as selection criterion.

The reason is twofold and grounded in the conditions holding for the vast majority of practical cases where

automatically selecting the number of control points will be required. First, the level of noise and modeling

error are unknown. Second, the amount of data is limited, making the computation of spread statistics

such as the standard deviation unreliable. For these reasons, one preferably requires criteria whose graph

gives the number of control points to select as one of its minima. Our experiments suggest that the new

PRESS statistic using an exclusion radius in its internal training stage is, on the one hand, substantially
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less sensitive to overfitting than the existing criteria and, on the other hand, does not underfit either.

Notation and terminology. We use regular fonts in italics for scalars such as E ∈ R and in bold for

vectors such as x ∈ Rp, type writer fonts for matrices such as A ∈ Rm×p and calligraphic fonts for sets such

as K ⊂ N. The size of a set is written as |K|. Matrix tranpose, inverse and pseudo-inverse are respectively

written as in A>, A−1 and A†
def
= (A>A)

−1
A>. The identity matrix is written as I. We use the stack operator

stk(x,y, . . . )
def
= [x> y> · · · ]>. The operators to select the elements respectively indicated and not indicated

in K in a vector x or the rows in a matrix A are xK and x−K. We use the standard notation x(K) to mean

‘done without’ the elements indicated in K. If K = {j} contains just one element we may simply write

xj , x−j and x(j). We define AK,K ∈ R|K|×|K| as the submatrix formed with the |K| rows and columns of A

with index in K. We define Cf,r ∈ Rg×gr as the block-wise row matrix containing r − 1 blocks 0 ∈ Rg×g

and one block I ∈ Rg×g as its fth block. The LLS problem is formulated from n data. We assume for

notation simplicity that each datum gives g measurements so the total number of measurements is m = gn,

but our results also hold when the data do not all give the same number of measurements. We define 1

as the ‘all-one’ matrix. We use [u]× v
def
= u × v for u,v ∈ R3, where [u]× ∈ R3×3 is the skew-symmetric

cross-product matrix. We use ‖x‖2 and ‖A‖F for the vector two-norm and the matrix Frobenius norm,

respectively.

2 Background

2.1 Linear Least Squares Regression

The model’s parameters are held by the parameter vector x ∈ Rp. Each of the m measurements is a pair

formed by a vector aj ∈ Rp called regressor vector and a scalar bj ∈ R called response, with j = 1, . . . ,m.

The regressor vectors form the rows of the matrix A
def
= [a1 · · · am]> ∈ Rm×p called the design matrix and the

responses form the elements of the vector b ∈ Rm called the response vector. The model with parameters x

fits the response vector as Ax and its least squares estimate is given by x̄
def
= A†b. The least squares estimate

minimizes the Root Mean Square (fitting) Residual (RMSR) E defined as:

E2 def
=

1

n

m∑
j=1

e2
j =

1

n

m∑
j=1

(
bj − a>j x̄

)2
=

1

n
‖b− Ax̄‖22 =

1

n

∥∥(I− Â
)
b
∥∥2

2
, (1)

where Â
def
= AA† ∈ Rm×m is the hat matrix. The average is taken for the number n of data rather than for

the number m of measurements. LLS regression naturally handles coupled measurements. This is because

the RMSR can be rescaled without changing the estimate.
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2.2 The Prediction Sum of Squares Statistic

The PRESS statistic follows the LOOCV principle and is thus an exhaustive statistic. It has been formulated

under the one-datum-one-measurement hypothesis (Allen, 1971; Yan and Su, 2009) and therefore does not

handle coupled measurements. Each response bj is predicted as a>j x̄(j), where x̄(j)
def
= (A−j)

†b−j are the

parameters obtained by fitting the model without the jth measurement. The PRESS statistic is then given

by:

P 2 def
=

1

m

m∑
j=1

e2
(j) =

1

m

m∑
j=1

(
bj − a>j x̄(j)

)2
. (2)

The PRESS formula (Yan and Su, 2009) allows one to compute the PRESS statistic non-iteratively as:

P 2 =
1

m

m∑
j=1

1

(1− âj,j)2 e
2
j =

1

m

∥∥∥∥diag

(
1

1− â1,1
, · · · , 1

1− âm,m

)(
I− Â

)
b

∥∥∥∥2

2

. (3)

The average is taken for the number m of measurements. The PRESS formula (3) was derived under the one-

datum-one-measurement hypothesis, which implies g = 1 and thus m = n. It does not hold in the presence

of coupled measurements caused by g 6= 1. This is because the measurements are being held out individually

to form the PRESS statistic (2), whereas they should be held out in groups of size g corresponding to each

datum. Therefore, the PRESS statistic (2) almost always underestimates the ‘true’ PRESS statistic for

g 6= 1. This case occurs very commonly as it corresponds to models with multiple dimensions. We extended

the PRESS formula to cope with g 6= 1 in the special case where the model’s multiple dimensions share their

regressor vectors (Bartoli, 2009). In other words, the model’s parameters must be organized in a matrix

X ∈ R
p
g
×g

rather than in a vector x ∈ Rp. Each column of matrix X gives the model’s parameter for one

dimension. The design matrix A
def
= [a1 · · · an]> ∈ Rn×

p
g holds only one copy of the regressor vector per

datum. Matrix B
def
= [b1 · · · bn]> ∈ Rn×g contains the responses with each of its columns corresponding to

one of the problem’s dimensions. The RMSR is given by E2 = 1
n‖AX̄ − B‖2F and the least squares estimate

by X̄ = A†B. Defining the per-datum fitting residual as e>i
def
= b>i − a>i X̄ the PRESS statistic is given by:

P 2 =
1

n

n∑
i=1

1

(1− âi,i)2 ‖ei‖
2
2 =

1

n

∥∥∥∥diag

(
1

1− â1,1
, · · · , 1

1− ân,n

)(
I− Â

)
B

∥∥∥∥2

F
. (4)

There has been no PRESS formula proposed to cope with the general setup of coupled measurements when

g 6= 1, and to other types of CV than LOOCV such as k-Fold CV. We propose MEXPRESS and the

MEXPRESS formula which allow us to solve these computations efficiently. MEXPRESS has the results we

obtained in (Bartoli, 2009) as special cases.
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3 Generalizing the PRESS Statistic and Formula

Our first goal is to give general means to easily compute PRESS non-iteratively. We achieve this goal by

providing the MEXPRESS formula. Our second goal is to extend the PRESS formula to compute the ‘true’

PRESS statistic for the general case of coupled measurements and coupled responses. Our third goal is to

extend the PRESS statistic and formula to other types of CV such as k-Fold CV. In particular we want to

be able to exclude data in the held out phase to reduce LOOCV’s overfitting. Overfitting occurs when the

selected model is excessively complex and leads to bad predictive performance. We achieve this goal with a

novel PRESS statistic called Local-Exclusion PRESS.

3.1 The Basic Tool: MEXPRESS

The Multiple-Exclusion PRESS (MEXPRESS) formula computes the prediction residual e(K) of multiple

measurements with index set K ⊂ [1,m] by holding them out in model fitting:

e(K)
def
= bK − AKx̄(K), (5)

where x̄(K) is the model parameters fitted without using the measurements in K. Proposition 1 gives the

MEXPRESS formula. Its proof is provided in Appendix A. The MEXPRESS formula allows one to compute

e(K) independently of the model parameters x̄(K) and only as a function of the global model estimate x̄ and

the hat matrix Â.

Proposition 1. The MEXPRESS formula establishes that:

e(K) =
(
I− ÂK,K

)−1
eK, (6)

where I ∈ R|K|×|K| is an identity matrix, ÂK,K ∈ R|K|×|K| is a submatrix formed with the |K| rows and

columns of Â with index in K and eK = AKA
†b ∈ R|K| are the global fit residuals.

We observe that the MEXPRESS formula generalizes the equality e(j) = 1
1−âj,j ej which lies at the heart

of the PRESS formula (3). The measurement index j is replaced by the measurement set K, and scalar

inverse by matrix inverse.

We define a partitionwise PRESS statistic as a PRESS statistic computed for measurements partitioned

in t groups K1, . . . ,Kt to be held out jointly. Each group is a set which holds the indices of one or several

measurements. The partition constraint means that the union of all groups covers all measurements, that a

measurement is held by exactly one group, and that a group is non-empty. A partitionwise PRESS statistic
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is defined as:

P 2(K1, . . . ,Kt) =
1

n

t∑
w=1

∥∥e(Kw)

∥∥2

2
=

1

n

t∑
w=1

∥∥bKw − AKw x̄(Kw)

∥∥2

2
. (7)

A non-iterative formula for a partitionwise PRESS statistic is obtained by applying proposition 1 to equa-

tion (7):

P 2(K1, . . . ,Kt) =
1

n

t∑
w=1

∥∥∥(I− ÂKw,Kw

)−1
eKw

∥∥∥2

2
(8)

=
1

n

∥∥∥diag
((

I− ÂK1,K1

)−1
, · · · ,

(
I− ÂKt,Kt

)−1
) (

I− Â
)
b
∥∥∥2

2
. (9)

The involved identity matrices are generally not of the same size, and the hat matrix is in general not

block diagonal. However, only its diagonal blocks are used to weight the global fit residuals. An efficient

implementation of equation (9) may thus first compute the hat matrix Â and then extract and inverse its

diagonal blocks, which are typically of size much smaller than the total number of measurements.

3.2 Handling Coupled Measurements and Coupled Responses

An example of problem where each datum gives more than one measurement is when fitting an image warp

to point correspondences, as each correspondence gives two coupled measurements, as studied in §4. The m

measurements are partitioned into n groups J1, . . . ,Jn of size g with ng = m, where each group corresponds

to a datum. Assuming that the measurements are ordered per datum, we have:

Ji
def
= [g(i− 1) + 1, gi] for i = 1, . . . , n. (10)

The RMSR is defined as an average over the number of data rather than the number of measurements:

E2 =
1

n

n∑
i=1

‖bJi − AJi x̄‖
2
2 =

1

n
‖b− Ax̄‖22 . (11)

We define the PRESS statistic for this coupled measurements setup and derive its non-iterative formula

from the partitionwise PRESS in equations (7,9) respectively, as P 2(J1, . . . ,Jn). Its implementation has

to compute the hat matrix Â and then inverse its diagonal blocks of size g × g. The complexity of its

computation depends on the group size g to compute the first factor, and the total number of measurements

m to compute the second factor. In practice however, we have g � m, and the complexity is dominated by

the computation of the second factor, which is the same as solving standard LLS regression. When fitting

a warp or a global coordinate transform we typically have g ∈ {2, 3}.
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MEXPRESS naturally handles coupled responses. These correspond to measurements which share their

regressor vectors but whose responses are different. Physically, they correspond to repeated observations

with the same system state. These measurements must be held out simultaneously to compute PRESS.

They can thus be grouped by gathering their indices in some set K. The MEXPRESS formula is then very

similar to the PRESS formula (9) but takes a special form as ÂK,K ∝ 1, the ‘all-one’ matrix.

3.3 Using k-Fold Rather than Leave-One-Out

The k-Fold PRESS formula implements the non-exhaustive k-Fold CV non-iteratively. Computing k-Fold

PRESS using MEXPRESS is very similar to computing Coupled-Measurements PRESS. The main difference

is that in k-Fold PRESS the m measurements are partitioned into fewer k groups H1, . . . ,Hk of larger size

s with typically k ∈ {5, 10} and s = m
k (though because the sizes of measurement groups must sum to

m some groups will have size m
k and some others will have size m

k + 1). The k-Fold PRESS statistic is

thus given by the partitionwise PRESS (7) as P 2(H1, . . . ,Hk). Its non-iterative formula is then directly

given by equation (9). The resulting formula does not require the one-datum-one-measurement hypothesis

to compute the k-Fold PRESS, as the leading factor 1
n suggests. If a coupling pattern exists between the

measurements, they must simply be included in the same group to be held out jointly. If the one-datum-

one-measurement hypothesis holds, then g = 1 and n = m, and the k-Fold PRESS formula simply considers

no coupling between the measurements.

3.4 Handling Data Dependencies with Local Exclusion

We propose a novel exhaustive PRESS statistic that mitigates the overfitting effect of the PRESS statistic,

and its non-iterative computation. The key idea is that some measurements may be highly correlated,

typically when the measurement set is large. For instance when estimating an image warp, if the number of

correspondences is large, then computing the PRESS statistic by holding out one correspondence at a time

and using the PRESS formula (9) will presumably not be helpful in selecting the model’s hyper-parameters,

as many of the most complex models will fit the data equally well, and the selected model may overfit the

data. In Local-Exclusion PRESS, we propose to hold out several measurements jointly, as we did to handle

coupled measurements and in k-Fold PRESS, but with three fundamental differences, which are (i) to choose

the groups of measurements to avoid overfitting based on a notion of closeness or similarity between the

data driven by the problem at hand, (ii) to measure the prediction residual for only one datum at a time

and (iii) to use overlapping measurement groups to ensure the statistic’s exhaustivity. In the example of

warp fitting this means holding out each correspondence at a time with its neighbors, fitting the warp, and
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computing the prediction residual only at the correspondence at hand (and not at the correspondence’s

neighbors). Local-Exclusion PRESS thus requires one to define a data distance function δ : N2 → R and

the neighborhood size τ ∈ R. We define n possibly overlapping groups K1, . . . ,Kn with:

Ki
def
= {Ji′ | i′ ∈ [1, n] ∧ δ(i, i′) ≤ τ} for i = 1, . . . , n, (12)

where Ji indicates the set of measurements related to the ith datum and is given by equation (10). Each

group Ki contains its own datum i. We define rank(i,Ki) to be the rank of datum i in the set Ki where the

latter is ordered based on the data’s index. We have that Crank(i,Ki),|Ki|e(Ki) gives the ith datum’s prediction

residuals. The Local-Exclusion PRESS statistic and formula are then obtained as:

P 2 def
=

1

n

n∑
i=1

∥∥Crank(i,Ki),|Ki|e(Ki)

∥∥2

2
=

1

n

∥∥∥stk
(
C1,n(I− ÂK1,K1)

−1
, . . . , Cn,n(I− ÂKn,Kn)

−1
) (

I− Â
)
b
∥∥∥2

2
,

(13)

where the last equality was obtained by using the MEXPRESS formula (6), and some rearrangements. This

formula holds with or without the one-datum-one-measurement hypothesis. As the neighborhood size τ

shrinks, the Local-Exclusion PRESS statistic approaches the PRESS statistic, and for τ = 0 it gives the

PRESS statistic exactly. In practice the neighborhoods may be chosen using other criteria. For instance,

a neighborhood system can be defined from the edges of the Delaunay triangulation of the source image

points in image registration.

3.5 Other Extensions

The MEXPRESS formula may be used to compute other PRESS statistics non-iteratively, which may be

inspired by any types of CV. These include Leave-p-Out PRESS and Random-Sampling PRESS, which may

be computed non-iteratively, taking the option of coupled measurements into account. Leave-p-Out PRESS

is an exhaustive statistic: each measurement is held out in groups of size p, and all possible
(
m
p

)
groups

are covered. Therefore, Leave-p-Out PRESS is rarely used as its computation may be extremely expensive

for any p larger than a few data. With the MEXPRESS formula, the Leave-p-Out PRESS statistic can

be computed efficiently and non-iteratively. This is because MEXPRESS facilitates the computation of

Leave-p-Out PRESS via the inversion of (p × p) matrices, as can be seen from equation (6). Even though

the number
(
m
p

)
of such matrix inverses may be high, the computation is kept tractable for higher values of p

than in the iterative approach. Random-Sampling PRESS helds random groups of measurements out. It is

non-exhaustive and stochastic. With the MEXPRESS formula, the computation speed of Random-Sampling

PRESS can be dramatically improved, allowing one to sample more measurement groups, thereby reducing
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its statistical bias.

4 Estimating Linear Fractional Warps

Image warps are 2D transformations relating correspondences between a source and a target image. Com-

puting an image warp provides a dense registration between the images.

4.1 General Model

A general warp model is a functionW which maps a point q ∈ R2 in the source image to a point q′ =W(q; P)

in the target image and depends on a parameter set P. A linear fractional warp has three intrinsic dimensions

and may be conveniently modeled using homogeneous coordinates. The parameter set representing the

warp’s behavior is thus held in a matrix P = [p1 p2 p3] ∈ Rl×3, where l ∈ N is a varying parameter

determining the model’s complexity. For a general definition of the linear fractional warps, we use a lifting

function ν : R2 → Rl which encapsulates many models such as piecewise affine functions, the TPS and the

BBS. A linear fractional warp can then be written as:

W(q; P) =
1

p>3 ν(q)

p>1 ν(q)

p>2 ν(q)

 . (14)

Because of the division, the linear fractional warp is not linear in Cartesian coordinates. However, it is

linear in homogeneous coordinates as:

W(q; P)

1

 ∝ P>ν(q). (15)

The linear fractional warp has 3l − 1 degrees of freedom. Matrix P has an undefined scale which may be

fixed by imposing a constraint λ(P) = 0 which will be discussed shortly. We use the TPS to instantiate the

general linear fractional warp model. The TPS depends on l control points whose position in the source

image are fixed and whose position in the target image represent the warp’s unknown parameters contained

in matrix P. We called the resulting warp a Deformable-Perspective Warp (DP-Warp) (Bartoli et al., 2010).

The lifting function for the TPS is defined by ν(q) = E>`q. Matrix E ∈ R(l+3)×l is related to the bending

energy matrix and is constructed from the fixed source control points and the vector `q ∈ Rl+3 holds the

kernelized coordinates of the source point with respect to the source control points. More precisely, `q holds

d log(d), which represents the TPS’ kernel function (Bookstein, 1989), where d is the distance between q
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and the source control points. More details on constructing `q can be found in (Bartoli et al., 2010). The

DP-Warp exists for l ≥ 3. The DP-Warp for l = 3 is a homography.

4.2 Linear Least Squares Fitting to Point Correspondences

A usual way to estimate a warp from correspondences is by minimizing the sum of squared distances between

the transferred source image points W(qi, P) and the corresponding target image points q′i, for i = 1, . . . , n.

A convex approach can be derived using the algebraic error and leads to a homogeneous LLS cost under the

normalization constraint λ(P) = 0:

min
P∈Rl×3

λ(P)=0

n∑
i=1

‖ei‖22 with ei
def
= Aip ∈ Rg, (16)

where p
def
= vec(P) ∈ R3l is the column-wise vectorization of P, g = 2 and Ai ∈ R2×3l. The so-called algebraic

distance (Hartley and Zisserman, 2003, Chapter 4) compares two vectors of homogeneous coordinates u,v ∈

R3 as d2
A(u,v) = ‖S(u×v)‖22 with S

def
= [I0] ∈ R2×3. Using the target image points’ homogeneous coordinates

stk(q′i, 1) and the warp in homogeneous form P>ν(q) = P>E>`i from equation (15), with `i
def
= `qi , this leads

to:

ei = S
(

stk(q′i, 1)× P>E>`i

)
∈ R2. (17)

Using u× v = [u]× v and some simple algebra we arrive at:

Ai = S
[
stk(q′i, 1)

]
× diag3

(
`>i E

)
, (18)

where diagf constructs a block-diagonal matrix by duplicating its argument f times. The usual choice for the

normalization constraint is λ(P) = ‖P‖2F − 1. With this normalization the formulation is homogeneous and

quadratic. Even if it has an elegant solution via the SVD, it does not lend itself well into computing PRESS

statistics non-iteratively. Without loss of generality, we will use an affine normalization constraint and show

that this allows us to compute PRESS statistics non-iteratively, despite the cost being homogeneous.

4.3 Using PRESS to Select the Number of Control Points

Using PRESS to select the number of control points for a model requires (i) that the PRESS statistics and

formulas be applicable to the model, and (ii) that a strategy to vary the number of control points and their

placement be provided. These requirements are discussed in the next two paragraphs. Requirement (i) is

not directly satisfied by the formulation of §4.2. This is because the cost in problem (16) is homogeneous
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whilst all the PRESS statistics and formulas apply to affine fitting problems with regressors and responses.

By choosing an affine normalization constraint λ(P) = 0 we show however that the problem can be rewritten

as an affine problem and the PRESS formulas used.

Computing PRESS for a homogeneous cost. The affine normalization constraint we use enforces

p3 ∈ Rl, the third column of P, to have unit mean. Interpreting the linear fractional warps as 3D embeddings,

this corresponds to scaling the embedded 3D points so that their average depth becomes one. This constraint

is written as:

λ(P) = λ(p)
def
= λ>p− l with λ

def
= stk(0,0,1) ∈ R3l. (19)

We can then reparameterize problem (16) using r ∈ R3l−1 defined such that:

p = Gr− f , (20)

where f ∈ R3l and G ∈ R3l×(3l−1) are chosen such that λ(Gr− f) = 0, ∀r ∈ R3l−1. We may choose f as any

solution of λ(−f) = 0 and G as any basis of ker
(
λ>
)
. We simply use f = −λ and Gi,i = 1 for i ∈ [1, 3l− 1],

Gi+1,i = −1 for i ∈ [2l + 1, 3l − 1] and Gi,j = 0 otherwise. The reparameterized problem (16) is:

min
r∈R3l−1

n∑
i=1

‖ei‖22 with ei = AiGr− Aif . (21)

The PRESS statistic and the new variants we propose can then be computed non-iteratively using the

corresponding PRESS formulas. All computations are done in image coordinates normalized to [−1, 1]2.

Because the algebraic error is defined up to an arbitrary scale factor inherited from matrix P, we consistently

rescale it so that its average magnitude lies around a few hundred units.

Selecting the number of control points. We automatically select the number l of control points in

linear fractional warps by minimizing PRESS. The idea is to simply compute the chosen PRESS statistic

P 2(l) for l = lmin, . . . , lmax and keep the l with the lowest PRESS statistic. We use lmin = 3 and set

lmax according to the number of correspondences.1 Cross-Validation (and thus the PRESS) have been

successfully used to prevent overfitting in model training followed by testing. The analogy with an image

warp is that the training stage corresponds to fitting the warp to given sparse correspondences and the

testing stage corresponds to evaluating the warp at points off these correspondences. We place the control

points as uniformly as possible using Lloyd’s algorithm (Lloyd, 1982). We measure all main types of PRESS

1We use lmax = 6 for n = 10, lmax = 7 for n = 15 and lmax = min(round(m
2
), 100) otherwise.



4 Estimating Linear Fractional Warps 15

mentioned in §3. Recall that in Local-Exclusion PRESS, each point is used as validation set in turn as in

regular PRESS. The difference is that using MEXPRESS, subsets of data can be held out simultaneously

with each point. We use two main strategies to define the held-out subsets:

• The Exclusion Radius strategy. We exclude all points within r pixels of the source image test point,

where r is defined as a fraction of the image diagonal.

• The Nearest Neighbors strategy. We exclude the k closest points to the source image test point. We

choose k as a fixed number or as a fraction of the number of correspondences n.

These two strategies behave very differently with respect to the density of point correspondences and control

points.

4.4 Experimental Results

The number n of correspondences is the most important parameter when trying to fit a warp. We want to

observe the behavior of the various PRESS statistics with non-iterative formulas in function of n. Our goal

is not to establish a definitive criterion to choose a warp’s best number of control points. This is a very

difficult problem, in particular because no ground truth can be easily defined. Our goal is to show that

with MEXPRESS, many PRESS statistics can be computed non-iteratively and may offer new possibilities

to study this problem.

4.4.1 Compared PRESS Statistics

We monitor the fitting RMSR fit and the following PRESS statistics, computed using their non-iterative

formulas:

• press. The basic PRESS statistic (3), which does not take coupled measurements into account, and

therefore almost always underestimates Coupled-Measurement PRESS.

• cmpress. The Coupled-Measurement PRESS statistic (9), §3.2.

• kf10press and kf05press. The k-Fold PRESS statistic (9) with k = 10 and k = 5 folds, §3.3.

• er01press, er05press and er10press. The Local-Exclusion PRESS statistic (13) with an Exclusion

Radius of 1%, 5% and 10% of the image diagonal.

• nn02ptspress, nn05ptspress and nn10ptspress. The Local-Exclusion PRESS statistic (13) ex-

cluding the 2, 5 and 10 Nearest-Neighbors.
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• nn01pctpress, nn05pctpress and nn10pctpress. The Local-Exclusion PRESS statistic (13) ex-

cluding the x Nearest-Neighbors, where x corresponds to 1%, 5% and 10% of the number of corre-

spondences, respectively.

Except press, all these statistics take measurement coupling into account, with g = 2. We also measured

a test error, which we optimize with respect to the number of control points. For simulated data, this is

called test and defined as the average root mean squared transfer error 1
|Ω|

√∫
Ω d

2
A(W(q; P),q′) dq, where

Ω ⊂ R2 is the source image domain. For real data, this is a Jaccard index, computed as follow. We mark the

surface’s contour in the source and target images prior to warp estimation. We then use the estimated warp

to transfer the source surface’s contour to the target image and compute the Jaccard index with the target

surface’s contour. The optimal number of control points is selected which maximizes (and not minimizes)

the Jaccard index.Model 01, centred object 3D frame, for PDF

Model 03, centred object 3D frame, for PDF

Model 04, centred object 3D frame, for PDF

Model 06, centred object 3D frame, for PDF

Model 07, centred object 3D frame, for PDF

Model 08, centred object 3D frame, for PDF

Model 09, centred object 3D frame, for PDF

Model 10, centred object 3D frame, for PDF

Figure 1: The batch of 10 simulated surfaces seen from some of the randomly generated camera poses.

4.4.2 Simulated Data

We simulated a deformable surface using a rescaled isometric model (Perriollat and Bartoli, 2013) in 10

different configurations shown in figure 1. These surfaces were created by a 3D embedding of the 2D plane,

which we also used to create random 3D point correspondences. We then simulated an HD camera with a 35

mm sensor and a variable focal length in the range [20, 50] mm, observing each surface from various poses.

Image pairs were formed by using the 90 possible pairs of surfaces and 5 random poses and focal length,

yielding a total of 450 possible configurations. A centred Gaussian noise with 1 px standard deviation was

added to all simulated image points.

We varied the number n of point correspondences in {15, 30, 150, 500}. In warp estimation, n = 15

represents very few correspondences, n ∈ {30, 150} are typical numbers of correspondences and n = 500

represents many correspondences. Increasing the number of correspondences allows one to detect the criteria

which tend to overfit as they unreasonably increase the number of control points. The results are given in
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n = 15 n = 30 n = 150 n = 500
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Figure 2: Behavior of the PRESS statistics, fitting residual fit and test error test as a function of the warp’s
number of control points (horizontal axis of each graph) and number of point correspondences (columns of
the figure). The vertical lines represent the average number of control points selected by the various PRESS
statistics and test.
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n = 15 n = 30 n = 150 n = 500
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Figure 3: Standard deviation of the PRESS statistics, fitting residual fit and test error test as a function
of the warp’s number of control points (horizontal axis of each graph) and number of point correspondences
(columns of the figure).
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n = 15 n = 30 n = 150 n = 500

Criterion l fit l fit l fit l fit

test 05.5±01.3 42.5±28.4 11.2±02.2 21.8±11.9 50.3±08.9 04.0±02.0 97.3±03.8 01.7±00.3
press 05.0±01.3 42.4±26.4 10.2±02.6 23.3±15.2 48.6±09.6 04.0±02.1 97.1±03.8 01.7±00.3
cmpress 04.9±01.3 45.2±28.9 09.9±02.6 24.7±15.3 46.3±09.4 04.4±02.3 96.7±04.4 01.7±00.3
kf10press 04.7±01.3 47.7±29.7 09.3±02.4 27.7±16.1 41.8±07.8 05.4±02.4 95.2±05.6 01.8±00.4
kf05press 04.4±01.1 53.1±31.3 08.4±02.1 31.8±16.6 37.4±06.9 06.6±02.9 93.5±06.6 01.9±00.4
er01press 04.8±01.3 45.4±29.0 09.9±02.6 25.0±15.7 45.9±09.5 04.5±02.3 96.3±04.6 01.7±00.3
er05press 04.7±01.3 47.0±29.5 09.4±02.5 26.8±16.5 34.9±08.1 07.5±03.7 75.0±12.8 02.7±00.9
er10press 04.4±01.2 52.8±31.3 07.7±02.5 36.9±22.6 16.9±04.5 19.6±07.5 23.9±07.7 14.9±06.9
nn02ptspress 04.1±01.1 58.7±34.3 08.0±02.5 35.1±21.0 38.9±08.5 06.2±03.1 93.9±06.8 01.8±00.4
nn05ptspress 03.1±00.4 88.9±38.0 04.7±01.6 67.3±34.4 24.4±07.1 13.0±06.1 83.4±11.9 02.3±00.8
nn10ptspress — — — — 14.3±03.5 23.6±08.5 56.3±12.1 04.5±01.9
nn01pctpress 04.9±01.3 45.2±28.9 09.9±02.6 24.7±15.3 38.9±08.5 06.2±03.1 83.4±11.9 02.3±00.8
nn05pctpress 04.9±01.3 45.2±28.9 08.0±02.5 35.1±21.0 16.6±04.7 20.3±08.1 24.6±07.1 14.4±06.5
nn10pctpress 04.1±01.1 58.7±34.3 06.5±02.3 47.1±27.4 10.8±03.3 34.0±17.9 12.2±03.4 31.2±15.4

Table 1: Average and standard deviation of the selected number of control points l and fitting RMSR fit
for the different criteria for n ∈ {15, 30, 150, 500} point correspondences.

figure 2. We observe that the fitting RMSR decreases steadily as the number of control points increases, for

all numbers of correspondences. In other words, we do not observe a clear transition point or zone, which

would allow us to figure out a reference number of control points, against which to evaluate the different

criteria in terms of underfitting and overfitting. We thus evaluated the criteria differently. We used the fact

that, given that the data model is the same set of surfaces for all numbers of correspondences, changing the

number of correspondences should have a limited impact on the number of selected control points. We do not

expect however that the number of selected control points does not change at all, as we varied the number

of correspondences between 15 and 500, which represent extreme possibilities. In order to understand the

relationship between the number of selected control points and the number of correspondences, we computed

summary statistics, namely the average and standard deviation of the selected number of control points,

over the 450 simulated geometric configurations. These statistics are given in table 1 for the four numbers

of simulated correspondences. The average number of control points is also visible in figure 2. We made the

following observations:

• press and cmpress (first row of figure 2) have a very similar behavior. Because of its larger bias in

prediction accuracy, the former favors slightly larger numbers of control points. Both select numbers

of control points very close to test. They do fine for small numbers of correspondences, but quickly

overfit as the number of correspondences grow, as the number of selected control points increases from

approximately 5 to almost 100. This is because in these criteria, validation is computed on data very

similar to the training data when the data density increases, and models with higher complexity are

then not penalized enough.

• kf10press and kf05press (second row of figure 2) mitigate overfitting compared to cmpress, but
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end up overfitting too when the number of correspondences grow large. The number of selected control

points increases from fewer than 5 to approximately 95. This is because in these criteria, the folds are

selected randomly. Some of the held out correspondences may thus be in the vicinity of the valida-

tion correspondences, and thereby penalize complexity to a larger extent. Despite this advantageous

property, k-Fold PRESS is stochastic and non-exhaustive, which is not a desirable property.

• er01press, er05press and er10press (third row of figure 2) have different behaviors, showing that

the exclusion radius plays an important role. For all three criteria the number of selected control

points is lower than, but close to, 5 for 15 point correspondences. It however changes very differently

when the number of point correspondences increases. With a small exclusion radius of 1% of the image

diagonal, the behavior is very similar to cmpress. The number of point correspondences increases

to almost 100. This is understandable as very few correspondences are excluded from training, and

higher complexity is thus not penalized much. With a larger exclusion radius of 5% of the image

diagonal, we clearly observe a reduction of overfitting for large densities of correspondences, as the

number of selected control points is then 75. As expected, this effect is amplified by increasing the

exclusion radius to 10% of the image diagonal, and overfitting is substantially limited, even for the

larger number of 500 correspondences, as the number of selected control points is then lower than 25.

• nn02ptspress, nn05ptspress and nn10ptspress (fourth row of figure 2) do not mitigate overfitting

as efficiently as the exclusion radius. This is because they use a fixed number of correspondences in the

exclusion sets, which represents a very tiny fraction of the correspondences when the correspondence

density grows larger. For smaller numbers of correspondences, this naturally has the opposite effect,

and causes significant underfitting. The number of selected control points varies between approximately

4 and 94 for nn02ptspress and between approximately 3 and 83 for nn05ptspress. nn10ptspress

cannot be computed for settings with 15 and 30 correspondences, and spans between approximately

14 and 56 selected control points for 150 and 500 point correspondences respectively.

• nn01pctpress, nn05pctpress and nn10pctpress (fifth row of figure 2) have a similar behavior to

the statistics using the exclusion radius, as they largely mitigate overfitting. This is because using

a fraction of the number of correspondences in the exclusion sets (as opposed to a fixed number)

naturally adapts to the number of correspondences. Their selected number of control points varies

between almost, but fewer than, 5 for all three criteria, and 83, 25 and 12 respectively.

The graphs in figure 2 were obtained by averaging measurements obtained over 450 geometric configurations.

The corresponding standard deviation is given in figure 3. We observe that it decreases for larger numbers
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of correspondences and increases for larger numbers of control points. More precisely, it is sufficiently small

relatively to the observed average for n = 150 and n = 500 correspondences, making our observations

perfectly valid. For n = 15 and n = 30 however, it is too large to conclude that our general observations

consistently hold. Our goal however is not to analyze the absolute value of the criteria on their own, but

rather to understand if they lead to a sensible and stable selection of the number of control points, in terms

of how they mitigate underfitting and overfitting. For this reason, we use the summary statistics given in

table 1. We observe that the fitting RMSR may have a large standard deviation for smaller numbers of

correspondences, for all criteria. This is also the case for larger numbers of correspondences for criteria

which involve holding out a larger number of correspondences in their internal training phase, namely

nn10pctpress and er10press. These observations were expected from the standard deviations already

observed in figure 3. However, and this is the important observation, for all numbers of correspondences and

all criteria, the selected number of control points has a reasonably small standard deviation. This makes

our conclusions regarding the capacity of each criterion to mitigate underfitting and overfitting perfectly

valid. This also suggests that, while the fitting RMSR and the value of the criteria may vary significantly

depending on the location of the correspondences, the selected number of control points is eventually quite

independent of this location and stable.

4.4.3 Real Data

We used images of a poster taken by a digital camcorder with a 4.23× 3.17 mm sensor and a variable focal

length in the range [4.60, 24.48] mm. The image size was 816× 612 px and the focal length range translated

to [888, 4724] px. 206 point correspondences were manually labelled on all images. We combined various

scene geometries and imaging conditions, rigid-flat/rigid-non-flat/deformable scene with perspective/affine

imaging, and sampled n ∈ {51, 103, 206} correspondences in each configuration. Following our observations

on simulated data, we excluded the k-Fold PRESS (kf10press and kf05press) and Local-Exclusion with

a fixed number of points PRESS (nn02ptspress, nn05ptspress and nn10ptspress) statistics from the

results, as these strategies do not mitigate overfitting well and sometimes even underfit.

Rigid-flat scene (figure 4 and table 2). The flat scene is the only case for which the true number

of control points is known and equal to three. This is the simplest case, whose geometry can be exactly

explained by the DP-Warp, for both the affine and the perspective imaging conditions. We observed that

all criteria lead to overfitting in some conditions. This includes Jaccard index, despite its use of the

surface’s contour as supplementary ‘test’ data. Though being an independent test criterion, it is therefore

clearly unreliable. We observe that overfitting increases with the number of correspondences and from affine



4 Estimating Linear Fractional Warps 22

to perspective conditions. This is understandable as more data tends to better constrain more complex

models, and perspective conditions require a more advanced model than affine conditions. We observe

that press, cmpress and er01press give the same results and are largely prone to overfitting. They are

very closely followed by nn01pctpress, which exhibits the same behaviour. By tightening the exclusion

strategy, which means by excluding more correspondences, Local-Exclusion PRESS improves its efficiency at

limiting overfitting. This is observed for, in order of increasing efficiency, the following criteria, er05press,

er10press, nn05pctpress and nn10pctpress.

Affine imaging Perspective imaging

Criterion n = 51 n = 103 n = 206 n = 51 n = 103 n = 206

Jaccard index 3 3 3 5 22 16
press 4 10 16 7 10 33
cmpress 4 10 16 7 10 33
er01press 4 10 16 7 10 33
er05press 4 6 6 7 10 10
er10press 4 5 6 7 10 10
nn01pctpress 4 10 10 7 10 20
nn05pctpress 4 3 6 4 10 6
nn10pctpress 3 3 6 3 5 6

Table 2: Selected number of control points l for different criteria and the cases shown in figure 4. Because
the surface is flat in both images, the ‘true’ number of control points is three.

Rigid-non-flat and deformable scenes (figures 5 and 6). In these two cases it is difficult to deem

that a statistic does better than another, as ground-truth cannot be known. We can however make reliable

qualitative observations. In all four cases we have that press and cmpress overfit. All methods based on

the Local-Exclusion strategy mitigate overfitting efficiently to a degree consistently related to the strength

of the correspondence exclusion rule. Both strategies (the exclusion radius and the percentage of nearest-

neighbors) do equally well. For stronger exclusion rules, the statistics may even underfit, as for instance

nn10pctpress in the rigid affine case with 103 correspondences.

4.4.4 Summary and Discussion

On the one hand, the usual press and coupled measurements corrected cmpress statistics almost always

overfit, for both simulated and real data. On the other hand, the PRESS statistics using Local-Exclusion

have very interesting behaviors. In particular, the strategies of using an exclusion radius and a fraction

of the number of correspondences nearest-neighbors to form the exclusion sets seem to resolve overfitting

for large numbers of correspondences, without causing underfitting for smaller numbers of correspondences.
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n = 51 n = 103 n = 206

Flat scene
Affine imaging
f1 = 3379 px
f2 = 4724 px
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n = 51 n = 103 n = 206

Flat scene
Perspective imaging
f1 = 888 px
f2 = 888 px
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Figure 4: Real data, rigid-flat cases. Behaviour of the PRESS statistics, fitting residual fitting rmsr,
Jaccard index between the target and registered source surface’s contours Jaccard index as a function of
the warp’s number of control points (horizontal axis of each graph) and number of correspondences (columns
of the figure). The vertical lines represent the number of selected control points for each criterion, which
are also given in table 2. Because the surface is flat in both images, the ‘true’ number of control points is
three. The source and target images overlaid with the correspondences and surface’s contour are shown on
the left.
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n = 51 n = 103 n = 206

Rigid scene
Affine imaging
f1 = 2709 px
f2 = 3217 px
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Rigid scene
Perspective imaging
f1 = 888 px
f2 = 888 px
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Figure 5: Real data, rigid-non-flat cases. Behaviour of the PRESS statistics, fitting residual fitting rmsr,
Jaccard index between the target and registered source surface’s contours Jaccard index as a function of
the warp’s number of control points (horizontal axis of each graph) and number of correspondences (columns
of the figure). The vertical lines represent the number of selected control points for each criterion. The
source and target images overlaid with the correspondences and surface’s contour are shown on the left.
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n = 51 n = 103 n = 206

Deformable scene
Affine imaging
f1 = 2709 px
f2 = 3553 px
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Figure 6: Real data, deformable cases. Behaviour of the PRESS statistics, fitting residual fitting rmsr,
Jaccard index between the target and registered source surface’s contours Jaccard index as a function of
the warp’s number of control points (horizontal axis of each graph) and number of correspondences (columns
of the figure). The vertical lines represent the number of selected control points for each criterion. The
source and target images overlaid with the correspondences and surface’s contour are shown on the left.
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The exclusion radius strategy is advantageous, as using a fixed number of nearest-neighbors is more prone to

underfitting and overfitting with smaller and larger numbers of correspondences, respectively. The exclusion

radius strategy has two more advantages. First, its parameter corresponds to the image area that an image

warp should be able to fill in from neighboring correspondences. From empirical observations, we recommend

choosing between 5−10% of the image diagonal. Second, it naturally adapts to the correspondence density,

when the correspondences are not uniformly spread in the image. We observed that for smaller numbers of

correspondences, the criteria holding out larger numbers of correspondences in their internal training phase,

namely the Local-Exclusion PRESS with a large exclusion radius or a large percentage of nearest-neighbors,

may have an unstable behavior when the number of control points grows larger. This was also revealed by

the standard deviation shown in figure 3. This is explained by the fact that in these cases, these warps have

difficulties predicting the held out correspondences. This both increases the value of the criterion, and thus

prevents overfitting as desired, and its standard deviation. In almost all cases, these instabilities occurred

for numbers of control points larger than the number selected according to the criterion. In other words,

the instabilities did not disturb the process of selecting the number of control points. This was confirmed

by the low standard deviation of the selected numbers of control points for these criteria shown in table 1.

Handling coupled measurements in cmpress does not make a strong difference with press in all cases.

We noticed that this difference increases with the compound effect of smaller numbers of correspondences

and larger numbers of control points. This is because with fewer data and a more flexible model, prediction

becomes more difficult, and the effect of using all measurements corresponding to a datum to predict one

of the measurements thus becomes stronger. Not handling coupled measurements thus artificially improves

the prediction accuracy, and causes press to underestimate cmpress. However, we did not notice that this

discrepancy produced a significant difference in the selected number of control points in our experiments.

This does not mean that for other types of problems, especially with higher dimensions, this difference may

also be negligible.

The selected number of control points is given by finding the minimum PRESS value. In some cases

however, this minimum value may be ill-defined, for two reasons. The first reason is that there may be

multiple minima with similar values. In figure 4 for instance, in the perspective case and for n = 103

correspondences, er10press overfits by selecting 10 control points, but a local minimum with a very similar

value exists for 5 control points, and lies closer to 3, the true number of control points. The second reason is

that the minimum may lie in a shallow part of the PRESS curve. In figure 4 for instance, in the perspective

case and for n = 206 correspondences, nn01pctpress overfits by selecting 20 control points, while a range

of similar values exists between 10 and 20 control points. We have not found that this phenomenon of an



5 Fitting Surfaces 27

ill-defined minimum PRESS value was specific to a criterion, experiment or setup.

5 Fitting Surfaces

We show that MEXPRESS can be used to select the number of control points used in a continuous surface

function model. The control points are chosen iteratively to minimize the reconstruction residual, and

two application cases are considered, with dense and sparse data, obtained by a depth sensor and SfT,

respectively.

5.1 General Method

We follow the same general method and algorithm for both application cases.

5.1.1 General Points

In curve and surface fitting, when using a function model with a linear basis, one has two key ingredients to

choose: (i) the control point placement strategy and (ii) a criterion which allows one to select the number

of control points. Our strategy is to place the control points iteratively where the fitting residual is highest,

monitor the value of the selection criterion, and choose the number of control points for which this selection

criterion has the smallest value.

5.1.2 Iterative Control Point Placement

Control Point placement strategies fall into three main categories. In the first category, the control points

are added iteratively based on the per-datum residual error. They are typically positioned at those places

where the fitting is poor. This strategy was followed for instance for fitting a least squares BBS to scatter

data (Dierckx, 1981) and to mesh data (Dierckx, 1993). In the second category, the control points are

added and pruned from a prespecified discrete set of locations (Breiman, 1993; Friedman, 1991). In the

third category, the control points are optimized jointly with the function’s parameter set. This strategy

was used in a number of approaches, which fix the number of control points a priori (Süssmuth et al.,

2010), iteratively grow the set of control points (Molinari et al., 2004) or jointly optimize the number of

control points (Miyata and Shen, 2005). The first and second categories use convex optimization. The

third category involves a nonconvex cost prone to numerous local minima (Jupp, 1978), solved for instance

with Levenberg-Marquardt (Süssmuth et al., 2010), non-deterministic sampling (Molinari et al., 2004) and

evolutionary computing (Miyata and Shen, 2005). Our approach falls in the first category. We start with

the minimum number of l = 3 control points, for which the fitted surface is a plane, and iteratively add
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control points. At each iteration, a candidate control point is found by combining three constraints. First,

the control point must lie within the function’s domain Ω ⊂ R2 defined by the input data. Second, the

control point must lie at a minimum, predefined distance κ ∈ R, to all the other control points. This is to

favor an even spreading of the control points, and to avoid the ‘lethargy’ problem, causing control points to

sometimes accumulate at the same position (Jupp, 1978). Third, the control point is chosen where the fitting

is the poorest, to reduce the fitting residual as best as possible. Because Ω is a compact subset, choosing

κ > 0 implies that the algorithm necessarily terminates in a finite number of iterations. However, our goal

is to use a selection criterion to limit the number of used control points and thus the model’s complexity.

5.1.3 Selection Criteria

The selection criterion is an essential component as it determines the number of control points to be used

for a dataset. A first type of strategy is to have the user to provide additional knowledge on the expected

fit, such as the tradeoff between the fitting residual and the surface’s smoothness (Dierckx, 1981) or an

upper bound on the fitting residual (Dierckx, 1993). A second type of strategy is to use a criterion inspired

from model selection such as Akaike Information Criterion (AIC) (Akaike, 1974) and Bayesian Information

Criterion (BIC) (Schwarz, 1978), both used in (Miyata and Shen, 2005; Molinari et al., 2004), and k-Fold

Cross-Validation, used in (Breiman, 1993). We propose to use the PRESS statistics, and in particular the

Local-Exclusion PRESS, as selection criteria. This is because we do not expect the user to provide additional

knowledge on the expected fit, and want to be able to handle datasets with various types of density.

5.1.4 Algorithm

The following algorithm implements the above-described iterative control point placement and stopping

criteria:

1. Initialize the control point set C to three random points in Ω separated by a distance greater than κ

2. Fit the model with the control points in C, estimate and store the selection criterion ξ(C)

3. Estimate the per-datum fitting residual

4. Attempt to draw a new control point c ∈ Ω separated by a distance greater than κ to all control points

in C and which maximizes the fitting residual

5. If c exists then update C ← C ∪ c and loop to step 2

6. Return C such that ξ(C) is minimized
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In practice, we have implemented this algorithm as press using the PRESS statistic (3), as cmpress

using the Coupled-Measurement PRESS statistic (9), §3.2, as er01press, er05press, er10press using

the Local-Exclusion PRESS statistic (13) with an Exclusion Radius of 1%, 5% and 10% of the domain Ω’s

diagonal length and as nn01pctpress, nn05pctpress, nn10pctpress using the Local-Exclusion PRESS

statistic (13) excluding a number of Nearest-Neighbor data points given by respectively 1%, 5% and 10%

of the total number of data points. We have also implemented the BIC and AIC criteria as bic and aic.

These two criteria have numerical values which have a very different scale (they are usually much larger)

compared to the PRESS statistics and fit. However, what matters is their minimizers. Therefore, in order

to display them on the same graphs as the other criteria, we positively rescaled and offset them so that

they align to fit as best as possible in the least-squares sense. This does not change their minimizers and

preserve their graph’s shapes.

5.2 Dense Depth-Maps from Depth Sensor

We applied the proposed general fitting algorithm to fit a surface to depth-maps extrated from RGBD images

captured by Kinect v2. More precisely, we fit a TPS to interpolate the depth channel. This means that the

target space has dimension one, g = 1. Therefore, the PRESS and Coupled-Measurement PRESS statistics

are equivalent and we only give the former. The depth-map data are extremely dense, and we subsampled

them to 10,000 points. We may expect that some selection criteria overfit. Our work is complementary to

most works in RGBD image processing, which address the problems of surface completion and registration

between multiple views (Steinbrücker et al., 2013; Xu et al., 2014; Zollhöfer et al., 2014). We show results

on two datasets, for which we limited the maximum number of control points to 175.

The first dataset shows a smooth surface of size 30 × 45 cm. The input image and results are shown

in figure 7. We observe that fit transitions between a steep and a mild decrease at approximately 27

control points, for a fitting RMSR of about 2 mm. This makes this dataset interesting, for 27 is then the

number of control points that one would manually choose, and may serve as a reference to evaluate the

tested criteria. In this respect, we observe that nn10pctpress largely underfits, by selecting only 7 control

points, that bic, er01press, er05press and press overfit, by selecting between 64 and 81 control points,

and that aic largely overfits, by selecting 171 control points. However, er10press and nn05pctpress

select 27 and 28 control points respectively, matching the manually established reference. We observe that

the reconstructed surfaces do not exhibit strong differences. This is because the dataset is dense and has

limited measurement noise, and because the surface is smooth, matching the estimated smooth TPS model,

restricting the modeling error to a large extent. Nonetheless, we observe that by underfitting nn10pctpress
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increases the fitting RMSR of the reference solution by a factor of approximately 3.5, while by overfitting

bic, er01press, er05press and press decrease it only by a factor of approximately 0.7. We observe that

the control points are initially placed at locations where the surface has its highest bending. Due to the

minimal inter-control-point distance criterion, they however finally cover the complete surface.

Input image and ROI

Data press bic aic
l→ 81 64 171

fit (mm) → 1.34 1.46 0.92

Data er01press er05press er10press nn01pctpress nn05pctpress nn10pctpress
l→ 66 81 27 46 28 7

fit (mm) → 1.42 1.34 2.04 1.65 1.99 6.80

Number of control points
50 100 150

V
al

ue
 (

m
m

)

0

2

4

6

8

10
FIT
PRESS
BIC
AIC

Number of control points
50 100 150

V
al

ue
 (

m
m

)

0

2

4

6

8

10
FIT
ER01PRESS
ER05PRESS
ER10PRESS

Number of control points
50 100 150

V
al

ue
 (

m
m

)

0

2

4

6

8

10
FIT
NN01pctPRESS
NN05pctPRESS
NN10pctPRESS

· · ·

l = 10 l = 20 l = 30 l = 40 l = 50 l = 175

Figure 7: Surface fitting for dense depth-maps: the smooth dataset. The first two rows show
the input image and the fitted surface for the different selection criteria. The third row shows the various
selection criteria as a function of the number of control points. The y-axis of the graphs, labelled ‘value’,
is in mm for all criteria as they give a value in depth units, except aic and bic. The fourth row shows the
automatically placed control points in blue, with the last 10 placed points in red. The complete set is shown
in red, right-most.

The second dataset shows a stack of four books of width 24 cm and height 18 cm. The surface formed by

the binding of these four books has sharp angles. We may thus expect more control points to be necessary

to model this dataset than the smooth one. The input image and results are shown in figure 8. We do not

observe a clear transition in fit as in the smooth case. However, we observe clear differences between the
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reconstructed surfaces and use this as our main evaluation criterion. This is because, though the dataset is

dense and has limited measurement noise, the sharp folds of the surface introduce a modeling error for the

TPS we estimate is a smooth model. In this respect, we observe that nn05pctpress and nn10pctpress

largely underfit, selecting respectively 15 and 3 control points, as they fail to capture the surface’s geometry.

Note that 3 is the minimum number of control points. On the other hand, er01press, er05press, bic,

aic and press overfit, selecting between 162 and 175 control points. Note that 175 is the maximum number

of control points, and is selected by aic. Overfitting is observed because the reconstructed surfaces for

these criteria capture the surface’s geometry approximately well but introduce undesired high frequencies.

Finally, er01press and nn01pctpress select respectively 97 and 113 control points. They capture the

surface geometry to a similar extent, with a fitting RMSR of 2.91 mm and 2.59 mm, respectively. As

expected, overfitting reduces the fitting RMSR by a limited factor, as, for instance, er05press lowers it to

1.88 mm. On the other hand, underfitting increases it to 8.36 mm for nn10pctpress, for instance. We

observe that the control points are initially placed at the frontiers between the books, creating sharp folds

in the surface.

These experiments suggest that many existing criteria lead to overfitting when applied to dense data.

BIC is the existing criterion which best mitigates overfitting. We observed that the proposed PRESS statistic

based on an exclusion radius of 10% of the domain does not overfit.

5.3 Sparse Points from Shape-from-Template

SfT is a problem where one wishes to recover the deformation of an object’s model to match an input

image (Perriollat et al., 2011; Salzmann et al., 2007). The vast majority of methods recover the deformation

from point correspondences, as a 3D point cloud expressed in the coordinate frame of the camera which took

the input image. In order to reconstruct the entire deformation to achieve applications such as augmented

reality, one then reconstructs the function which maps points from the object’s model to the deformed model.

In most cases, the object’s model has a 2D parameterization Ω ⊂ R2, and the problem boils down to fitting

a function ϕ : Ω→ R3. This means that the target space has dimension three, and so g = 3. Therefore, the

PRESS and Coupled-Measurement PRESS statistics are not equivalent and we only give the latter. The

spiderman dataset was provided in (Bartoli et al., 2013) and comes with 1550 point correspondences. The

paper dataset was provided in (Varol et al., 2012) and comes with 390 point correspondences. For both

datasets, we reconstructed the 3D point cloud using the pointwise SfT method from (Bartoli et al., 2015).

Each point being reconstructed independently, the point cloud is therefore quite noisy.

The spiderman dataset is an example of SfT data where the number of correspondences is rather high.
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Input image and ROI

Data press bic aic
l→ 166 166 175

fit (mm) → 1.85 1.85 1.82

Data er01press er05press er10press nn01pctpress nn05pctpress nn10pctpress
l→ 166 162 97 113 15 3

fit (mm) → 1.85 1.88 2.91 2.59 6.19 8.36
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Figure 8: Surface fitting for dense depth-maps: the sharp dataset. The first two rows show the
input image and the fitted surface for the different selection criteria. The third row shows the various
selection criteria as a function of the number of control points. The y-axis of the graphs, labelled ‘value’,
is in mm for all criteria as they give a value in depth units, except aic and bic. The fourth row shows the
automatically placed control points in blue, with the last 10 placed points in red. The complete set is shown
in red, right-most.
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Input image

Data cmpress bic aic
l→ 34 12 150

fit (mm) → 10.56 12.29 4.43

Data er01press er05press er10press nn01pctpress nn05pctpress nn10pctpress
l→ 34 12 12 12 12 9

fit (mm) → 10.56 12.29 12.29 12.29 12.29 13.08
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Figure 9: Surface fitting for sparse depth-maps: the spiderman dataset. The first two rows show
the input image and the fitted surface for the different selection criteria. The third row shows the various
selection criteria as a function of the number of control points. The y-axis of the graphs, labelled ‘value’, is
in mm for all criteria as they give a value in 3D position units, except aic and bic.
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We set the maximum number of control points to 150. The input image and results are shown in figure 9.

We observe significant differences between the reconstructed surfaces and that the fitting RMSR transitions

from a steep to a milder decrease at 12 control points with a fitting RMSR of about 12 mm. Both lead to

consistent observations in terms of the fitting quality. This transition is explained by the significant level of

noise in the point cloud, in spite of the limited modeling error. We observe that nn10pctpress underfits,

as it selects only 9 control points. Eventhough it does not increase the fitting RMSR significantly, as it

raises to 13.08 mm only, the reconstructed surface fails to capture the deformation’s fine details. We observe

that er01press and cmpress slightly overfit with 34 control points, a fitting RMSR reduced slightly to

10.56 mm, and a reconstructed surface affected by noise. Similarly, but to a much higher extent, we observe

that aic overfits, reducing the fitting RMSR significantly to 4.43 mm by selecting 150 control control, the

maximum possible, and leading to an extremely noisy surface reconstruction. Finally, we observe that all the

other criteria, namely bic, er05press, er10press, nn01pctpress and nn05pctpress, select 12 control

points, matching the reference number. They lead to the most visually convincing surface reconstruction.

The paper dataset is a typical example of SfT data, where the number of correspondences is low. We set

the maximum number of control points to 110. The input image and results are shown in figure 10. We do

not observe a clear transition point in the fitting RMSR, but rather a transition zone, located approximately

between 10-20 control points. This is explained by the simple and smooth geometry of the observed surface.

None of the criteria underfit. We observe that nn05pctpress, nn10pctpress and er10press all fall in

the transition zone with 14, 14 and 18 control points selected, respectively. We then have nn01pctpress,

which also gave a visually satisfying surface reconstruction, with 29 control points selected. We observe that

bic and er05press overfit, with 50 and 51 control points selected and mild noise visible in the reconstructed

surfaces, while er01press, cmpress and aic clearly overfit, as visible from the reconstructed surfaces, with

75, 75 and 110 selected control points, respectively.

We draw the same overall observations as in the depth-map experiments case: most existing criteria lead

to overfitting, while the proposed PRESS statistic based on an exclusion radius of 10% of the domain does

not overfit.

6 Conclusion

We have proposed MEXPRESS, a formula which allows one to compute the PRESS statistic and many vari-

ants non-iteratively. PRESS uses the principle of Cross-Validation (CV) for Linear Least Squares regression.

A usage of MEXPRESS is to compute PRESS, corresponding to Leave-One-Out CV, when multiple mea-

surements are coupled, as in most regression problems. We have shown how to compute k-Fold PRESS and
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Input image

Data cmpress bic aic
l→ 75 50 110

fit (mm) → 1.47 1.72 1.22

Data er01press er05press er10press nn01pctpress nn05pctpress nn10pctpress
l→ 75 51 18 29 14 14

fit (mm) → 1.47 1.71 2.65 2.27 3.02 3.02
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Figure 10: Surface fitting for sparse depth-maps: the paper dataset. The first two rows show
the input image and the fitted surface for the different selection criteria. The third row shows the various
selection criteria as a function of the number of control points. The y-axis of the graphs, labelled ‘value’, is
in mm for all criteria as they give a value in 3D position units, except aic and bic.
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how to handle overfitting with Local-Exclusion PRESS. All these PRESS variants naturally handle coupled

measurements. We have shown that MEXPRESS can be directly used to select the number of control points

involved in linear fractional warps. These warps model perspective, and include the 2D homography as a

special case. In this problem, the Local-Exclusion strategy turned out to be extremely important to cope

with overfitting. We have also shown that MEXPRESS can be used to select the number of control points in

surface fitting with dense and sparse data. Similarly, the Local-Exclusion strategy turned out to be efficient

to mitigate overfitting. As a rule of thumb, we consistently found in our experiments that excluding data

closest to the validation datum by 10% of the image’s or domain’s diagonal length, gives the most reliable

results. However, we observed in some experiments that this strategy was slightly outperformed by exclud-

ing a fixed amount of nearest-neighbors of the validation datum. This conclusion is conditioned by the type

of data being used, including the distribution of the data points and the variation in the transformation’s

curvature. In surface fitting, it is also conditioned by the strategy used to iteratively place the control points.

MEXPRESS opens the way to further research in model selection. A model’s complexity can be rep-

resented by a varying number of parameters (such as the number of control points of an image warp) or

the regularization weight used in the cost function. Being able to select the optimal number of parameters

and regularization weight are unsolved problems. PRESS and Leave-One-Out CV are known to overfit but

were computationally attractive for their non-iterative formulas. MEXPRESS brings flexibility, as it allows

one to implement many different training and validation strategies non-iteratively. MEXPRESS may also

allow one to address the question of robustness. Detecting blunders while fitting a flexible model is an open

and tremendously difficult problem. This is because increasing the complexity of the model may make it

fit the blunders to a good extent, leaving one with ambiguities regarding the data’s ‘blunderness’. Using

the ‘compatibility’ between a datum and its neighbors may be used to collect evidence on the datum’s

blunderness. In this respect, MEXPRESS allows one to quickly and exhaustively assess the compatibility

between a datum and various samples of its neighbors, and may form the basis for a robustified PRESS

statistic, for which the notion of compatibility would be defined as the ability of neighboring data to predict

one another.
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A Proof of Proposition 1

The proof of proposition 1 follows the same steps as the proof for the PRESS (Bartoli, 2009). It requires

the following lemma.

Lemma 1. The model estimate x̄(K) obtained by holding out a set of measurements with index set K ∈ [1,m]

is the same as the one obtained by replacing the K responses by their predictions with the model x̄(K):

x̄(K)
def
=

(
I(K)A

)†
I(K)b = A†b̃(K) with b̃(K)

def
= I(K)b + I(−K)Ax̄(K), (22)

where we used the notation I(K) for an identity matrix whose diagonal entries with index in K are put to

zero, and I(−K)
def
= I− I(K). Formally, I(K) = diag(d) with dK = 0 and d−K = 1.

Proof of lemma 1. Using the definition of b̃(K) we have:

A†b̃(K) = A†I(K)b + A†I(−K)Ax̄(K) (23)

Because I(−K) = I− I(K) this may be expanded as:

A†b̃(K) = A†I(K)b + A†Ax̄(K) − A†I(K)Ax̄(K). (24)

The second term is simplified to A†Ax̄(K) = x̄(K). Using the definition of x̄(K), the third term is simplified to

A†I(K)Ax̄(K) = A†I(K)b. The overall expression is thus simplified to:

A†b̃(K) = A†I(K)b + x̄(K) − A†I(K)b = x̄(K), (25)

concluding the proof.

Proof of proposition 1. The case of an empty set K is straightforward as then e(K) is a zero-length vector. We

start by rewriting the predictions in K by the model fitted with all measurements as AKx̄ = AKA
†b = ÂKb.

Similarly, we rewrite the predictions in K by the model fitted with all but the measurements in K as

AKx̄(K) = AKA
†b̃(K) = ÂKb̃(K), where the first equality is given by lemma 1. The difference between the two

predictions is thus given by:

AKx̄− AKx̄(K) = ÂK

(
b− b̃(K)

)
= ÂK

(
b− I(K)b− I(−K)Ax̄(K)

)
, (26)

where the second equality is obtained by using the definition of b̃(K). We then use I− I(K) = I(−K), leading
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to:

AKx̄− AKx̄(K) = ÂK
(
I(−K)b− I(−K)Ax̄(K)

)
. (27)

By noting that ÂKI(−K)A = ÂK,KAK and ÂKI(−K)b = ÂK,KbK we rearrange the equation as:

(I− ÂK,K)AKx̄(K) + ÂK,KbK = AKx̄. (28)

We subtract bK to each side of the equation:

(
I− ÂK,K

) (
AKx̄(K) − bK

)
= AKx̄− bK, (29)

and arrive at:

AKx̄(K) − bK =
(
I− ÂK,K

)−1
(AKx̄− bK) , (30)

concluding the proof.
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