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Abstract

Shape-from-Template (SfT) reconstructs the shape of a deforming surface from a single image, a 3D template and a

deformation prior. For isometric deformations, this is a well-posed problem. However, previous methods which require no

initialization break down when the perspective effects are small, which happens when the object is small or viewed from

larger distances. That is, they do not handle all projection geometries. We propose stable SfT methods that accurately

reconstruct the 3D shape for all projection geometries. We follow the existing approach of using first-order differential

constraints and obtain local analytical solutions for depth and the first-order quantities: the depth-gradient or the surface

normal. Previous methods use the depth solution directly to obtain the 3D shape. We prove that the depth solution is

unstable when the projection geometry tends to affine, while the solution for the first-order quantities remain stable for

all projection geometries. We therefore propose to solve SfT by first estimating the first-order quantities (either depth-

gradient or surface normal) and integrating them to obtain shape. We validate our approach with extensive synthetic and

real-world experiments and obtain significantly more accurate results compared to previous initialization-free methods.

Our approach does not require any optimization, which makes it very fast.
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I. INTRODUCTION

Context: The 3D reconstruction of deforming objects with a monocular camera has been a subject of great interest.

Although the theory of rigid reconstuction by Structure-from-Motion (SfM) has matured [Hartley and Zisserman, 2004],

non-rigid reconstruction remains an open problem. Monocular 3D reconstruction of deforming scenes has potential

applications in a wide range of scenarios such as medical endoscopic augmented reality [Maier-Hein et al., 2014]. The

difficulty in monocular non-rigid reconstruction stems from the fact that it is a severely under-constrained problem

without additional priors on the surface deformation or shape space. We study the isometric deformation model, where

the surface deforms such that the geodesic distance remains unchanged. The isometric model applies to a wide variety

of real objects. Using the isometric model, two main non-rigid reconstruction problems were studied in the literature.

In Non-Rigid Shape-from-Motion (NRSfM) [Bregler et al., 2000; Chhatkuli et al., 2014b; Collins and Bartoli, 2010;

Del Bue, 2008; Taylor et al., 2010; Torresani et al., 2008; Vicente and Agapito, 2012], the 3D shape is obtained

from multiple images. In Shape-from-Template (SfT) [Bartoli and Collins, 2013; Bartoli et al., 2015; Ngo et al., 2015;

Perriollat et al., 2011; Salzmann and Fua, 2011], the 3D shape is obtained from a single image and a template of the

object. The template is a textured 3D model of the object in a known reference position. We here study the shape

inference step of SfT, assuming that registration between the template and image is solved using, for example, point

correspondences [Collins and Bartoli, 2014b; Pilet et al., 2008; Pizarro and Bartoli, 2012]. For SfT, the isometric model

provides locally as many constraints as the rigid planar model. A scene’s projection geometry can range from strongly

perspective to virtually affine. In the latter case, this happens when the object is very small or viewed from a large

distance. We define a stable method as one that gives an accurate 3D reconstruction for all projection geometries. We

propose two stable methods that require no initialization and are fast.

Several successful SfT methods that have been proposed are based on the isometric constraint. In essence, these

methods differ from each other by the way isometry is imposed and how the final constraints are optimized. [Bartoli and

Collins, 2013; Bartoli et al., 2015] describe isometric SfT as a Partial Differential Equation (PDE) system, giving local

analytical solutions and a proof that isometric SfT is well-posed. [Brunet et al., 2014] finds the shape by minimizing a

statistically optimal cost while imposing isometric constraints. [Collins and Bartoli, 2015] propose a real-time tracking-

based approach for the perspective cameras. A different class of methods [Ngo et al., 2015; Perriollat et al., 2011;

Salzmann and Fua, 2011] relaxes isometry with inextensibility. Using the so-called Maximum Depth Heuristic (MDH),

[Perriollat et al., 2011; Salzmann and Fua, 2011] choose the shape that maximizes depth under the inextensibility

constraint. Inextensibility means the distance between the neighboring points remain inferior to their geodesic distance

in the template. Recently [Ngo et al., 2015] modified the approach of [Salzmann and Fua, 2011] by enforcing Laplacian

smoothness in the solution. The methods discussed form a solid foundation for the SfT problem. However they lack

accuracy and applicability in many scenarios. We claim that the following qualities are desired of an SfT method: a) it

should be robust to noise and outliers in correspondences, b) it should be accurate even with a low number of matched

feature points, c) it should work with camera focal lengths that are very small to very large (stability) and d) it should

be fast and analytical with no requirement for an initialization. The correspondence outliers mentioned in the property
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a) can be either tackled at the registration step or the reconstruction step. There are several successful methods that

remove outliers during registration [Collins and Bartoli, 2014b; Pilet et al., 2008; Pizarro and Bartoli, 2012] while

small noise in correspondences has to be dealt with in the reconstruction step. For that reason, we focus our further

discussions of property a) in the context of noise in correspondences for the reconstruction step. The inextensibility-

based methods [Ngo et al., 2015; Perriollat et al., 2011; Salzmann and Fua, 2011] fail to capture the property in c)

and do not entirely satisfy d), while the analytical solutions in [Bartoli and Collins, 2013; Bartoli et al., 2015] fail to

capture the requirements in c). Similarly the statistically optimal cost minimization in [Brunet et al., 2014; Collins and

Bartoli, 2015] does not satisfy d). Thus there is a clear need for a method that satisfies all four criteria.

Local analytical methods: The local analytical solutions for SfT were first given in [Bartoli et al., 2015], where

a set of non-holonomic solutions was obtained for a PDE system with a change of variable. The solutions of a PDE

system are called the non-holonomic solutions when they are obtained by treating any quantities and their derivatives

as separate independent unknowns. Specifically, the non-holonomic solutions give the radial component of the depth

and its gradient in the spherical coordinate system. Despite the fact that the local analytical depth solution is unique,

we show that it is not well-constrained when the camera projection tends to affine. On the other hand, we prove that the

depth-gradient solution is always stable. This is a significant discovery because most methods for SfT rely on computing

a solution for the depth [Bartoli and Collins, 2013; Bartoli et al., 2015; Collins et al., 2014; Ngo et al., 2015; Salzmann

and Fua, 2011]. We further give an alternative approach to isometric SfT, which gives an equivalent but different PDE

system, inspired from the work of [Collins and Bartoli, 2014a] on plane-based pose estimation. In [Collins and Bartoli,

2014a] the pose of a rigid plane is estimated using the non-holonomic solutions of a PDE system. While [Collins and

Bartoli, 2014a] does not give solutions for a deforming surface, we adapt the PDE system for SfT for both planar and

non-planar templates. The resulting PDE system is equivalent to the PDE system proposed in [Bartoli et al., 2015]

but its non-holonomic solutions describe different quantities. In particular its second non-holonomic solution is used

differently in the subsequent steps of reconstruction that yields slightly different results. It also gives a more intuitive

description of SfT and its solutions in terms of rigid transforms of tangent planes on the surface, and surface normals.

Stable solutions and stable methods: We define a stable solution as a non-holonomic solution of the SfT PDE

system that remains well-constrained regardless of the projection geometry involved (i.e., perspective or affine). We

define a stable method as one which solves SfT accurately for all projection geometries. We propose two stable methods

that satisfy properties a) to d) described previously. We achieve this by using the stable solutions based on two first-

order quantities: the depth-gradient and surface normal. In our first method, which we refer to as the stable type-I

method, we specifically use the radial depth-gradient solution. We obtain this from the PDE system of [Bartoli et al.,

2015]. However, the radial depth gradient is only known up to sign. We resolve the sign from the depth solution, and

then integrate the quantity over the surface to obtain the radial depth values. Because this is from the integration, the

values are up to a global scale factor. We compute the scale factor from the average of the depth solution. Finally

we obtain the depth values by a change of variable. Our second method, the stable type-II method is similar, however

we use non-holonomic solution for the surface normal. Like the radial depth gradient, the surface normal also has a
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two-fold ambiguity. We resolve this again by using the depth solution. Finally we integrate the normals, then resolve

the reconstruction’s scale using the average of the depth solution. In practice, the results of the two stable methods

differ slightly due to the influence of noise on the subsequent steps. We find the stable type-II method to be slightly

superior to the stable type-I. Both of the proposed methods rival the accuracy of statistically optimal approaches [Brunet

et al., 2014; Collins and Bartoli, 2015], are stable under any projection geometry and require no initialization. They

are extension of our previous work [Chhatkuli et al., 2014a], where we explored the instability of depth solution in the

differential isometric SfT formulation and proposed an algorithm to obtain a better 3D reconstruction using the stable

type-I method.

Paper layout: The paper is organized as follows. We present previous work on SfT in §II. We then formally

introduce our SfT problem statement and give the general PDEs describing it in §III. We present the type-I solutions,

analyze their stability and give the stable type-I method in §IV. We introduce the type-II solutions, analyze their

stability and give the stable type-II method in §V. We give details of the experiments and discuss the results in §VI,

and finally provide our conclusions in §VII.

Notation: We use bold for vectors and matrices and italics for scalars. We use Greek letters for functions (e.g.

ψ). We use the operator Jψ to write the function giving the Jacobian matrix of ψ. We use diag(s1, . . . , sn) to define a

diagonal matrix from the scalars s1, . . . , sn. Given a matrix M we write λi(M) and vi(M) for its ith eigenvalue and

eigenvector. We assume the eigenvalues to be in descending order: λi ≥ λj with i < j. We denote an identity matrix

of size n× n as In. For a matrix M of size m× n we denote its sub-matrix made of the first i rows and j columns

as [M]ij . We write the jth column of a matrix M as [M]j .

II. PREVIOUS WORK

Work in non-rigid 3D reconstruction problems started with the template-less NRSfM scenarios. The work of [Bregler

et al., 2000] is one of the earliest examples of NRSfM methods and is based on the factorization approach for an

orthographic camera. The SfT methods on the other hand, were introduced later but they matured quickly and are mostly

based on physics-based models of surfaces, mainly the isometric model. Isometry can be formulated as a differential

constraint on the deformation function [Brunet et al., 2014] or approximated by putting bounds on the distances between

neighboring points [Perriollat et al., 2011; Salzmann and Fua, 2011]. In order to organize the discussion on previous

works in isometric SfT, we classify the methods based on their final constraints and the way they are optimized: i)

zeroth-order methods based on inextensibility [Ngo et al., 2015; Salzmann and Fua, 2011], ii) statistically optimal cost

refinement [Brunet et al., 2014; Collins and Bartoli, 2015] and iii) analytical solutions from quadratic PDEs [Bartoli

and Collins, 2013; Bartoli et al., 2015]. The MDH-based methods in i) [Perriollat et al., 2011; Salzmann and Fua, 2011]

solve the SfT problem by maximizing depth while putting an upper bound on the distance between neighboring points.

[Perriollat et al., 2011] proposed the MDH with inextensibility as a relaxation of the original isometric constraint.

[Salzmann and Fua, 2011] reformulated the MDH as a convex problem and applied Second-Order Cone Programming

(SOCP) to compute depth. They also made use of a learned space of deformations using a linear local model for each
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small patch on the mesh. Such an approach limits the method to the use of surfaces where learned models for patches

already exist. [Ngo et al., 2015] proposed a modified approach, where the method uses the inextensibility constraints

but does not maximize the depth explicitly. It uses a mesh Laplacian to parametrize the surface with a smaller set of

control points. This effectively reduces the size of the final inequalities that are to be optimized by splitting the problem

into two optimizations. The Laplacian parametrization removes the learning mechanism of [Salzmann and Fua, 2011]

and puts a prior on the space of deformations using a method that existed in computer graphics [Sorkine et al., 2004;

Sumner and Popović, 2004]. Such priors are well suited for most applications because they do not make statistical

assumptions about the material properties of surfaces. However, the method requires solving two different optimization

problems, one of them being non-convex. The solution requires an iterative approach and the computation time does

not scale up linearly with increase in the mesh size. The zeroth-order methods are non-analytical and consequently

some of their theoretical aspects are still not well understood. Nevertheless, it is clear that inextensibility does not

constrain depth strongly in near-affine conditions as for the perspective conditions.

The method [Brunet et al., 2014] in ii) optimizes a statistically optimal cost, that includes the differential isometric

constraint, 3D back-projection constraints and smoothness. On the one hand it is non-convex and relies on iterative

local optimization such as Levenberg-Marquardt. Such a refinement involves the use of an initialization and requires

a much higher computation time. Apart from that, the optimization requires relative weighting of the three constraints

with two parameters that need to be precisely tuned to get optimal results. On the other hand, it carries the advantage

of having a holonomic solution of depth, where the relationship between depth and its Jacobian is taken into account.

This also means that it does not suffer from the depth instability in near-affine conditions as is the case for other

methods. The method of [Collins and Bartoli, 2015] is more general than [Brunet et al., 2014] and works in real-time.

It handles arbitrary surface meshes and solves the registration and shape inference problem together using dense point

matches. However, it also requires an initial solution, which is obtained by tracking the object frame-to-frame.

The analytical methods in iii) [Bartoli and Collins, 2013; Bartoli et al., 2015] use a flattened template-to-image

registration warp and the surface parametrization function derivatives to directly compute the surface’s depth analytically.

At each surface point, the depth is obtained as the non-holonomic solutions to a PDE system. It uses the zeroth and

first-order information like ii) but the solutions are obtained analytically. This requires computing the gradient of

the local image warp. Methods in iii) discard the depth-gradient solution and keep only the depth solution. The local

analytical nature of the solutions means that the methods are very fast and can be parallelized efficiently as the solution

for each point is found independently. As an advantage of being analytical, methods in iii) also form a powerful tool

to analyze the effect of different projection geometries on the recovered shape.

III. DIFFERENTIAL GEOMETRIC AND PDE-BASED MODELING

We follow the problem modeling of [Bartoli et al., 2015] as depicted in figure 1. We start with the 3D template

T ⊂ R3. The flat template is a 2D space Ω ⊂ R2 obtained from T , which is parametrized with ∆ ∈ C1(Ω,R3).

Consequently the flattening function is ∆−1. In practice it is obtained from a conformal flattening of a texture-mapped
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mesh or often simply by taking an image of the 3D object. The 3D template T is transformed by an isometric

deformation ψ ∈ C1(T ,R3). The deformed surface S ⊂ R3 is projected by a known camera projection function Π

onto an image I ⊂ R2. We define S in the camera’s coordinate frame. We denote the registration between Ω and I

as η ∈ C1(Ω,R2). We parametrize the deformed surface S by an unknown embedding function ϕ ∈ C1(Ω,R3).
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Fig. 1: Differential geometric modeling of Shape-from-Template.

Our goal is to solve the SfT problem, represented by ψ. In practice we work with the embedding ϕ. This is equivalent

since ϕ = ψ◦∆. We obtain ϕ from the known functions ∆, η and Π, and the fact that the surface deforms isometrically.

Below we describe the differential constraints and then define the SfT problem with a set of PDEs.

A. Differential Constraints

We divide the constraints on ϕ into the deformation constraint and the reprojection constraint. The deformation

constraint imposes the isometric prior while the reprojection constraint is analogous to a data term, which ensures that

the reprojection of the surface matches the input image. This information is related to the camera geometry and imaging

via the known projection function Π. We give details for both constraints as presented in [Bartoli and Collins, 2013;

Bartoli et al., 2015] and additionally generalize them for different camera models with which we obtain a generalized

equation in §IV.

1) Deformation constraint: We start with the equation for the embedding ϕ = ψ ◦∆; its differentiation leads to:

Jϕ = (Jψ ◦∆) J∆. (1)

Pre-multiplying equation (1) by its transpose gives us:

J�ϕ Jϕ = J�∆ (Jψ ◦∆)
�
(Jψ ◦∆) J∆. (2)
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Isometric deformations preserve geodesic distances and for such deformations we have:

(Jψ ◦∆)
>

(Jψ ◦∆) = I3, (3)

which simply states that the metric tensor on the surface remains unchanged with an isometry described by ψ.

Substituting equation (3) in equation (2) gives:

J>ϕ Jϕ = J>∆J∆. (4)

Equation (4) states that the first fundamental form is preserved in an isometry. Thus it remains the same for the surface

embedding ϕ and the template parametrization ∆.

2) Reprojection constraint: The reprojection constraint is obtained with the reprojection equation:

η = Π ◦ ϕ. (5)

Equation (5) enforces consistency between the warp η and the projection of the embedding in the image. Without loss

of generality we assume that the world coordinate frame is the camera’s and we denote as f > 0 the camera’s focal

length. We then use the reprojection constraint to express the embedding ϕ = [ϕx ϕy ϕz]
> with the depth function

ϕz ∈ C1(Ω,R). We consider two possible camera models: the perspective camera and the infinitesimal weak-perspective

camera.

The perspective camera: With perspective projection ΠP we have:

η = ΠP ◦ ϕ =

[
f ϕx

ϕz
f
ϕy

ϕz

]>
. (6)

Using equation (6) the embedding ϕ may be parametrized by the depth function ϕz and the template-to-image warp

function in homogeneous coordinates η̃> = [η> 1] as:

ϕ = ΦPη̃ with ΦP = diag

(
ϕz
f
,
ϕz
f
, ϕz

)
. (7)

The infinitesimal weak-perspective camera: This camera model was proposed to simplify the PDEs by approximat-

ing the gradient [Bartoli et al., 2013]. It is based on the weak-perspective model, which approximates the perspective

camera [Hartley and Zisserman, 2004]. It first projects the scene orthographically onto a fronto-parallel plane placed at

the scene’s average depth and then scales it. The infinitesimal weak-perspective camera instantiates a weak-perspective

camera at each point. This gives the same projection as the perspective camera but simplifies the expression for the

depth-gradient. It is non-analytical. The infinitesimal weak-perspective projection ΠWP yields:

η = ΠWP ◦ ϕ =

[
f ϕx

ζ f
ϕy

ζ

]>
. (8)
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In this model ζ represents the depth. It is different at each point and given by ϕz , while preserving the property that

Jζ = 01×2. The back-projection equation with the infinitesimal weak-perspective model is:

ϕ = ΦWPη̃ with ΦWP = diag

(
ζ

f
,
ζ

f
, ϕz

)
. (9)

Unified camera model: We give a unified model for a general camera by rewriting the reprojection constraint

with the back-projection matrix as:

ϕ = Φη̃ with Φ ∈ {ΦP,ΦWP}. (10)

The partial derivatives of the back-projection matrix Φ is:

M =
∂Φ

∂ϕz
=


MP = diag( 1

f ,
1
f , 1) perspective

MWP = diag(0, 0, 1) infinitesimal weak-perspective.

(11)

B. General PDE

The constraints described in §III-A were first used in [Bartoli et al., 2015] to analytically solve isometric SfT and

to show that it is a well-posed problem. Here, we give the following generalized PDE system to describe SfT:

Find ϕ s.t.


J>ϕ Jϕ = J>∆J∆

Π ◦ ϕ = η.

(12)

In the following sections we reformulate system (12) and show that it intrinsically has three non-holonomic unknowns

and three equations. The holonomic solutions for system (12), which enforces the differential dependency between the

solutions may not exist in practice in the presence of noise. We study the space of solutions of system (12) using

two different PDE formulations, which result in type-I solutions and type-II solutions. The type-I solutions provide

the radial component of depth and its gradient. The type-II solutions give the depth and the surface normal. The two

formulations provide the same direct depth solution, however as we will show, the second non-holonomic solutions

for type-I and type-II solutions are used differently in the subsequent steps that produce accurate but slightly different

reconstructions.

IV. TYPE-I SOLUTIONS STABILITY AND TYPE-I STABLE METHOD

The well-posedness of isometric SfT defined by the PDE system (12) was proved in [Bartoli et al., 2015] where the

local non-holonomic solutions for the PDE system were derived. We first describe the analytical method to obtain the

non-holonomic solutions as given by [Bartoli and Collins, 2013; Bartoli et al., 2015]. In order to achieve that, they

reformulate system (12) so that it consists of three non-holonomic unknowns: the depth and its gradient with respect

to the flat template. Our contribution here is that we generalize the equations for two different camera models and

derive solutions for both models.
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A. Type-I Solutions

We consider the embedding parametrized by the depth function ϕz as shown in equation (10). The problem of SfT

can be viewed as that of finding the depth function ϕz so that the deformation constraints (4) are met. We derive a non-

linear PDE system that holds for both perspective and infinitesimal weak-perspective projection (10) and deformation

constraints (4). We first differentiate equations (7) and (9) and use the expressions defined in equation (11) to get Jϕ:

Jϕ = Mη̃Jϕz
+ ΦJη̃, (13)

To verify equation (13) one can expand equation (7) or (9) before differentiating them. Similarly, following through

the matrix multiplications in equation (13) we reach the same result.

We introduce equation (13) in the deformation constraint (4) to obtain the following non-linear PDE system:

J>ϕz
η̃>M2η̃Jϕz

+ J>ϕz
η̃>MΦJη̃ + J>η̃ ΦMη̃Jϕz

+ J>η̃ Φ2Jη̃ = J>∆J∆. (14)

System (14) models SfT in terms of ϕz and Jϕz for perspective and infinitesimal weak-perspective projections. Assuming

Jϕz
and ϕz are independent variables, we obtain the non-holonomic solutions of system (14) analytically. We denote

them as ϕ̄z ∈ C1(Ω,R) and κ̄ ∈ C0(Ω,R2). Despite the fact that system (14) admits exact solutions for both ϕ̄z and

κ̄, they are not generally consistent since Jϕ̄z 6= κ̄. With errors in η, system (14) is in fact an overdetermined PDE

system with no general (i.e. holonomic) solutions.

1) Perspective camera: The PDE system (14) is specialized to perspective projection by choosing ΦP from equation

(7) and MP from equation (11):(
1 +

η>η

f2

)
J>ϕz

Jϕz
+
ϕz
f2

(J>ϕz
η>Jη + J>η ηJϕz

) +
ϕ2
z

f2
J>η Jη = J>∆J∆.

We simplify this system by changing variables with:

α = ϕzν and ν =

√
1 +

η>η

f2
, (15)

giving Jα = νJϕz
+ ϕz

νf2 η
>Jη . This leads to an equivalent but simpler PDE system in α and Jα:

J>α Jα + α2γ = J>∆J∆, (16)

where:

γ =
1

ν2f2

(
J>η Jη −

1

ν2f4
J>η ηη

>Jη

)
. (17)

In order to obtain the non-holonomic solutions we subsitute Jα by an independent vector function β ∈ C0(Ω,R2) in

equation (16). This gives us:

β>β + α2γ = J>∆J∆. (18)
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Following [Bartoli and Collins, 2013; Bartoli et al., 2015] we can always find a single algebraic solution of system

(18). We denote the non-holonomic solutions of α and β as ᾱ and β̄. To obtain them we first modify equation (18) as:

β>βγ−1 = J>∆J∆γ
−1 − α2I2. (19)

The left-hand side of equation (19) clearly has rank 1 and therefore the second eigenvalue of the right hand side is 0

as well. With that we obtain:

ᾱ =
√
λ2

(
J>∆J∆γ−1

)
. (20)

Substituting the solution for α in equation (18) the non-holonomic solution β̄ is obtained as:

β̄ = ±
√
λ1(Υ)v1(Υ), (21)

where:

Υ = J>∆J∆ − λ2

(
J>∆J∆γ

−1
)
γ. (22)

We may recover ϕ̄z from equation (20) followed by the change of variable (15). Instead of κ̄, we recover β̄ from

equation (21). The solutions ᾱ and β̄ are the non-holonomic solutions of the perspective type-I PDE system (18)

obtained algebraically and thus they exist in all practical circumstances. In our stable type-I method we give an

alternative for obtaining the depth at each point using β̄.

2) Infinitesimal weak-perspective camera: The PDE for the infinitesimal weak-perspective camera is found by

choosing ΦWP from equation (9) and MWP from equation (11):

J>ϕz
Jϕz

+
ζ2

f2
J>η Jη = J>∆J∆, (23)

where we set ζ = ϕz in the infinitesimal weak-perspective model as ζ gives the ‘average’ depth at a differential level.

System (23) has exactly the same structure as system (16), the simplified PDE system for perspective projection.

We directly obtain the non-holonomic solutions of the system ϕ̄z and κ̄, without any change of variable. To obtain ϕ̄z

and κ̄ in the infinitesimal weak-perspective model we first assign γWP = f−2J>η Jη . This transforms equation (23) into

the following:

κ>κ+ ϕ2
zγ

WP = J>∆J∆. (24)

Noting the similarity of equation (24) with equation (18), we give the non-holonomic solutions for equation (24) as:

ϕ̄z =

√
λ2

(
J>∆J∆ (γWP)

−1
)

and κ̄ = ±
√
λ1(ΥWP)v1(ΥWP), (25)

where:

ΥWP = J>∆J∆ − λ2

(
J>∆J∆

(
γWP)−1

)
γWP.

3) Obtaining the embedding: [Bartoli and Collins, 2013; Bartoli et al., 2015] use ϕ̄z directly to get the embedding
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ϕ through equation (7) or (9), neglecting the information contained in β̄ and consequently κ̄. At first glance this

direct-depth method seems to be sensible as β̄ is known only up to sign and requires integration to recover depth.

We show in §IV-B however, that the depth solution ϕ̄z is not well-constrained, unlike the depth-gradient. We give a

method of obtaining a better 3D reconstruction using β̄ in §IV-C.

B. Stability

We prove two important results regarding the stability of the type-I non-holonomic solutions of PDEs (16) and (23).

We list them as propositions below.

Proposition 1. The non-holonomic solution for depth ϕ̄z is weakly constrained when the projection geometry tends to

affine.

Proposition 2. The non-holonomic solution for the depth-gradient κ̄ is well-constrained in all projection geometries.

Figure 3 gives a general diagram showing the effect of different projection geometries on SfT. We prove these results

for the perspective and infinitesimal weak-perspective cameras.

We define a projection function Πs on a 3D point Q = [Qx Qy Qz]
>, depending on a parameter s that allows us

to continuously select the amount of perspective:

Πs(Q) =
(s+ 1) f

Qz + sf

[
Qx Qy

]>
. (26)

We obtain a perspective projection with the focal length f when s = 0, and an orthographic projection1 when s→∞:

lim
s→∞

Πs(Q) =

[
Qx Qy

]>
. (27)

The infinitesimal weak-perspective approximation of Πs is:

ΠWP
s (Q) =

(s+ 1) f

ζ + sf

[
Qx Qy

]>
. (28)

Proof of propositions 1 and 2 for the perspective camera. We first substitute the projection model Πs into the PDE

system (14) by simply redefining the back-projection matrix Φ for perspective projection as:

Φs = diag

(
ϕz + sf

(s+ 1)f
,
ϕz + sf

(s+ 1)f
, ϕz + sf

)
. (29)

Introducing Φs in the type-I PDE system (14) we obtain:(
1 +

η>η

((s+ 1)f)2

)
J>ϕz

Jϕz
+

ϕz + sf

((s+ 1)f)2
(J>ϕz

η>Jη) +
ϕz + sf

((s+ 1)f)2
(J>η ηJϕz

) +
(ϕz + sf)2

((s+ 1)f)2
J>η Jη = J>∆J∆. (30)

1The orthographic projection and affine projection are equivalent up to an affine image transform. Thus the discussion is still valid for any affine
projection although described for an orthographic projection.



13

We first prove proposition 1. By taking the limit s→∞ in equation (30) we find the following system:

J>ϕz
Jϕz + J>η Jη = J>∆J∆, (31)

which represents the general PDE system for affine projection [Pizarro et al., 2013]. In equation (31) the depth variable

ϕz vanishes, which means that in affine projection depth is not any more constrained by the perspective model. This can

be also proved in the space of solutions after the change of variable with equation (15). ᾱ depends on the eigenvalues

of matrix J>∆J∆γ
−1. When s is a large number, the solution of ᾱ in equation (20) is ill-conditioned. We write γ from

equation (17) as a function of s:

γs =
1

ν2
s ((s+ 1)f)

2

(
J>η Jη −

1

ν2
s ((s+ 1)f)

4 J
>
η ηη

>Jη

)
, (32)

with:

νs =

√
1 +

η>η

((s+ 1)f)2
. (33)

Taking the limit of equation (32) we find lims→∞ γs = 02×2. ᾱ is then computed from a matrix whose elements tend

to infinity.

As for proposition 2, although ϕz has already vanished from equation (31), the solution to its gradient can still be

recovered by applying the rank-1 constraint to equation (31). Thus κ̄ is simply given by:

κ̄ = ±λ1

(
J>∆J∆ − J>η Jη

)
v1

(
J>∆J∆ − J>η Jη

)
. (34)

which means that depth-gradient is equally well constrained with affine projection.

Proof of propositions 1 and 2 for the infinitesimal weak-perspective camera. By taking the infinitesimal weak-

perspective approximation of the projection model ΠWP
s and plugging it into equation (23) after setting ζ = ϕz we

reach the following system:

J>ϕz
Jϕz

+

(
ϕz + sf

(s+ 1)f

)2

J>η Jη = J>∆J∆. (35)

Again by taking the limit s→∞ on both sides of equation (35), we reach system (31) of affine projection. If there is

no perspective effect and the camera is affine we cannot compute the average depth of the scene as it vanishes from the

equations. The proof of proposition 1 follows in the same way as in the perspective camera by using γs = 1
((s+1)f)2 J

>
η Jη .

For proposition 2 the solution of κ̄ in equation (35) is identical to that for the perspective model when s→∞.

C. Stable Type-I Methods

In §IV-A and IV-B we revisited the non-holonomic type-I solutions and proved that the depth solution was unstable.

However obtaining the embedding using the stable solution is not straightforward mainly due to the two-fold ambiguity

of the solution. Furthermore, an integration step is also required before we can obtain depth from the disambiguated

solution. We give the details of the proposed stable type-I method as follows. We propose to use β̄ which is stable in
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perspective and affine conditions to solve SfT. In order to obtain depth ϕ̂z from β̄ we need to go through the following

four steps: i) sign disambiguation for β̄, ii) numerical integration of β̄, iii) arbitrary integration constant computation

and iv) variable change, for the perspective camera. For the infinitesimal weak-perspective camera the last step is not

required and we use φ̄z, κ̄ instead of ᾱ, β̄.

Algorithm 1: Stable type-I method for the perspective camera.
Input: warp η, template embedding ∆, domain Ω
Output: deformed embedding ϕ̂

• PDE solution
1 Compute the Jacobians Jη and J∆

2 Solve the PDE system (16) to obtain ᾱ and ±β̄
• Sign disambiguation

3 Compute the Jacobian Jᾱ for the solution ᾱ
4 Select the sign for β̄ so that the largest component of β̄ has the same sign as that component of Jᾱ
5 Compute the two absolute angles between the vectors Jᾱ and β̄
6 Discard β̄ in points where the best angle is greater than a threshold (sum of the mean angle for all points

and two times the standard deviation)
7 Interpolate to compute β̄ for the discarded values

• Numerical integration
8 Integrate the disambiguated value of β̄ to obtain α̂+ kα

• Integration constant
9 Compute the integration constant:

kα = median
Ω

((α̂+ kα)− ᾱ)

• Change of variable
10 Apply the change of variable ϕ̂z = α̂

ν and compute ϕ̂ using the perspective camera model

Algorithm 2: Stable type-I method for the infinitesimal weak-perspective camera.
Input: warp η, template embedding ∆, domain Ω
Output: deformed embedding ϕ̂

• PDE solution
1 Compute the Jacobians Jη and J∆

2 Solve the PDE system (23) to obtain ϕ̄z and ±κ̄
• Sign disambiguation

3 Compute the Jacobian Jϕ̄z for the solution ϕ̄z
4 Select the sign for κ̄ so that the largest component of κ̄ has the same sign as that component of Jϕ̄z

5 Compute the two absolute angles between the vectors Jϕ̄z
and ±κ̄

6 Discard κ̄ in points where the best angle is greater than a threshold (sum of the mean angle for all points
and two times the standard deviation)

7 Interpolate to compute κ̄ for the discarded values

• Numerical integration
8 Integrate the disambiguated value of κ̄ to obtain ϕ̂z + kz

• Integration constant
9 Compute the integration constant:

kz = median
Ω

((ϕ̂z + kz)− ϕ̄z)

10 Find the embedding ϕ̂ using the perspective camera model
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1) Sign disambiguation: According to equation (21), non-holonomic solutions β̄ and κ̄ are known up to a local

sign change. [Bartoli et al., 2015; Pizarro et al., 2013] mention a few ways to disambiguate the sign for different but

related problems, based on external cues, such as shading, temporal smoothing, or surface smoothing. We show below

that we can do without these additional cues, which may be unavailable or even unstable in practice.

If there is some perspective, even very loose, we know that a non-holonomic solution for ϕz exists. We thus propose

to disambiguate the sign of β̄ or κ̄ by using the non-holonomic solution to depth ϕ̄z . In the perspective camera the

process has four steps: 1) We first differentiate ᾱ to obtain Jᾱ. 2) We select the sign of β̄ so that the resulting vector

is closest to Jᾱ. 3) We discard the computed β̄ at regions of the template where Jᾱ differs substantially from β̄. This

can occur due to the instability of the depth solution. We use the angle between the two vectors as a metric:

](p) =

∣∣∣∣acos
(

Jᾱβ̄

‖Jᾱ‖‖β̄‖

)∣∣∣∣ . (36)

The above computed angle is simply an angle between vectors and does not have a physical significance. It is only

used as a metric to choose among the solutions ±β̄. We use the sum of the mean angle for all points and twice the

standard deviation as the threshold. 4) We use smoothing to compute values for β̄ for the regions where they were

discarded.

2) Numerical integration: The non-holonomic solution β̄ is not guaranteed to be integrable. We thus need a numerical

integration method to estimate ϕ̂z . We propose to use a parametric function represented by a Bicubic B-Spline (BBS).

With a BBS, or any other linear basis expansion model, we can integrate β̄ by means of sparse linear least-squares.

The solution is defined up to an additive integration constant. We define the LLS integration as:

α̂+ kα = argmin
αs

∫
Ω

‖Jαs
− β̄‖2 dp. (37)

We evaluate the integral by using a summation over a dense grid of points p on the flat template space Ω.

3) Integration constant: After integration we obtain α̂ + kα, where kα is an arbitrary integration constant. We

propose to use ᾱ to estimate kα. First we take samples from α̂ + kα and ᾱ. We then obtain kα by using the median

of the differences between the samples. This is expressed as:

kα = median
Ω

((α̂+ kα)− ᾱ) . (38)

4) Change of variable: We apply the change of variable given by equation (15) on the estimate of α̂ obtained

above. This gives us the depth estimate at each point and thus the final surface embedding is obtained by estimating

the surface point coordinates using the perspective camera model. Algorithm 1 summarizes the steps for the stable

type-I method for the perspective camera.

For the infinitesimal weak-perspective camera, all the steps are very similar except that we directly obtain ϕ̄z and

κ̄ as the non-holonomic solutions instead of ᾱ and β̄ respectively. This means that while the rest of the steps remain

the same, the final depth and shape are obtained without the change of variable. For clarity, we describe these steps

separately for the infinitesimal weak-perspective camera in algorithm 2.
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V. TYPE-II SOLUTIONS, STABILITY AND TYPE-II STABLE METHOD

The type-I solutions discussed in §IV involve a change of variable of the depth and its derivatives where the non-

holonomic solutions are measured in a modified space for the perspective camera. We present a new interpretation of

SfT using the type-II solutions and type-II stable methods for two important reasons. First type-II PDE for SfT has

not been studied before; it describes explicitly how tangent planes on the embedding are related by rigid transforms

from the template to the deformed surface. Additionally, as we show in the experimental results, it can lead to slightly

different results from the stable type-I method. This is primarily due to the use of different spaces for numerical

integration, which is further explained in section VII and Appendix B. In this section we propose non-holonomic

solutions of the general PDE (12) involving depth and the surface normal, which provide a more intuitive geometrical

interpretation despite being equivalent to type-I solutions up to a change of variable.

A. Type-II Solutions

To use the PDE system proposed in [Collins and Bartoli, 2014a] for SfT, we need to ensure that the template

shape is locally planar with normals pointing towards the positive depth axis. Such case is easily realized for a flat

template. For a general 3D template, we make use of a locally isometric flattening operator, which provides a new

flat parametrization space that is related to the 3D template by a locally isometric map. We then exploit the fact that

isometric deformations induce a rigid transformation between the tangent plane in the template and the one in the

surface embedding. Thus, from the deformation constraint (4), we have that the embedding’s Jacobian is a Stiefel

matrix. We use this property to find the non-holonomic solutions. For general 3D templates, the flattening is not

necessarily an isometric map. Therefore we first show that one can always change the parametrization space so that

locally the template parametrization (flattening) is isometric. We call the new parametrization space as the locally

isometric flattening. This change involves computing the Cholesky factorization of J>∆J∆ at every point. We first

present the locally isometric flattening and then describe the new set of non-holonomic solutions for the depth and the

surface normal.

1) Locally isometric flattening: For a generic flattening with parametrization ∆, the columns of the embedding’s

Jacobian Jϕ are in general not orthonormal. However we prove here that we can still get a local embedding using a

different parametrization space such that the embedding’s Jacobian will have orthonormal columns. We consider the

required local embedding as φp′ ∈ C1(Ω′,R3) parametrized with a new flat template space Ω′ such that the new flat

template is locally isometric to the 3D template T . This leads us to the following equation:

J>φp′
Jφp′ = J>∆′

p′
J∆′

p′
= I2 (39)

where ∆′p′ ∈ C1(Ω′,R3) is a locally isometric parametrization that uses the new flat template and maps each point

on Ω′ isometrically to the 3D template T . Here the domain Ω′ of ∆′p′ in general is not a connected space. We

also map each point on the original flat template space Ω to the new flat template space Ω′ using a local function

ρp ∈ C1(Ω,R2). As it is a one to one mapping between subsets of R2, its inverse ρ−1
p′ ∈ C1(Ω′,R2) is well defined.
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We show the complete parametrization in figure 2. In the following discussion, we show that such a template can be

constructed for any surface embedded in R3 in a disc topology. To simplify the notations, we drop the subscripts p

and p′ from the local functions.
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Fig. 2: Differential geometric modeling of Shape-from-Template with the locally isometric flattening. The new space
depicted in the middle is locally isometric to the 3D template and the deformed surface. This property is required to
construct the type-II SfT PDE.

The only new restriction that needs to be imposed for the new flattening is equation (39). ∆′ can be expressed in

terms of ∆ and ρ−1 as ∆′ = ∆ ◦ ρ−1. This gives us the first-order relation:

J∆′ = (J∆ ◦ ρ−1)Jρ−1 , (40)

where J∆ ◦ ρ−1 is the Jacobian of the known parametrization function of the 3D template evaluated in Ω. Combining

equations (39) and (40) we obtain:

J−�
ρ−1J

−1
ρ−1 = (J∆ ◦ ρ−1)�(J∆ ◦ ρ−1). (41)

Our goal here is to find the Jacobian of the new template-to-image warp Jη′ and for that purpose it suffices for us to

compute the Jacobian Jρ−1 . Any ρ−1 that satisfies equation (41) will lead to a J∆′ which will in turn satisfy equation

(39). As equation (39) is the only requirement for the locally isometric template, finding Jρ−1 is equivalent to obtaining

the new parametrization. To obtain a value for Jρ−1 that is consistent with equation (41) we perform the Cholesky

decomposition of the right-hand side of equation (41) which is a symmetric positive definite matrix. This gives us:

Chol
((

J∆ ◦ ρ−1
)� (

J∆ ◦ ρ−1
))

= χχ�

where χ ∈ C0(Ω′, GL2) is a lower triangular matrix-valued function. A value for Jρ−1 that satisfies equation (41) is:

Jρ−1 = χ−�. (42)

There is in fact a class of matrices that differ by a single rotation, which satisfy equation (41). For all purposes, the

value of the Jacobian Jρ−1 given by equation (42) corresponds to a valid ρ−1. We proceed further by considering the
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new flat template-to-image warp as η′ : Ω′ → R2. η′ is related to the known flat template-to-image warp η as:

η′ = η ◦ ρ−1. (43)

Thus the Jacobian of the new template-to-image warp η′ is obtained as:

Jη′ =
(
Jη ◦ ρ−1

)
Jρ−1 . (44)

2) SfT PDE with locally isometric flattening: After changing the parametrization space to a locally isometric

flattening, we are now ready to give the analytical solutions for the depth φz and the surface normal n ∈ C0(Ω′,R3)

for each point on S. Note that the new flat template space implies no changes in the function values of the embedding

or the template-to-image warp but their derivatives are however different from those of the original functions. Thus we

have η(p) = η′(p′) and ϕ(p) = φ(p′) but Jη′ 6= Jη and Jφ 6= Jϕ in general. The new deformation constraint is given

as:

J>φ Jφ = I2. (45)

Considering the change in the parametrization space, the new reprojection constraint in the PDE system (12) becomes:

Π ◦ φ = η′. (46)

Differentiating equation (46) we obtain:

(JΠ ◦ φ) Jφ = Jη′ . (47)

We write the generalized type-II PDE system for SfT by combining equations (45) and (47) as:

Find φz, Jφ s.t.


(JΠ ◦ φ) Jφ = Jη′

J>φ Jφ = I2.

(48)

We select perspective or infinitesimal weak-perspective systems by substituting the value of JΠ ◦ φ accordingly in the

PDE system (48).

3) Perspective camera: We parametrize the surface 3D points on S using the depth function φz as φ = φz[
η′>

f 1]>.

This allows us to expand the Jacobian of the projection matrix evaluated on the surface as:

JΠ ◦ φ =
f

φz

[
I2 −η

′

f

]
. (49)

Combining equations (47) and (49) we obtain the following reprojection constraint:

f

φz

[
I2 −η

′

f

]
Jφ = Jη′ . (50)

With equation (50) we can rewrite our new PDE system for SfT as:
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Find φz, Jφ s.t.


f
φz

[
I2 −η

′

f

]
Jφ = Jη′

J>φ Jφ = I2.

(51)

We denote the embedding’s Jacobian Jφ as τ32 where τ ∈ C0(Ω′, SO3) is a function giving a rotation matrix. The

third column of τ gives the solution for the surface normal n̄ and the first two columns form the embedding’s Jacobian

Jφ. If we obtain Jφ and thus the first two columns of τ , the surface normal n̄ can be retrieved from the cross-product

of the two columns of τ32. We give the steps for computing the non-holonomic solutions of system (51) below.

We first compute a rotation function θ ∈ C0(Ω′, SO3) such that:[
I2 −η

′

f

]
θ =

[
ω 0

]
(52)

where ω ∈ C0(Ω′,R2×2) is a matrix-valued function. θ and ω can be computed directly from equation (52). The actual

steps are provided in Appendix A. Next we multiply the left-hand side of equation (50) by θθ> to obtain:

f

φz

[
ω 0

]
θ>τ32 = Jη′ . (53)

We simplify equation (53) by introducing another rotation function ξ ∈ C0(Ω′, SO3) such that ξ32 = θ>τ32. This

gives us the following new equation with the unknown depth φz and the unknown sub-Stiefel matrix ξ22:

f

φz
ξ22 = ω−1Jη′ . (54)

To solve equation (54) we use the fact that ξ22 ∈ SS2×2 is a sub-Stiefel matrix and thus its largest singular value is

1. Equating the largest singular values for both sides of equation (54), we obtain:

φz =
1

f
σ−1

1

(
ω−1Jη′

)
(55)

where σ1(M) is an operator giving the largest singular value of the matrix M. Similarly ξ22 can be recovered from

the relation ξ22 = 1
f φzω

−1Jη′ .

We parametrize the Stiefel matrix ξ32 by using the computed sub-Stiefel part ξ22 and an unknown vector r so that

ξ>32 = [ξ>22 r]. Using the orthogonality of the Stiefel matrix we have:

I2 − ξ>22ξ22 = rr>. (56)

Since r is a vector, both sides of equation (56) have rank 1. Consequently, r can be obtained by taking the SVD of

the left-hand side of equation (56) and choosing the right singular vector corresponding to its non-zero singular value

as below:

r = ±v1(I2 − ξ>22ξ22). (57)

However, this results in two solutions for ξ32; we write them as: ξa32 and ξb32. The two solutions for the embedding’s
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Jacobian are now simply given by:

Jφ = τ32 =


θξa32

θξb32.

(58)

Finally we can also obtain the two solutions for the surface normal n̄1 and n̄2 from the cross product of the columns

of the two solutions for τ32.

4) Infinitesimal weak-perspective camera: The infinitesimal weak-perspective camera model can be used in place

of the perspective model by parametrizing the 3D image points with the infinitesimal weak-perspective depth function

ζ and the template-to-image warp in homogeneous coordinates η̃′ = [η′> 1]>:

φ =
ζ

f
η̃′. (59)

Here ζ varies over the template while its gradient Jζ = 0. This gives us the Jacobian of the projection matrix evaluated

on the surface as:

JΠ ◦ φ =
f

ζ

[
I2 0

]
. (60)

Allowing ζ = φz , i.e. to be different for each point while keeping the Jacobian of the projection matrix as in equation

(60) gives us the infinitesimal weak-perspective system. Thus combining equations (47) and (60) we obtain the following

reprojection constraint for the infinitesimal weak-perspective model:

f

φz

[
I2 0

]
Jφ = Jη′ . (61)

As in the perspective solutions we form the PDE system by considering Jφ as a Stiefel matrix. Thus the problem

becomes:

Find φz, Jφ s.t.
f

φz

[
I2 0

]
τ32 = Jη′ , (62)

where τ ∈ C1(Ω′, SO3) is a rotation matrix such that Jφ = τ32. Simplifying problem (62) leads to the following:

f

φz
τ22 = Jη′ . (63)

Equation (63) is identical to the perspective system described by equation (54) except that we do not have a rotation θ

involved in the infinitesimal weak-perspective system and thus the equation is much simpler. As we are allowing φz to

change at each point and solving for the pose and scale simultaneously the solutions are infinitesimal weak-perspective

solutions. We obtain φz as:

φz =
1

f
σ−1

1 (Jη′) . (64)

Similarly τ22 can be obtained as:

τ22 =
1

f
φzJη′ . (65)
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We recover the two solutions for τ32 in the same way as we did for ξ32 for the perspective camera and thus obtain

the non-holonomic solutions for the surface normal using the cross product.

5) Obtaining the embedding: Solving the generalized type-II SfT PDE system (48) gives us the set of non-holonomic

solutions: φ̄z and n̄1,2. One obvious way to obtain the embedding φ is to use the direct depth solution φ̄z and the

normalized points obtained from η as: φ̄ = φ̄z[
η′�

f 1]�. This solution is identical to the direct-depth method proposed

in [Bartoli et al., 2015] as both of them are the non-holonomic solutions for the depth. However in doing so, we

essentially discard the solution for the Jacobian or the normal and make use of only one non-holonomic solution i.e.

the depth φz . In §V-B we describe how the solution for the Jacobian τ̄32 and thus the normal n̄ is better constrained

than the depth solution φ̄z . We provide the actual algorithm for obtaining a stable 3D reconstruction with the stable

type-II method in §V-C.

B. Stability

We show here that the amount of perspective affects how depth is constrained in the type-II solutions in the same

way as in the type-I solutions. We prove two important results for the type-II solutions.

Proposition 3. The non-holonomic solution for depth φ̄z is weakly constrained when the projection geometry tends to

affine.

Proposition 4. The non-holonomic solution for the embedding’s Jacobian and thus the surface normal n̄ is well-

constrained in all projection geometries.
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Fig. 3: SfT type-I solutions (left) and type-II solutions (right) for different projection models and amount of perspective.

Figure 3 illustrates the effect of projection geometries on the type-I and type-II solutions of SfT. As in §IV-B we make

use of the projection function Πs that depends on a parameter s and the initial focal length f to continuously select

the amount of perspective. The only difference being that we now use the symbol φ instead of ϕ for the embedding.
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Proof of propositions 3 and 4 for the perspective camera. We take the first-order derivatives of equation (26) on the

surface, which gives us:

JΠs
(Q) = f

s+ 1

Qz + sf

[
I2

−η′
f(s+1)

]
. (66)

Combining equation (47) with equation (66), we obtain:

f
s+ 1

Qz + sf

[
I2

−η′
f(s+1)

]
τ32 = Jη′ . (67)

We first prove proposition 3. Evaluating the limit s→∞ for equation (67) gives us:[
I2 0

]
τ32 = Jη′ ⇔ τ22 = Jη′ . (68)

The depth Qz is now no longer constrained in equation (68) at the limit. This proves our first result that depth is not

constrained for affine projection in SfT.

The proof of proposition 4 follows directly from the fact that τ22 is well-constrained in equation (68) despite the

projection geometry. Following the steps in [Collins and Bartoli, 2014a] or in §V-A, one can easily derive the two

solutions for Jφ and thus the two solutions for the normal from equation (68).

Proof of propositions 3 and 4 for the infinitesimal weak-perspective camera. Here we start with the infinitesimal

weak-perspective approximation for the projection function given by equation (28). Taking the limit s→∞ in equation

(28) leads to an expression identical to an expression identical to equation (68). The proof for propositions 3 and 4

then follows with the same arguments as in the perspective camera.

C. Stable Type-II Methods

We presented the non-holonomic type-II solutions for the general SfT PDE system (12) and proved that the depth

solution was unstable. We give the method for obtaining the final embedding using the stable solution as follows.

The stable type-II methods use the solution to the surface normal directly to obtain the final embedding. We first

obtain the surface normal by taking the cross product of the Jacobian columns and then to use Shape-from-Normals

to obtain depth and the final embedding. The two steps are almost identical but having an analytical surface normal

gives a better geometrical appeal to the problem. Furthermore, one can imagine several scenarios where the required

end result from SfT would be a surface normal rather than the embedding itself. However, the non-holonomic solution

to the embedding’s Jacobian or the normal have a two-fold ambiguity. Therefore we solve the following problems in

our type-II methods to obtain the 3D embeddding: i) normal disambiguation, ii) Shape-from-Normals and iii) scale

computation. All of these steps are identical for the perspective and infinitesimal weak-perspective cameras. Figure 4

illustrates the specifics and similarities of stable type-I and stable type-II methods together.

1) Normal disambiguation: In type-II solutions we obtain two different non-holonomic solutions for the embedding’s

Jacobian τ32 and thus two different values for the normal vector: n̄1 and n̄2. To disambiguate the surface normal, we

go through the following list of steps. 1) We first compute a surface embedding φ̄ from the direct depth solution and a
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Fig. 4: Direct-depth method and stable type-I and type-II methods for SfT. The existing solution represents the results
from the direct-depth method and the proposed solutions represent the results from the stable methods.

normal field nd using the surface φ̄. 2) For each point on the surface, we compute the following dot product with the

normal vector nd: |n�
d n̄1| and |n�

d n̄2|. 3) We select the highest dot product among the two and choose the corresponding

normal vector n̄1 or n̄2. This process can be expressed as: n̄ = n̄k, such that, k = argmaxk∈{1,2} |n�
d n̄k|. Unlike in

the type-I methods we do not remove regions or points here, as it gives little or no improvement.

2) Shape-from-Normals: Once we disambiguate the normals at each point, the next step is to obtain an embedding

by integrating the normals. This can be done very efficiently in a least-squares manner using spline functions such as

the B-splines. With the integration we obtain depth at each evaluated point. The integration of normals is defined as:

φ̂k = kzφ̂ = argmin
φs

∫

Ω′

((
n̄� [Jφs

]1
)2

+
(
n̄� [Jφs

]2
)2)

dp′ (69)

where kz represents the unknown scale of reconstruction due to the integration of unit normals and φ̂k ∈ C1(Ω′,R3)

is the shape obtained after integration and p′ represents a point on Ω′. We represent the jth column of the Jacobian

matrix Jφs
as [Jφs

]j .

3) Scale computation: The surface embedding obtained by integrating the unit surface normals are not in the correct

scale. To fix the scale, we first compute an approximate embedding φ̄ from the direct-depth solution. We parametrize

the obtained shape as φ̂k = [Qx Qy Qz]
�. We then use φ̄ and the shape φ̂k obtained from Shape-from-Normals to fix

the scale as follows:

kz =

(∫
Ω′

(
Qxφ̄x +Qyφ̄y +Qzφ̄z

)
dp′

∫
Ω′

(
Q2

x +Q2
y +Q2

z

)
dp′

)−1

. (70)

Thus after the scale correction we obtain a stable reconstruction from the stable type-II method. These steps are

summarized in algorithm 3.

VI. EXPERIMENTAL RESULTS

A. Compared Methods and Error Measurements

We performed the experiments using MATLAB. The results of the experiments were used to obtain plots for the

depth error (3D error) and the normal error in different conditions. We computed the depth error by taking the root mean
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Algorithm 3: Stable type-II methods for the perspective and infinitesimal weak-perspective camera.
Input: warp η, template embedding ∆, domain Ω
Output: deformed embedding φ̂

• PDE Solution
1 Compute the Jacobians Jη and J∆

2 Change the parametrization space and compute Jη′
3 Solve the PDE system (51) or (62) to obtain φ̄z and n̄1, n̄2

• Normal disambiguation
4 Compute a surface embedding φ̄ from the direct depth solution φ̄z
5 Find a normal field nd on the surface using the embedding φ̄
6 Select the analytical normal that is closest in angle to nd corresponding to the highest dot-product, i.e.

n̄ = n̄k, such that k = argmaxk∈{1,2} |n>d n̄k|.
• Shape-from-Normals

7 Integrate the disambiguated surface normal field n̄ by solving the minimization problem (69)

• Scale computation
8 Correct the scale of the surface embedding to obtain φ̂

square error of the reconstructed 3D point coordinates. We measured the normal error by taking the root mean square

deviation in angle of the reconstructed surface normals from the ground-truth surface normals. Our set of proposed

methods consists of the stable type-I method (typeI-P, typeI-WP) and the stable type-II method (typeII-P, typeII-WP).

The suffixes ‘P’ and ‘WP’ stand for the perspective and infinitesimal weak-perspective camera models respectively.

We ran the methods based on the infinitesimal weak-perspective camera model only for the scenes with changing

focal length as they are expected to work only for large focal lengths. We use direct-P for the analytical direct-depth

method [Bartoli et al., 2015]. We also compared against the zeroth-order methods based on inextensibility, denoted

here as inext-mdh-P [Salzmann and Fua, 2011] and inext-lap-P [Ngo et al., 2015]. Finally we tested the statistically

optimal cost optimization [Brunet et al., 2014] with the direct depth solution as input. We denote the refined solution as

refined-P. We tuned each method with the best set of parameters for each dataset. We describe the complete algorithm

for SfT, experimental setup and the results on each dataset separately below.

B. Complete algorithm

The SfT framework used for the analytical methods requires a 3D template and template-to-image registration warps.

Here we briefly list the steps for inferring the deformed shape starting from the 3D template and an input image for

real datasets where outliers appear naturally: 1) We compute the ∆ parametrization from the template flattening to the

3D template using Bicubic B-Splines (BBS) with a smoothness prior [Dierckx, 1993]. This is an LLS problem. When

the 3D template is not flat, we make use of a template image as the flattening. 2) We obtain point correspondences

between the template image and the input image using SIFT [Lowe, 2004] or KAZE [Alcantarilla et al., 2012] or a

combination of them. An alternative approach is to match using a denser graph matching method such as [Collins

et al., 2014]. For most real datasets, these correspondences will in general contain some outliers. In either case, outliers

are removed using [Pizarro and Bartoli, 2012]. 3) The correspondences thus established will have none or very few

outliers even in difficult conditions. In more difficult situations such as the example shown in Appendix C, we opt
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for a convex L1-minimization in place of the LLS problem in [Dierckx, 1993] to reduce the effect of outliers while

estimating the template-to-image warp. If the registrations are still not good enough, a robust M-estimator may be used

but we found an L1 estimation to be sufficient for the examples. Optionally methods such as the pixel intensity based

registration refinement also given in [Pizarro and Bartoli, 2012] or the affine transform based outlier rejection [Puerto

and Mariottini, 2013] can be used to improve the registration if necessary. 4) We use the registration obtained in the

above step to generate 2D correspondences and the registration derivatives. 5) Finally we obtain the reconstructed

points from SfT.

C. Synthetic Data

We simulated 10 different surfaces generated by isometric deformation of a flat template surface [Perriollat and

Bartoli, 2013]. The template size used was 640 px × 480 px. The images for each deformation were taken using a

virtual pin-hole camera of varying focal length. We fixed the focal length using a single parameter as: f = (s+1)500 px.

While changing the focal length, we also translated the object so that the size of its projection remained fixed in the

image. In the experiments we varied s from 0 to 8. The number of correspondences N used to estimate the warp η

was varied from 50 to 300. We added Gaussian noise in the images with a standard deviation σ varying between 0

and 2.4 px. In each experiment we changed only one parameter, fixing the others. The default values of the parameters

were s = 1, N = 100 and σ = 1.0 px. The resulting plots from the experiments are shown in figure 5.
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Fig. 5: Plots for the synthetic dataset. We show the depth errors in the first row and the normal errors in the second
row.

The plots show that the stable methods typeI-P and typeII-P have the best performance among all methods, after

refined-P. The stable method typeII-P has a slight edge over typeI-P in most conditions. This is because compared to

typeI-P, typeII-P uses integration in a more natural space. Even so, both of these methods show better performance
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than the original analytical solution direct-P and also compared to the zeroth-order methods inext-mdh-P and inext-

lap-P. Both the direct-depth method and zeroth-order methods perform poorly against the increasing focal length. On

the other hand our proposed methods typeI-P and typeII-P show remarkable stability and have performance similar

to refined-P. Another interesting observation is the convergence of the infinitesimal weak-perspective camera model

to the perspective accuracy with the increase in the focal length. These observations validate the theoretical results

we obtained in §IV-B and §V-B. The zeroth-order method inext-lap-P performs well against the increasing number of

correspondences and the image noise. The analytical solution direct-P shows poor performance against increasing noise

while, on the other hand, both typeI-P and typeII-P are robust against noise in correspondences. Similar observations

also hold for the normal error.

D. Real Data

We tested all methods with four different real datasets. We used one more dataset to make an experiment where we

show how a robust registration can help the reconstruction in appendix C. The first two were built with developable

surfaces with a flat 3D template. We constructed the others out of non-developable surfaces. We describe each of these

datasets and observations independently below. Table I summarizes the results on all real datasets.

The KINECT Paper dataset: The KINECT Paper dataset [Varol et al., 2012] consists of 191 frames taken with

about the same angle and focal length of a sheet of paper being deformed. The number of matched features in each

frame of the sequence is around N = 1300 but varies from frame to frame. The image size is 640 px× 480 px with

focal length of approximately 526 px. The performance of different methods for each frame is plotted in figure 6.

As the dataset is highly perspective and has a large number of feature correspondences distributed more or less

uniformly over the scenes, all of the methods perform well. The mean depth errors for our stable methods, however,

are significantly lower than those for the others, including refined-P, as shown in table I.

The Zooming dataset: In order to test the performance of methods with varying focal length, we used a real

dataset with a single deformation [Bartoli et al., 2013] and known template. The dataset shows a folded sheet of

paper with different focal lengths and views. The focal length varies from 2696 px to 7875 px with an image size of

1728 px× 1552 px. Each zoom level has 7 to 10 images with different viewing angles. We computed the ground-truth

from each view in camera coordinates using stereo triangulation and feature correspondences from SIFT. Figure 6

shows the computed plots for the shape and the depth errors for different methods. We also show the qualitative results

with error coded texture maps for three images of different focal lengths in figure 7.

The error plots show that both typeI-P and typeII-P perform the best in the dataset while direct-P, inext-mdh-P and

inext-lap-P do not perform very well. In particular, there could be two important reasons behind the low accuracy of

inext-lap-P for this dataset. First the images do not have very short focal lengths and since it requires some perspective,

the results can be expected to be less accurate in such conditions. Second, the optimal parameters for the method change

from image to image. We used a single set of parameters for all images in the dataset. We impose smoothness for



27

�
�
�
��

��
��
�
��
	�

��
�

�
�
�
��

��
��
�
��
	�

��
�

���������������	�����������������������������	����������������

������������ ����������

��������	����������������������������������

����������

����������������	��������������

�
�
��

�
��
�
��
�
��
	�

��
�
�
��

�
�

������������

����������������	����������������

�
�
��

�
��
�
��
�
��
	�

��
�
�
��

�
�

Fig. 6: Plots for the KINECT Paper dataset and the Zooming dataset.
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Fig. 7: Rendered 3D results with error coded texture maps for the Zooming dataset. We use the normal error to generate
the texture maps.

all reconstructions using a BBS warp. The results further confirm that direct-P is more susceptible to noise in image

correspondences.

The Cushion dataset: The datasets tested so far are all developable surfaces. Thus a flat template could be used so

that ∆ was always an identity. A slightly different situation occurs when the template is not flat and its given flattening

is non-isometric. In this dataset we allowed a cushion to deform into several shapes. The deformations were largely

isometric since there was very little stretching or expansion of the textured cloth. We made 5 different deformations of

the cushion and we used one of the deformation as the template. Making an isometric flattening was not possible in

this case and therefore we used the template image as the flattening. This also entailed the use of a locally isometric

flattening for typeII-P and a nontrivial ∆. The size of the images used is 3456 px × 2304 px. The focal length of the

camera is about 2700 px, thus the images contain a moderately large amount of perspective.

The feature correspondences here were computed by combining SIFT and KAZE [Alcantarilla et al., 2012] features.

Due to the lack of point correspondences in some regions, the computed warps have less accuracy than in all other
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TABLE I: Mean depth errors in real datasets.

Depth error measurements for different methods in mm
Datasets direct-P typeI-P typeII-P inext-mdh-P inext-lap-P refined-P

KINECT Paper 4.57 3.98 3.82 7.78 4.43 4.02
Zooming 7.28 3.54 2.22 20.16 12.47 0.82
Cushion 14.37 5.02 3.48 7.71 7.39 5.99
Can 3.03 1.38 1.07 4.07 1.91 1.31

TABLE II: Compared methods and their characteristics.

Methods Constraints Primary computation Time (sec) Stability in affine condition

direct-P Differential first-order Small systems 0.13 Not stable
typeI-P Differential first-order LLS Integration 0.53 Stable
typeII-P Differential first-order LLS Integration 1.74 Stable
inext-mdh-P Zeroth-order MDH Convex optimization SOCP 2.96 Not stable
inext-lap-P Zeroth-order inextensibility LLS, non-convex optimization 7.18 Not stable
refined-P Differential first-order Non-convex optimization 26.37 Stable

datasets. We present the results for three of the deformations in figure 8 using error coded texture maps along with

the shape and depth error for each reconstruction. We observe again that the stable methods typeI-P and typeII-P

have the best performance. The zeroth-order methods inext-mdh-P and inext-lap-P also show good performance as

the images have high perspective. However we failed to obtain good results with direct-P. This further confirms the

greater sensitivity of direct-P to noise in the feature correspondences.

The Can dataset: We prepared a dataset by deforming a can made of a cardboard material. The dataset consists

of 3 different deformations of different degrees and a template surface made with the original surface. As it was not

possible to flatten the surface physically, we again used the template image as the flattening. The size of the images

used is 4800 px × 3200 px with a focal length of 11000 px. We computed the flat template-to-image warps again

by combining SIFT and KAZE feature correspondences. We present the qualitative results with error coded texture

maps and error measurements in figure 8. The results show that our proposed methods are again the best performing.

Similarly direct-P shows a medium accuracy while inext-mdh-P performs poorly in 2 out of 3 scenes.

VII. DISCUSSIONS

Isometric SfT methods are close to achieving reconstruction accuracies that give them applicability in real scenarios.

However, as we showed here, several aspects of current state-of-the-art methods, specifically their poor performance

in low perspective and their sensitivity to noise in image correspondences pose major problems to achieving useful

SfT results. We proposed methods that push the boundary of the state of the art further in terms of reconstruction

accuracy while extending applicability in different projection geometries. We found that obtaining depth directly to get

the 3D shape is not the best approach despite its appeal. In contrast, we proposed the use of stable solutions (based on

depth-gradient or surface normal) that proved to be accurate in perspective as well as affine conditions. We provided

theoretical proofs to their stability. Though being very similar, they differ in two important aspects: disambiguation and

integration. In particular we use numerical integration with bending energy of the BBS, which imposes smoothness in

the given space. Compared to the stable type-I method, the stable type-II method uses the space of surface normals



29

for integration that gives a slightly better performance seen in the experiments. Both of these two new methods we

presented used analytical solutions and obtained near or sometimes better than the statistically optimal results. In brief,

we found the first-order solution of the SfT PDE to be more stable than the zeroth-order solution.

For all the experiments, we computed the template-to-image warp required for the analytical methods globally. In

future works, the warp could be computed locally. By nature, a local warp would possibly capture the local changes

better than a global one, thus giving better reconstruction in cases of large local deformations. Table II shows a summary

of the main characteristics for different methods. It is true that the zeroth-order methods are affected by inaccuracies

of the computed warp depending on the presence of outliers but such conditions are rare in our experiments. The time

noted is the average time taken to reconstruct a single scene for the real datasets using a standard desktop PC. The

parameters used in our methods for the global warps are very easy to tune and the methods themselves give local

solutions meaning that they can be parallelized if needed for higher speed.
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A. Del Bue. A factorization approach to structure from motion with shape priors. In CVPR, 2008.

P. Dierckx. Curve and Surface Fitting with Splines. Oxford University Press, Inc., 1993. ISBN 0-19-853441-8.

R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2004. ISBN 0521623049.



31

D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91–110,

2004.

L. Maier-Hein, A. Groch, A. Bartoli, S. Bodenstedt, G. Boissonnat, P. Chang, N. Clancy, D. S. Elson, S. Haase, E. Heim, J. Hornegger,

P. Jannin, H. Kenngott, T. Kilgus, B. P. Müller-Stich, D. Oladokun, S. Röhl, T. R. dos Santos, H. Schlemmer, A. Seitel, S. Speidel,
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R. W. Sumner and J. Popović. Deformation transfer for triangle meshes. ACM Transactions on Graphics, 23(3):399–405, 2004.

J. Taylor, A. D. Jepson, and K. N. Kutulakos. Non-rigid structure from locally-rigid motion. In CVPR, 2010.

L. Torresani, A. Hertzmann, and C. Bregler. Nonrigid structure-from-motion: Estimating shape and motion with hierarchical priors.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(5):878–892, 2008.

A. Varol, M. Salzmann, P. Fua, and R. Urtasun. A constrained latent variable model. In CVPR, 2012.

S. Vicente and L. Agapito. Soft inextensibility constraints for template-free non-rigid reconstruction. In ECCV, 2012.



32

BIOGRAPHIES

Ajad Chhatkuli received his Msc degree in Computer Vision from the University of Burgundy in

2013. He is currently a PhD candidate in Computer Vision at Université d’Auvergne under Prof.
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APPENDIX A: COMPUTATION OF θ AND ω

We need to find θ ∈ C0(Ω′, SO3) such that it satisfies equation (52):[
I2 −η

′

f

]
θ =

[
ω 0

]
for some ω ∈ C0(Ω′,R2×2). Equation (52) implies that the third column θ3 of θ is orthonormal to both rows of

[I2 − η′

f ]. Note that we represent the ith column of the matrix function θ as θi. This gives us a closed form solution

for θ3 as:

θ3 =
η̃′f
‖η̃′f‖2

, (i)

where η̃′f ∈ C1(Ω′,R3) is the local flat template-to-image warp function giving normalized homogeneous coordinates.

Its components can be written as η̃′f = [
η′x
f

η′y
f 1]>. The columns of θ will have the following orthonormality relations:

[θ3]× θ1 = θ2

[θ3]
>
× θ2 = θ1.

(ii)

Any combination of vectors θ1 and θ2 that satisfy equation (ii) will form the required rotation θ. First we can choose

θ1 orthogonal to θ3 as:

θ1 =
1√

η′x
2

f2 + 1


−1

0

η′x
f

 . (iii)

Using the values of θ3 and θ1, we obtain θ2 using θ2 = θ3 × θ1. We obtain ω by simply expanding the left-hand side

of equation (52) using the computed θ.

APPENDIX B: SIMILARITIES AND DIFFERENCES OF TYPE-I AND TYPE-II PDES

We discussed the type-I and type-II PDEs, their solutions and the stable methods in sections IV and V. Here we first

show that the type-I direct depth solution and type-II direct depth solution are exactly the same. Then we describe how

the stable type-I and stable type-II methods can differ in their final reconstructions.

Equivalence of type-I and type-II solutions: The first non-holonomic solution of type-I PDE α and type-II PDE

ϕz are given by equation (20) and equation (55) respectively. The type-I and type-II PDEs are obtained using the same

deformation and reprojection constraints. With the equivalence of type-I and type-II PDEs, the non-holonomic solutions

are directly related by the change in variable rewritten below:

ϕz =
α

ν
and ν =

√
1 +

η>η

f2
. (iv)

The quantity ν involved in the change of variable is a known quantity and thus it proves that the direct depth

reconstructions using type-I and type-II PDEs are the same.



In order to prove the equivalence of the second non-holonomic solutions, we consider the case of flat template,

where we have Jφ = Jϕ. The result can be extended to non-flat templates by using the locally isometric flattening. We

differentiate equation (iv) on both sides that gives us:

Jα = νJϕz
+ ϕzJν . (v)

Furthermore we already have the relation between Jϕz
and Jϕ from equation (13) in section IV-A, rewritten below:

Jϕ = Mη̃Jϕz + ΦJη̃. (vi)

Thus substituting the value of Jϕz
from equation (v) in equation (vi), we have:

Jϕ = Mη̃
(Jα − ϕzJν)

ν
+ ΦJη̃. (vii)

In other words, one can go from the type-I set of solutions for (α, Jα) to type-II set of solutions for (ϕz, Jϕ) using

equations (iv) and (vii). Similarly to go from type-II set of solutions to type-I set we note the fact that Jϕz is given by

the third row of Jϕ and thus obtain (α, Jα) by using equations (iv) and (v).

Difference in stable type-I and stable type-II reconstructions: As shown above, the non-holonomic solutions of

the type-I and type-II PDES are equivalent up to some change in variable. Nevertheless, the second non-holonomic

solutions measure different quantities. This naturally leads to differences in the subsequent steps: the resolution of the

two-fold ambiguity and the numerical integration. The second non-holonomic solution of type-I PDE β or Jα has a

sign ambiguity, whereas that of type-II PDE: Jφ or n has a two-fold ambiguity. The resolution of ambiguities in these

two cases can produce outcomes that influence the further steps differently. More importantly, the numerical integration

involved in the steps differ as the integrand in stable type-I method β is a 2-vector while the integrand in stable type-II

method n is a vector describing the shape normal, i.e. a 3-vector. Noise can influence the numerical integration in

the different spaces differently. The numerical integration is done by using LLS with the bending energy of BBS. It

enforces smoothness on the integrand’s space. Such smoothness is better suited on the space of surface normals than on

the radial depth gradient where the norm of the image coordinates is involved. Thus the small but consistent difference

seen in the reconstructions is originate from the influence of noise in the sequence of steps after the non-holonomic

solutions are found and not from the stable PDE solutions themselves.

APPENDIX C: RECONSTRUCTION IN THE PRESENCE OF OUTLIERS

We use a sugar bottle with a non-developable 3D template to test how outliers affect the reconstruction and how

they can be dealt with. The bottle is used to create a deformation which we use to test the effect of outliers on our

best performing method, i.e. typeII-P. We take the images with the same camera focal length as the Can dataset shown

in figure I. We combine SIFT and KAZE features to obtain the template image to input image warp. Outliers appear

naturally in the matching due to deformation and repeated texture. We show that with outliers, SfT will fail if a standard



BBS registration [Dierckx, 1993] is used, while on the other hand using an automatic outlier removal method [Pilet

et al., 2008; Pizarro and Bartoli, 2012] followed by a robust registration can suffice to have a good reconstruction.

Registration

Let {pi ∈ R2} be the set of corresponding points in the template image and {qi ∈ R2} be the set of corresponding

points in the input image obtained from feature point matching, with i = 1 . . . N . We define the BBS registration

function going from the template image to the input image as:

Ψ(pi, l) = qi (viii)

where l ∈ R2nc is the parametrization vector of the warp function Ψ and nc is the number of the control centers. The

warp is estimated from the correspondence points by minimizing the following least-squares problem:

l̄ = argmin
l

N∑
i=1

‖Ψ(pi, l)− qi‖2. (ix)

For BBS registration the function Ψ is a linear function given by Ψ(pi, l) = Al where A is a matrix of basis vectors

constructed from the set of points {pi ∈ R2} by imposing smoothness and is a known matrix. Thus equation (ix) is

in fact a LLS problem for a standard BBS registration. However the presence of outliers in the correspondence points

means one cannot correctly estimate l with the LLS problem of equation (ix). We can remove a large number of outliers

using existing methods such as [Pilet et al., 2008; Pizarro and Bartoli, 2012]. This allows us to compute l using the

remaining set of correspondences. However because these methods are not perfect, a small number of outliers may

remain. To tackle this, we first employ the outlier rejection method [Pizarro and Bartoli, 2012] and fit l with a robust

cost function, otherwise known as an M-estimator. Specifically we use the L1 M-estimator. Thus the minimization

problem of equation (ix) is modified as follows:

l̂ = argmin
l

N∑
i=1

‖Ψ(pi, l)− qi‖1. (x)

We choose the L1 M-estimator because the resulting problem is convex and can be solved using an off-the-shelf solver

such as the L1-magic [Candes and Tao, 2005]. It is fast to optimize and contains no addtional free parameter. However, it

is a non-redescending M-estimator and can only handle a small percentage of outliers. When there is a higher percentage

of outliers even after outlier rejection, one can use redescending M-estimators such as Tukey’s bisquare M-estimator.

In the example, 174 out of 1617 points are actual outliers. We remove a set of 172 points with the outlier rejection

method [Pizarro and Bartoli, 2012] and perform the robust registration. After the outlier rejection we estimate 44 out of

1445 points to be actual outliers. For better visualization we select one out of every 40 initial matches and show them

along with the detected inlier matches in figure I. We also show one out of every 5 detected outliers in the bottom row

of figure I.
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Fig. I: Cropped images and point matches with outliers

Reconstruction

Despite outlier removal and robust registration, some inaccuracies persist naturally in the final registration. The

reconstruction step needs to be robust to noisy correspondences to be able to produce a good reconstruction in such

scenario as mentioned in property a) in section I. We show the stable type-II texture mapped reconstructions with and

without the outlier rejection [Pizarro and Bartoli, 2012] and the robust registration steps in figure II. The example proves

the point that handling outliers in the registration step is enough to produce good reconstructions with the proposed

method even in difficult cases.
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