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Abstract

Image warps -or just warps- capture the geometric deformation existing between two images of a

deforming surface. The current approach to enforce a warp’s smoothness is to penalize its second or-

der partial derivatives. Because this favors locally affine warps, this fails to capture the local projective

component of the image deformation. This may have a negative impact on applications such as image

registration and deformable 3D reconstruction. We propose a novel penalty designed to smooth the warp

while capturing the deformation’s local projective structure. Our penalty is based on equivalents to the

Schwarzian derivatives, which are projective differential invariants exactly preserved by homographies.

We propose a methodology to derive a set of Partial Differential Equations with only homographies as

solutions. We call this system the Schwarzian equations and we explicitly derive them for 2D func-

tions using differential properties of homographies. We name as Schwarp a warp which is estimated by

penalizing the residual of Schwarzian equations. Experimental evaluation shows that Schwarps outper-

form existing warps in modeling and extrapolation power, and lead to better results in three deformable

reconstruction methods, namely, shape reconstruction in Shape-from-Template, camera calibration in

Shape-from-Template and Non-Rigid Structure-from-Motion.

Keywords— Schwarzian Penalizer, Bending Energy, Projective Differential Invariants, Image Warps



Contents 2

Contents

1 Introduction 3

2 State-of-the-Art 6

3 Background 7

3.1 The Cross-Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 The 1D Schwarzian Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Multidimensional Schwarzian Derivatives (MSDs) . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Schwarzian Equations in Two Dimensions 9

4.1 The 1D Schwarzian Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 The 2D Schwarzian Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Solution Space of the Schwarzian Equations 12

5.1 Solution Space of the 1D Schwarzian Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.2 Solution Space of the 2D Schwarzian Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Modeling the Perspective Projection of Deforming Surfaces: Schwarps 15

7 Experimental Results 17

7.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7.2 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7.2.1 Effect of Noise and Hyperparameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7.2.2 Effect of Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7.2.3 Effect of Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7.2.4 Rate of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7.3 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7.3.1 Shape Reconstruction in Shape-from-Template . . . . . . . . . . . . . . . . . . . . . . 21

7.3.2 Calibration in Shape-from-Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7.3.3 Non-Rigid Structure-from-Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

8 Conclusion 24



1 Introduction 3

1 Introduction

Projective geometry studies the geometric properties of projective transformations. During the last 30

years, projective geometry has successfully modeled important problems in computer vision, such as im-

age stitching (Szeliski, 2006), image registration (Torr, 2000) and Structure-from-Motion (SfM) (Faugeras

et al., 2001; Hartley and Zisserman, 2003). These problems assume the scene is rigid. However, if the scene

geometry changes over time, the current tools from projective geometry cannot model it. They are thus

insufficient for problems like Non-Rigid Structure-from-Motion (NRSfM) (Bregler et al., 2000; Torresani

et al., 2008), Shape-from-Template1 (SfT) (Perriollat et al., 2011; Salzmann et al., 2007) and non-rigid im-

age registration (Bookstein, 1989). In a deformable environment, a fundamental problem is the modeling

of the image warp -or just warp- the function which maps points between images of a deforming surface. A

warp is generally represented by a linear basis expansion such as the Thin-Plate Spline (TPS) (Bookstein,

1989), the tensor-product BSpline (BS) (Rueckert et al., 1999), finite elements (Pilet et al., 2007) and finite

differences as in optical flow (Horn and Schunck, 1981). A warp is also generally assumed to be smooth

or piecewise smooth. This is modeled by existing approaches as a penalty on the warp’s derivatives. For

instance, penalizing second order derivatives leads to the popular bending energy, which forces the warp

to be locally affine (Bookstein, 1989). A direct consequence is that the infinitesimal projective information

is not captured by the warp. Interestingly, it was attempted to solve that problem by modeling the warp

with rational basis expansion. This led to the Generalized TPS warps (Bartoli et al., 2010) and the NURBS

warp (Brunet et al., 2009). Their estimation uses the 3D bending energy directly expressed on homogeneous

coordinates. Theoretically, rational warps are smooth and capture the infinitesimal projective structure.

However, their main problem is that they are non-convex and may be unstable due to their rational struc-

ture.

We propose a novel penalty which is able to smooth a warp while allowing it to capture the infinitesimal

projective structure. This penalty may be used to estimate any type of warp model. Therefore, it may be

applied to linear basis expansions, and does not require the use of a rational warp. Our penalty is based

on the theory of Projective Differential Geometry (PDG), which we argue is a fundamental tool in warp

modeling. PDG is a branch of mathematics that studies the properties of projective transformations at

the infinitesimal scale. So far, PDG has been used to a much smaller extent than projective geometry in

computer vision (Lazebnik and Ponce, 2005; Schmid and Zisserman, 2000). An important result of PDG

is the Schwarzian derivative (Ovsienko and Tabachnikov, 2009). It originated from the study of projective

1In SfT, the 3D shape of a deformable surface is computed from the warp between a template and an input image. The
shape of the template is known a priori.
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differential invariants, but also appears in many other fields of mathematics such as the dynamical sys-

tem theory and differential equation solving. The Schwarzian derivative models cross-ratio at a differential

level (Ovsienko and Tabachnikov, 2009). The cross-ratio of points is well-known in computer vision (Lei,

1990; Mundy and Zisserman, 1992) as it represents a projective invariant between two images related by

a homography. In RP1, the cross-ratio is defined for 4 colinear points. In the differential cross-ratio the

distances among these points are infinitesimal. The Schwarzian derivative is a differential operator that

vanishes for functions that preserve the differential cross-ratio. The Schwarzian derivative is well defined in

the 1D case (Ovsienko and Tabachnikov, 2009; Singer, 1978). However, we are interested in images and thus

in the 2D case. Several extensions of the Schwarzian derivative to higher dimensions were proposed (Mat-

sumoto et al., 1993; Osgood and Stowe, 1992; Ovsienko and Tabachnikov, 2005). Computing the Schwarzian

derivatives of an image warp requires one to find a system of PDEs that, as in the case of the 1D Schwarzian

derivative, has homographies as solutions. Unfortunately, it is far from straightforward to arrive from the

existing multidimensional Schwarzians to the sought system of PDEs (see section 3.3 for details).

We bring two core contributions. The first one is a new derivation framework for the 1D Schwarzian

derivative which extends to higher dimensions. In particular, we use our framework to explicitly derive a

system of PDEs that we call the 2D Schwarzian equations. Interestingly, the 2D Schwarzian equations are

second order PDEs contrary to the third order 1D Schwarzian derivatives. Our second core contribution is

the Schwarp, which is defined as an image warp which was estimated while penalizing the residual of our

2D Schwarzian equations, thereby capturing infinitesimal projective properties. The intuition underlying

this penalizer is that a warp with small residuals for our 2D Schwarzian equations behaves locally like a

homography. To back this intuition, we prove that the 2D Schwarzian equations vanish if and only if the

warp is a homography. A Schwarp may be constructed with any warp model and improves over classical

approaches based on using the bending energy as a penalizer, favoring a locally affine behavior (see figure 1).

We report an extensive set of experimental results. Schwarps do better than state-of-the-art warps in

three ways: (i) the warp’s extrapolation power increases, especially in perspective imaging conditions, (ii) the

accuracy of the warp’s derivatives is improved by a large margin, (iii) the sensitivities to the hyperparameter

is reduced. We validated the impact of Schwarps on three methods: shape reconstruction in SfT (Bartoli

et al., 2012), camera calibration in SfT (Bartoli and Collins, 2013b) and NRSfM (Varol et al., 2009).

Notation. We briefly discuss our notation. Lowercase greek letters (e.g. γ) are functions, functionals or

parameters. Scalars are latin lowercase letters in italics (e.g. n). Latin uppercase letters in italics are used

for differential operators (e.g. S) except J which denotes the Jacobian determinant. Rn and RPn denote

respectively the real vector space and the real projective space of dimension n. Calligraphic letters are used
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Figure 1: Shape-from-Template (SfT) results for different warp models. In these examples, the BS-warp
is used as the linear basis warp and the NURBS-warp as the rational basis warp. The first column shows
the input feature correspondences and the ground truth shape obtained by SfM for multiple images. The
image in the first row is captured under affine conditions whereas the image in the second row is significantly
perspective. It is clear that the warp that uses Schwarzian equations as a penalizer improves accuracy over
the other warps in both cases. However, in the presence of strong perspective the gain is significant. SfT
depends on the first derivative of the warp which is captured with our penalizer to a better extent than with
the usual bending energy. The shape reconstruction in SfT method we used is (Bartoli et al., 2012) and the
calibration in SfT method is (Bartoli and Collins, 2013a)

.
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to define groups of functions under composition. We denote as L(Rn) the group of linear functions in n

dimensions with scalar range. Given γ ∈ L(Rn) and xi the i-th input variable, we have that:

∂nγ

∂xi
= 0 n > 1 i ∈ {1, . . . , n}. (1)

We denote as A(Rn) the group of affine transformations, where given η ∈ A(Rn):

η =

(
γ1 γ2 · · · γn

)>
γi ∈ L(Rn) and i ∈ {1, . . . , n}. (2)

We denote as H(RPn) the group of homographic functions, defined using ratios of members of L(Rn). Given

η ∈ H(RPn):

η =

(
δ1

δn+1

δ2

δn+1
· · · δn

δn+1

)>
δi ∈ L(Rn) i ∈ {1, . . . , n+ 1} and δn+1 6= 0. (3)

Finally, we denote Cr(Rn,Rn) the group of continous functions that have continuous first r derivatives.

2 State-of-the-Art

We provide some details on the existing warps and the penalty used for imposing smoothness, a very

important prior when estimating image warps. The warps discussed here are later compared to ours in

the experimental section. The most commonly used warps are the linear basis expansion warps which are

usually obtained as the optimum of a linear least-square problem of the following form:

arg min
η

εd[η] + λεs[η], (4)

where η is the warp, εd[η] is the data term and εs[η] is the penalty term which smoothes the warp. λ is a

hyperparameter that determines the weight of the penalty. Typically, the bending energy εbe[η] is used as

penalty:

εs[η] = εbe[η] =

∫
R2

(
∂2η

∂u2

)2

+

(
∂2η

∂u∂v

)2

+

(
∂2η

∂v2

)2

dudv, (5)

where u and v are the domain coordinates of the warp. Imposing hardly the bending energy to be zero

forces the warp to be an affine transformation:

lim
λ→∞

(
arg min

η
εd[η] + λεbe[η]

)
∈ A(R2). (6)



3 Background 7

Any warp model, such as the TPS-warp or the BS-warp that uses the bending energy to impose smoothness

fails to capture perspective at a differential level. To deal with that problem, warps based on rational

basis expansions were proposed. For example, (Bartoli et al., 2010) proposed the DP-warp (Deformable

Projective warp) from the Generalized TPS warps and (Brunet et al., 2009) proposed the NURBS-warp

(Non-Uniform-Rational-BSpline warp). Rational basis warps are modeled in homogeneous coordinates and

employs the 3D bending energy as the penalty. As the name suggests, the 3D bending energy is the extension

of the bending energy (equation (5)) to 3 dimensions (Tanner, 2005), computed in this case from the 2D

homogeneous coordinates. As we will show in our experiments, the rational warps are challenging to optimize

due to the rational terms as well as their sensitivities to the hyperparameter. In contrast to the existing

approaches we propose to change the penalizer, using the squared residual of Schwarzian equations εse which

forms infinitesimally projective warps. In fact, if our penalizer is imposed to the limit, the estimated warp

becomes an homography:

lim
λ→∞

(
arg min

η
εd[η] + λεse[η]

)
∈ H(R2). (7)

3 Background

Projective differential invariants have been studied in computer vision in a few previous papers (Åstrom,

1995; Lazebnik and Ponce, 2005). In (Lazebnik and Ponce, 2005), the authors propose local projective

differential invariants of curves and surfaces whereas (Åstrom, 1995) focuses on non-algebraic planar curves.

None of the previous papers employed these invariants in deformable 3D reconstruction. We now present the

Schwarzian derivative, one of the most fundamental projective differential invariants. We start our discussion

with the cross-ratio of 4 points in the projective line and 5 points in the projective plane. We then give the

differential version of the cross-ratio in the projective line, leading to the 1D Schwarzian derivative.

3.1 The Cross-Ratio

We consider 4 points t1, t2, t3, t4 in the projective line RP1. The cross-ratio on RP1 is defined by the following

scalar φ(t1, t2, t3, t4) = (t1−t3)(t2−t4)
(t2−t3)(t1−t4) . Homographic transformations in H(RP1) preserve the cross-ratio. This

directly extends to 4 colinear points in the projective plane RP2. For 5 non-colinear points in RP2, one may

select one point as the reference and compute 4 direction vectors with the remaining 4 points. A cross-ratio

is obtained by replacing distances by inter-direction signed angles. By changing the reference point one

obtains 2 independent cross-ratios for 5 points in the projective plane.
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3.2 The 1D Schwarzian Derivative

An important projective differential invariant is the Schwarzian derivative (Ovsienko and Tabachnikov,

2009). We give its derivation as can be found in the literature. We consider a diffeomorphism η which acts

on 4 points t1, t2, t3, t4 ∈ RP1. We assume that the 4 points are spread so that t2, t3, t4 can be defined by

their distances to t1 as a function of ε ∈ R: t2 = t1 + ε, t3 = t1 + 2ε and t4 = t1 + 3ε. The 4 points become

t1, t1 + ε, t1 +2ε, t1 +3ε and thus are related by the variable ε. The Schwarzian derivative measures the effect

of η on the cross-ratio as ε tends to zero. In other words, the Schwarzian derivative measures the cross-ratio

of the points when they are infinitesimally close. To obtain the Schwarzian derivative one forms the Taylor

expansion of φ when ε goes to zero and keeps the first non-zero term of the expansion:

φ(η(t1), η(t2), η(t3), η(t4)) = φ(t1, t2, t3, t4)− ε2S[η](t1) +O(ε3). (8)

In the above equation S[η] is the Schwarzian derivative in RP1, defined by:

S[η] =
η′′′

η′
− 3

2

(
η′′

η′

)2

. (9)

We can make two interesting observations: 1) the cross-ratio does not change in the first-order of ε and 2)

despite being in the second-order of ε, the Schwarzian derivative is a third-order differential equation in η.

The Schwarzian derivative S[η] has some remarkable properties. From equation (8) it is easy to see that if

η ∈ H(RP1), S[η] = 0 as the cross-ratio is then preserved by η. Conversely, it can be proved that S[η] = 0

implies that η ∈ H(RP1) (Ovsienko and Tabachnikov, 2005). Therefore, homographies are the only solutions

of the differential equation S[η] = 0. With the Schwarzian derivative one can thus measure how close η is to

a homography infinitesimally. Unfortunately, this derivation of the Schwarzian derivative in RP1 does not

extend to RP2.

3.3 Multidimensional Schwarzian Derivatives (MSDs)

The original Schwarzian derivative was only defined in 1D (Cayley, 1880; Kummer, 1836). However, over

the last few decades, mathematicians have extended it to higher dimensions. Examples of MSDs can be

found for different groups of diffeomorphisms. (Oda, 1974) first defined an MSD for locally biholomorphic

mappings. (Osgood and Stowe, 1992) proposed the conformal MSD whereas (Ovsienko, 1989) proposed the

‘Lagrangian Schwarzian’ for the group of symmetric matrices. The case of MSD for differential projective

structures, which is the extension to higher dimensions of the 1D Schwarzian, has also been studied by

several authors (Matsumoto et al., 1993; Molzon and Mortensen, 1996; Ovsienko and Tabachnikov, 2005).
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They provide as a general result for MSDs the 1-cocycle, a non-linear differential operator that vanishes

for homographies. The 1-cocycle includes second order partial derivatives and rational terms. It cannot be

used to ensure infinitesimally homographic warps as it also vanishes for other functions than homographies.

4 Schwarzian Equations in Two Dimensions

We propose the 2D Schwarzian equations, a system of PDEs with only homographies of RP2 as solutions.

Unlike MSDs that are described by the 1-cocycle, we define the 2D Schwarzian equations as a set of PDEs

where each member of the set vanishes for homographies. Interestingly, our Schwarzian equations in 2D are

quadratic second order PDEs. This allows us to optimize the Schwarp without using rational terms. We

first show how to find the 1D Schwarzian derivative (9). We then use the same methodology to find the 2D

Schwarzian equations.

4.1 The 1D Schwarzian Derivative

We define η ∈ H(RP1), formed by the ratio of two functions δ ∈ L(R) and ζ ∈ L(R). Our goal is to obtain

the 1D Schwarzian derivative from the differential properties of η. To achieve that goal, we first proceed by

multiplying η by its denominator ζ, obtaining:

ηζ = δ. (10)

We then form second and third order derivatives of equation (10) to obtain the following two PDEs:

η′′ζ + 2η′ζ ′ = 0 (11)

η′′′ζ + 3η′′ζ ′ = 0, (12)

where δ vanishes due to differentiation along with ζ ′′. The next step is to eliminate ζ and ζ ′ from equations

(11) and (12). We substitute the value of ζ ′ from equation (11) into equation (12) which cancels both ζ and

ζ ′ and leads to:

η′′′ − 3

2

(η′′)2

η′
= 0. (13)

Dividing equation (13) by η′ gives the 1D Schwarzian derivative as can be verified by direct comparison to

equation (9). Multiplying equation (13) by η′, we arrive at the following third-order quadratic PDE:

η′η′′′ − 3

2
(η′′)2 = 0. (14)
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The main difference between equation (14) and the 1D Schwarzian derivative is that equation (14) does not

have rational terms. Both of them have only homographies as solutions (see section 5). We call equation

(14) the 1D Schwarzian equation.

4.2 The 2D Schwarzian Equations

We propose a system of PDEs that represent the 2D Schwarzian equations. This system has by construction

homographies as solutions.

We define function η : (u, v)> → (x, y)> ∈ H(RP2):

η =

ηx
ηy

 with ηx =
δx

ζ
, ηy =

δy

ζ
and δx, δy, ζ ∈ L(R2). (15)

To obtain the Schwarzian derivatives in two dimension, as in the 1D case, we start by multiplying ηx and

ηy by ζ and obtain the two following equations:

ηxζ = δx and ηyζ = δy. (16)

By taking second order partial derivatives of equation (16) with respect to u and v we obtain the following

4 first-order PDEs:

ηxuζ + ηxζu = δxu ηyuζ + ηyζu = δyu. (17)

ηxv ζ + ηxζv = δxv ηyvζ + ηyζv = δyv . (18)

We eliminate δx and δy by differentiating again equations (17) and (18) with respect to u and v, obtaining

the following 6 second-order PDEs:

ηxuuζ + 2ηxuζu = 0 ηyuuζ + 2ηyuζu = 0 (19)

ηxvvζ + 2ηxv ζv = 0 ηyvvζ + 2ηyvζv = 0 (20)

ηxuvζ + ηxuζv + ηxv ζu = 0 ηyuvζ + ηyuζv + ηyvζu = 0. (21)

In these 6 PDEs, we have 3 terms (ζu, ζv and ζ) which we want to eliminate to obtain our 2D Schwarzian

equations. By solving for ζu in equation (19), we find the first 2D Schwarzian equation:
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ηxuuζ

2ηxu
=
ηyuuζ

2ηyu
(22)

ηxuuη
y
u − ηyuuηxu = 0. (23)

Solving for ζv in equation (20) gives the second 2D Schwarzian equation:

ηxvvζ

2ηxv
=
ηyvvζ

2ηyv
(24)

ηxvvη
y
v − ηyvvηxv = 0. (25)

Solving for ζv in equation (21) yields:

(ηxuvη
y
u − ηyuvηxu)ζ + (ηxvη

y
u − ηyvηxu)ζu = 0. (26)

Multiplying the two equations in (19) by ηyv and ηxv respectively and subtracting them we obtain the following

equation:

(ηxuuη
y
v − ηyuuηxv )ζ − 2(ηxvη

y
u − ηyvηxu)ζu = 0, (27)

which we combine with equation (26) to cancel ζu, giving the third 2D Schwarzian equation:

(ηxuuη
y
v − ηyuuηxv ) + 2(ηxuvη

y
u − ηyuvηxu) = 0. (28)

In a similar way we obtain the fourth and last 2D Schwarzian equation by solving for ζu in equation (21)

and combining the result with equation (20). The complete system of 4 2D Schwarzian equations is finally

given by:

Sk[η] = 0,

k = 1, . . . , 4 with



S1[η] = ηxuuη
y
u − ηyuuηxu

S2[η] = ηxvvη
y
v − ηyvvηxv

S3[η] = (ηxuuη
y
v − ηyuuηxv ) + 2(ηxuvη

y
u − ηyuvηxu)

S4[η] = (ηxvvη
y
u − ηyvvηxu) + 2(ηxuvη

y
v − ηyuvηxv ).

(29)

In contrast with the third-order 1D Schwarzian derivative, the 2D Schwarzian equations form a second-order

quadratic system of PDEs. Obviously, the system in equation (29) is not unique. Any non-degenerate linear

combination of these equations shares similar properties. This particular system naturally appears in the
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proof of the next section.

5 Solution Space of the Schwarzian Equations

By construction, homographies are solutions of the Schwarzian equations (29). In this section, we prove that

homographies are the only solutions. This proof builds the foundations of deformable surface modeling using

Schwarzian equations in section 6. As in the previous section, we start with the 1D Schwarzian derivative

and then extend the methodology to our 2D equations.

5.1 Solution Space of the 1D Schwarzian Derivative

We have proved in section 4 that by construction S[η] = 0 is a necessary condition for η ∈ H(RP1). The

proof of the sufficient condition is outlined in (Ovsienko and Tabachnikov, 2005, chapter 1) yet we reproduce

it in detail here as it helps us to introduce the proof in the 2D case.

Proposition 1: If S[η] = 0 then η ∈ H(RP1).

Proof. We proceed by showing that any η ∈ C2(R,R) can be expressed as the ratio of two linearly indepen-

dent solutions of the following second order linear ODE with variable coefficients:

ϕ′′ +
1

2
S[η]ϕ = 0. (30)

As a consequence, if S[η] = 0, η is the ratio of solutions of ϕ′′ = 0, which has linear functions as only

solutions and thus implies that η ∈ H(RP1). We divide the proof in two main steps:

1. Find two functions ϕ1 and ϕ2 that satisfy the following three conditions: i) η =
ϕ1

ϕ2
, ii) ϕ1 and ϕ2 are

linearly independent and iii) if η ∈ H(RP1) then ϕ1 ∈ L(R) and ϕ2 ∈ L(R).

To satisfy all aforementioned conditions we choose ϕ1 =
η√
η′

and ϕ2 =
1√
η′

. i) is straightforward to

check and ii) is satisfied given that ϕ′1ϕ2 − ϕ1ϕ
′
2 = 1. To verify iii) we express η ∈ H(RP1) as the

ratio of two functions δ ∈ L(R) and γ ∈ L(R):

δ = au+ b γ = cu+ d, (31)

where a, b, c and d are constant coefficients and thus η′ can be expressed as

η′ =
δ′γ − δγ′

γ2
=
ad− cb
γ2

. (32)
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By substitution of equation (32) in the definition of ϕ1 and ϕ2 we verify that they are linear functions:

ϕ1 = (ad− cb)−1δ ϕ2 = (ad− cb)−1γ, (33)

2. Find γ so that ϕ1 and ϕ2 are solutions of the following second order ODE with variable coefficients:

ϕ′′ + γϕ = 0. (34)

Equation (34) admits two linearly independent solutions and every solution is a linear combination of

them (Coddington, 2012). To find γ we first substitute ϕ1 in equation (34), obtaining the following

expression:

η

(
3

4
(η′′)2(η′)−

5
2 − 1

2
η′′′(η′)−

3
2

)
+ γη(η′)−

1
2 = 0. (35)

By multiplying equation (35) by
√
η′ and grouping terms we obtain the following equation:

η

(
γ − 1

2
S[η]

)
= 0. (36)

Similarly, if we substitute ϕ2 in equation (34) it results in:

γ − 1

2
S[η] = 0. (37)

For ϕ1 and ϕ2 to be solutions, we obtain from equations (36) and (37) that:

γ =
1

2
S[η]. (38)

From equation (38), if S[η] = 0, then γ = 0 and ϕ1 and ϕ2 are two independent solutions of the ODE

ϕ′′ = 0, which admits only linear functions as solutions. As a consequence their ratio η ∈ H(RP1).

5.2 Solution Space of the 2D Schwarzian Equations

In the 2D case we found 4 Schwarzian equations S1, . . . , S4. We have the function η ∈ C2(R2,R2), where

η = (ηx, ηy) and we assume J 6= 0, where J = ηxuη
y
v − ηxvη

y
v is the Jacobian determinant of η.

Proposition 2: If Sk[η] = 0 for k ∈ {1, 2, 3, 4} then η ∈ H(RP2).

Proof. Similarly to the 1D case, we proceed by showing that any η ∈ C2(R2,R2) can be expressed as ratios of
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linearly independent solutions of the following second order system of linear PDEs with variable coefficients:

ϕuu + α1ϕu + β1ϕv + γ1ϕ = 0 (39)

ϕuv + α2ϕu + β2ϕv + γ2ϕ = 0 (40)

ϕuu + α3ϕu + β3ϕv + γ3ϕ = 0, (41)

where we have that αi = 0, βi = 0 and γi = 0 for i ∈ {1, 2, 3} if Sk[η] = 0 for k ∈ {1, 2, 3, 4}. As a

consequence, if the Schwarzian equations are satisfied, the only solutions of equations (39), (40) and (41)

belong to L(R2) and thus η ∈ H(RP2). The proof involves two steps:

1. Find ϕ1, ϕ2 and ϕ3 that satisfy the following three conditions: i) ηx =
ϕ1

ϕ3
and ηy =

ϕ2

ϕ3
, ii) ϕ1, ϕ2

and ϕ3 are linearly independent and iii) if η ∈ H(RP2) then ϕj ∈ L(R2) for j ∈ {1, 2, 3}.

The sought after functions are defined as follows:

ϕ1 = ηxJ−
1
3 ϕ2 = ηyJ−

1
3 ϕ3 = J−

1
3 . (42)

From equation (42) i) is easily verified. To prove ii) we check that the Wronskian determinant of ϕ1,

ϕ2 and ϕ3 is constant: ∣∣∣∣∣∣∣∣∣∣
ϕ1,u ϕ1,v ϕ1

ϕ2,u ϕ2,v ϕ2

ϕ3,u ϕ3,v ϕ3

∣∣∣∣∣∣∣∣∣∣
= 1, (43)

where ϕi,u =
∂ϕi
∂u

and ϕi,v =
∂ϕi
∂v

. Finally iii) can be easily checked by expressing η as a fraction of

linear functions and verifying that in that case J−
1
3 is proportional to ζ, which makes ϕ1, ϕ2 and ϕ3

linear functions.

2. Find functions αi, βi and γi with i ∈ {1, 2, 3} so that ϕ1, ϕ2 and ϕ3 are solutions of equations (39),

(40) and (41). We proceed by substitution of equation (42) into equation (39), finding the following

solution for the coefficients α1, β1 and γ1:

α1 =
S3[η]

3J
β1 = −S1[η]

J
γ1 =

2

J2

(
1

9
S3[η]2 − 1

3
S1[η]S4[η]

)
− α1,u + β1,v, (44)

where α1,u =
∂α1

∂u
and β1,v =

∂β2

∂v
. We repeat the same process for equations (40) and (41), obtaining
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the rest of coefficients:

α2 =
S4[η]

3J
β2 =

S3[η]

3J
γ2 =

1

J2

(
−S1[η]S3[η] +

1

9
S3[η]S4[η]

)
− α2,u + β2,v (45)

α3 =
S2[η]

J
β3 =

S4[η]

3J
γ3 =

2

J2

(
1

9
S4[η]2 − 1

3
S2[η]S3[η]

)
− α3,u + β3,v (46)

If Sk[η] = 0, for k ∈ {1, 2, 3, 4}, then from equations (44), (45) and (46) we have αi = 0, βi = 0 and

γi = 0 for i ∈ {1, 2, 3}. Therefore ϕ1, ϕ2 and ϕ3 are solutions of the following system of PDEs:

ϕuu = 0 ϕuv = 0 ϕvv = 0, (47)

which has linear functions as only solutions and implies that η ∈ H(RP2).

6 Modeling the Perspective Projection of Deforming Surfaces: Schwarps

The warp between two images of a plane is a homography. In that case, the 2D Schwarzian derivatives

vanish, by definition. With a non-planar and possibly deforming surface, the image warp does not anymore

satisfy the Schwarzian equations exactly. For a smooth surface deformation however, each small patch

on the surface can be approximated by its tangent plane (see figure 2). The warp η can then be locally

approximated by a homography between the projections of the tangent planes. The Schwarzian derivatives

form differential invariants and we thus expect the system in equation (29) to have small residuals for the

projection of infinitesimal planes.

For an image warp η : Ω1 → Ω2, the 2D Schwarzian derivatives measure how near is η from a homography

infinitesimally at each point. We define as Schwarp a warp whose 2D Schwarzian derivatives were penalized

for its estimation. As a result a Schwarp captures differential projective properties.

A Schwarp is defined as the solution of the following variational problem:

arg min
η

εd[η] + λεse[η], (48)

where εd[η] is a data term measuring registration error (for instance, the transfer error between point
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Figure 2: The 2D Schwarzian derivatives have small residuals for the warp η between the images of a smooth
deforming surface.

correspondences), εse[η] is the Schwarzian penalty:

εse =

∫
Ω1

(
S1[η]2 + S2[η]2 + S3[η]2 + S4[η]2

)
dΩ, (49)

and λ is a hyperparameter which weighs the influence of the Schwarzian derivatives over the data term. In

practice we replace the integral in equation (49) with a sum over a discretization Ω̃ of the domain Ω:

εse ≈
∑
pi∈Ω̃

4∑
k=1

Sk[η](pi)
2. (50)

The Schwarzian penalty is quartic and non-convex. Solving the optimization problem (48) thus requires

iterative optimization. We use the Levenberg-Marquardt algorithm. A Schwarp might be initialized with

any warp (e.g. the BS-warp or the TPS-warp).
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Name Penalizer Non-linear optimization Initialized by

BS-warp Bending Energy No N/A

BS-Schwarp Schwarzian Equations Yes BS-warp

TPS-warp Bending Energy No N/A

DP-warp 3D Bending Energy Yes TPS-warp

NURBS-warp 3D Bending Energy Yes BS-warp

Table 1: Summary of warps used in our experiments.

7 Experimental Results

We compare BS-Schwarp to state of the art warps, namely the BS-warp (Rueckert et al., 1999), the TPS-

warp (Bookstein, 1989), the DP-warp (Bartoli et al., 2010) and the NURBS-warp (Brunet et al., 2009). In

table 1 we summarize the details of warps used in our experiments. All these warp models are based on a

set of control centers.

7.1 Implementation Details

For the experiments with synthetic data, we generate a set of 100 images for each configuration while varying

imaging conditions (pose and focal length) and present the average values for each of the criteria over the

100 images. We keep the resolution of the images at 640 × 480 pixels. We vary the focal length between

100 and 500 pixels. We fix the number of feature correspondences to 50, control centers to 36 and use a

Gaussian noise distribution (we vary the amount of noise for the same distribution). For all the other warps

we use code publicly available from their authors.

7.2 Synthetic Data

We simulate images of rigid and deformable surfaces. In the rigid case, we use a plane and in the deformable

case we wrap a surface around a longitudinal cut of a barrel. For both types of data, we examine the

performance of all the warps against an increasing amount of noise, perspective and their sensitivity to their

hyperparameter. In the deformable case, we add an additional experiment to compare the warps against an

increasing amount of deformation. For all cases, we compare the warps based on three criteria: generalization

error (ε1), first derivative error (ε2) and second derivative error (ε3). The generalization error is the transfer

error measured in terms of RMSR (Root Mean Square Residual) between the warp and ground truth. This

is computed over some points which were not used to estimate the warps. We give a relative error for the

first and second derivatives compared to ground truth.
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Figure 3: Comparison of BS-Schwarp with other warps against noise on synthetically generated images. The
first and second rows are for the planar and deformable surfaces respectively.

7.2.1 Effect of Noise and Hyperparameter

We compute the warps with an increasing amount of noise and optimize the hyperparameter such that the

generalization error is minimum in each case. Figure 3 presents the performance of all the warps against

noise. In these experiments, the BS-Schwarp outperforms all the other warps in all criteria examined. This

is true for both planar and deformable surfaces. As expected, the most significant improvement of the

BS-Schwarp is in the case of second derivatives. The BS-Schwarp does not penalize the bending energy and

thus preserves the second derivatives much better than any other warp that penalizes the bending energy.It

is because, the bending energy directly penalizes the warp’s second derivatives.

To measure the sensitivities of the warps against the hyperparameter, we re-compute all the warps as in

the previous experiment. However, this time we do not optimize the hyperparameter in each case. Instead,

we use the mean of the optimal hyperparameter of an image for all different noise levels. This gives us 5

curves as in figure 3 but with larger errors since the hyperparameter is suboptimal for each case. For a given

warp, the area between this new curve and the corresponding one in Figure 3 gives an estimate on a warp’s

sensitivity to its hyperparameter. If this area is large, the warp is very sensitive to the hyperparameter.

In table 2, we present the area between the two curves (with optimal and average hyperparameter) for all
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Method
Planar Case Deformable Case

ε1 ε2 ε3 ε1 ε2 ε3
BS-warp 2.3948 0.0566 0.4630 10.2054 0.1172 0.4537

BS-Schwarp 0.0275 0.0006 0.0025 3.6637 0.0329 0.1098

TPS-warp 2.0912 0.0470 0.1830 9.5280 0.0791 0.1895

DP-warp 10.1772 0.3194 1.2826 47.7706 0.1858 0.3079

NURBS-warp 0.4227 0.0216 0.3859 5.7904 0.1151 0.7170

Table 2: Sensitivities of the warps to their hyperparameter. The larger the number the more sensitive the
warp to its hyperparameter.

warps for the planar and deformable cases. It is clear from these results that the BS-Schwarp is the most

stable against its hyperparameter. In all cases, it undergoes the smallest deviation from the optimal curve.

7.2.2 Effect of Perspective

We compare the warps with a set of images with increasing perspective. To control the amount of perspective,

we follow a single parameter projection model that allows us to select the amount of perspective required.

With this model, a point P =
(
Px Py Pz

)>
is projected as:

Πt(P ) =

(
(t+ 1)f

Px
Pz + tf

(t+ 1)f
Py

Pz + tf

)>
. (51)

Equation (51) becomes an orthographic projection for t→∞. Figure 4 shows that BS-Schwarp outperforms

all the other warps with a significant margin. The errors increase linearly first, and then quadratically, with

increasing perspective. It is interesting to note that BS-Schwarp models perspective better than the rational

warps (DP-warp and NURBS-warp).

7.2.3 Effect of Deformation

We examine the behavior of the warps with an increasing amount of deformation (figure 5). Deformation is

controlled by changing the radius of the curved surface. We can see a similar trend in this case: BS-Schwarp

performs better than all the other warps. The generalization error and the first and second derivatives error

degrade linearly with increasing deformation.

7.2.4 Rate of Convergence

In all experiments, we kept track of the number of iterations required for the non-linear refinement part of

BS-Schwarp, DP-warp and NURBS-warp to converge to a solution. Indeed these 3 warps use Levenberg-

Marquardt for their estimation. We have found that on average the BS-Schwarp takes only 10-15 iterations

to converge, whereas the DP-warp and the NURBS-warp require hundreds of iterations. This indicates that
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Figure 4: Performance of the different warps against increasing amount of perspective. The first and second
rows are for planar and deformable surfaces respectively.

the BS-Schwarp is more stable numerically. This is due to the rational modeling of the DP-warp and the

NURBS-warp.

7.3 Real Data

We compare the performance of the warps in three deformable reconstruction method on real images. The

first two methods are based on SfT which uses the first derivatives of the warp, on the other hand, the third

method (NRSfM) uses the second derivatives of the warp. Thus, these methods are able to provide a good

idea of the impact of the quality of the warps. In figure 6, 7 and 8, we present the datasets used in the

experiments. The resolutions of these images are 3264 × 4928 pixels. The focal length is 2448 pixels. For

all the datasets, we obtain the ground truth shape Ψ using SfM.

We use different types of surfaces in our experiments. We deform these surfaces on several occasions and

capture images of those deformations. The first dataset D1 consists of 8 different images of a deformable

surface (210mm×297mm) which has texture all over it. This dataset allows us to examine the performances

of the warps in the case where we have abundance of feature correspondences. The second dataset D2

consists of 7 images of another deformable surface of similar size as D1. However, it is textured only along

the borders. This dataset is used to analyze the performance of the warps in cases where there are fewer or
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Figure 5: Performance of different warps against increasing amount of deformation.

no correspondences present in a part of the surface. The final dataset D3 is made of 6 images of another

surface (910mm×610mm) which allows us to introduce an important perspective effect in the image thanks

to its size. In each case, the best performing method’s results are shown in bold in the summary tables.

7.3.1 Shape Reconstruction in Shape-from-Template

In SfT, the shape of a surface is inferred from the warp computed between a template (typically an image of

the flattened surface) and the image of the deformed surface. We use feature based approach to SfT (Bartoli

et al., 2012). We use the SIFT (Lowe, 2004) feature detector to extract matches between the template and

the target image and use the matches to compute the warp. Table 3 shows the reconstruction errors in SfT

for each warps for all 3 datasets. The reconstruction error is computed between the reconstructed shape

Ψ′ and Ψ, using
∑

i,j∈Ω̃
|Ψ′i,j −Ψi,j |, where Ω̃ is the discretization of the domain. The errors are given in

millimeters. The mean error for each dataset is also presented. From the results, it is clear that BS-Schwarp

outperforms the other warps for each dataset. After BS-Schwarp, the second best performance is shared by

the BS-warp in D1, the DP-warp in D2 and the NURBS-warp in D3. On average, BS-Schwarp improves

the second best by 13.47% for D1, 3.59% for D2 and 12.12% for D3.

7.3.2 Calibration in Shape-from-Template

Calibration in SfT allows one to compute the focal length of the camera from the warp. We implemented

the method proposed in (Bartoli and Collins, 2013b). We use all the computed warps for all the real images

to recover the focal length (f̂). We compute the relative error from the true focal length f , using |f̂−f |f . The

results are presented in table 4. Here again, BS-Schwarp on average performs best for each dataset among

all the warps. For more than half of the images, BS-Schwarp provides a better performance than the other

warps.
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(a) S1 (b) S2 (c) S3

(d) S4 (e) S5 (f) S6

(g) S7 (h) S8

Figure 6: The first dataset D1 comprises 8 images of a fully textured surface.

7.3.3 Non-Rigid Structure-from-Motion

We have used the method proposed in (Varol et al., 2009) that assumes the surface to be piece-wise planar.

Homographies are fitted to feature correspondences between pairs of images and then are decomposed

to obtain the orientation of surface planes. The surface’s shape is then computed from the normal field

generated by combining all normals obtained from every pair. All pairs from at least 3 images are needed.

The main difficulty of (Varol et al., 2009) is how to compute the support set of correspondences for each

homography. We deal with this by uniformly sampling points from the first image and then using the warp

to generate the local support of each point from close neighbors.

For this experiment, we use the first 6 images from the first dataset D1 and the whole set from the other

datasets. For a dataset, each time we choose 3 images. We obtain several possible combinations of such

image triplets. We compute shape error for all the combinations and present the mean error for 5 image

warps. The shape error is computed using the mean difference between reconstructed surface normals and

the ground truth surface normals. In table 5, we present the results of our experiments. It is clear that

BS-Schwarp outperforms all the other warps with a good margin for all datasets.
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(a) S1 (b) S2 (c) S3

(d) S4 (e) S5 (f) S6

(g) S7

Figure 7: The second dataset D2 comprises 7 images of a surface with texture only along the border.

(a) S1 (b) S2 (c) S3

(d) S4 (e) S5 (f) S6

Figure 8: The third dataset D3 comprises 6 images of a fully textured surface larger than the surfaces used
in D1 and D2.
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Dataset Shape BS-warp BS-Schwarp TPS-warp DP-warp NURBS-warp

D1

S1 19.83 19.77 21.28 21.24 21.09
S2 22.32 21.56 20.91 20.80 22.74
S3 3.59 3.56 3.84 3.84 3.66
S4 13.22 13.16 14.81 15.03 16.96
S5 11.09 11.11 11.56 11.70 14.97
S6 28.78 21.33 40.96 24.45 22.29
S7 7.28 3.45 13.72 11.22 8.43
S8 7.57 6.21 16.41 13.59 6.37

D1-Mean 14.47 12.52 17.94 15.23 14.82

D2

S1 14.61 14.57 15.12 15.20 14.67
S2 9.04 9.01 11.30 10.72 15.76
S3 12.45 12.44 13.43 13.26 12.98
S4 11.70 11.81 12.17 11.93 11.37
S5 18.88 12.36 43.78 13.07 12.25
S5 28.78 21.33 40.96 24.45 22.29
S6 43.91 41.64 42.76 42.52 48.39
S7 20.13 20.47 20.41 20.24 20.82

D2-Mean 18.67 17.48 22.71 18.13 19.60

D3

S1 82.47 54.93 113.49 55.45 62.43
S2 44.02 41.21 50.36 49.93 42.22
S3 33.49 31.16 35.80 35.62 31.51
S4 44.16 35.26 61.50 68.32 41.47
S5 64.79 55.24 97.89 96.21 63.20
S6 53.30 45.79 70.20 61.71 59.12

D3-Mean 53.71 43.93 71.54 61.21 49.99

Table 3: Reconstruction error (in mm) for SfT for the images of the 3 datasets used in our experiments.

8 Conclusion

We have studied differential projective invariants and their application for modeling the projection of a de-

forming surface. We have presented the 2D Schwarzian equations which form a set of PDEs. The Schwarzian

equations model projective functions at a differential scale. They constrain the flow between two projections

of a deforming surface. We have introduced a new type of penalty based on the warp’s Schwarzian equations.

We have conducted experiments on real and simulated data. We show that the Schwarp (Schwarzian penal-

ized warp) notably improves accuracy over the existing image warps (that penalize the bending energy) in

SfT (shape reconstruction and calibration) and NRSfM. The Schwarzian equations provide a general model

with potential impacts on other problems in computer vision (such as optical flow in rigid environments)

which form potential future work.
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Dataset Shape BS-warp BS-Schwarp TPS-warp DP-warp NURBS-warp

D1

S1 8.05 10.31 12.02 12.38 9.36
S2 10.43 6.70 10.47 10.19 8.52
S3 1.49 0.30 1.81 3.24 3.95
S4 1.61 3.00 3.75 3.67 6.73
S5 4.87 6.06 19.49 15.28 19.57
S6 0.42 0.34 5.86 1.13 3.87
S7 1.29 0.06 6.02 7.32 2.35
S8 1.86 1.16 4.39 5.16 2.18

D1-Mean 3.75 3.49 7.98 7.30 5.82

D2

S1 3.00 0.85 2.01 0.02 0.10
S2 3.12 1.41 8.09 8.05 8.64
S3 12.45 11.58 7.25 8.01 19.61
S4 4.99 4.15 4.67 4.07 3.08
S5 0.50 0.46 19.61 2.88 6.22
S6 19.85 19.81 19.77 19.85 19.77
S7 2.05 4.71 14.96 9.64 2.48

D2-Mean 6.51 6.14 10.91 7.5 8.56

D3

S1 9.60 7.13 6.86 10.39 14.92
S2 0.21 3.16 6.97 4.07 10.03
S3 5.19 2.44 0.54 2.25 7.47
S4 7.05 6.10 16.87 19.85 7.37
S5 5.74 3.60 10.79 19.73 9.36
S6 4.39 0.85 2.05 6.78 9.08

D3-Mean 5.37 3.88 7.35 10.51 9.69

Table 4: Relative focal length calibration recovery error (in percents) computed from the images of 3 datasets
used in our experiments.
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