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Abstract
Purpose. Navigated Pan Retinal Photocoagulation (PRP) is a standard care for proliferative
diabetic retinopathy. Slit-lamp based systems used for this treatment provide a narrow view
of the retina. Retinal mosaics are used for view expansion and treatment planning. Mosaic-
ing slit-lamp images is a hard task due to the absence of a physical model of the imaging
process, large textureless regions and imaging artifacts, mostly reflections.
Methods. We present a comparative study of various geometric transformation models ap-
plied to retinal image mosaicing in computer-assisted slit-lamp imaging. We propose an
efficient point correspondence based framework for transformation model evaluation in a
typical closed loop motion scenario. We compare the performance of multiple linear and
non-linear models of different complexity and assess the effect of number of points used for
parameter estimation. We use a Local Fitting Error (LFE) metric to estimate the models’
performance in pairwise registration. Because LFE alone is not conclusive regarding the
problem of accumulated drift, we propose a Loop Closure Error (LCE) metric to quantify
the effect of accumulated local registration errors. We also provide a new normalization pro-
cedure for the quadratic transformation model, widely used in retinal image registration.
Results. In total seven transformation models were evaluated on three datasets of long im-
age sequences. LFE decreases with increasing complexity of the model while LCE, in con-
trast, shows superior performance of simple models. Varying the number of point correspon-
dences did not reveal a common trend for the LCE metric, showing an increase of the error
for simple models and an unstable behavior of the complex models.
Conclusion. Our results show that simple models are less sensitive to drift and preferable for
sequential mosaicing in slit-lamp imaging, while more complex models are the best choice
for short-term registration.
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1 Introduction

Proliferative diabetic retinopathy is a major cause of visual impairment and blindness among
people with diabetes. Early detection and treatment can reduce the risk of blindness [11].
The currently used standard treatment is Pan Retinal Photocoagulation (PRP) where a thera-
peutic laser is used to make tiny burns on the affected areas of the retina. Conventional PRP
through the slit-lamp with manual navigation has been the standard for laser delivery for
many decades. However, sequential improvements in the past ten years led to the develop-
ment of computer guided photocoagulation systems with integrated imaging and automatic
navigation [6,9,10]. Although the visible area of the retina is smaller with the slit-lamp,
compared with images acquired by non-mydriatic fundus photography [9,4], magnification,
expansion and control offered by the slit-lamp makes it a very popular choice for laser
delivery in the clinical environment [2]. The imaging set-up is based on the eyepiece and
microscope optics of the slit-lamp and the magnifying contact lens attached to the eye such
that slit illumination is projected onto the retina (Figure 1a). This set-up is used to perform
retinal examination and treatment where the ophthalmologist typically explores the retina
in closed loop manner starting from the optic nerve. Images obtained with this device have
a narrow field of view (FOV). Thus, only small thin portions of the retina can be visual-
ized (Figure 1b). Obtaining the larger view can greatly facilitate the delivery of PRP and
treatment planning.

(a) (b) (c)

Fig. 1: Retinal image mosaicing with a slit-lamp. (a) slit-lamp system developed in Quan-
telMedical, France, (b) typical slit-lamp image, (c) example of drift on the mosaic: the white
arrows show a misaligned vessel.

Computer-assisted retina mosaicing for view expansion using a slit-lamp device has
been recently proposed [18,17] and integrated in the slit-lamp system of QuantelMedical,
France (Figure 1a). A map of the retina is built in real-time using a combination of direct
and feature-based tracking. Direct visual tracking uses color discrepancy to infer motion
without the need to extract image features [8,21]. The objective is to find the parameters of
a transformation model that aligns the reference image of a target object to its current image
so that a chosen similarity measure between the two images is maximized. It is combined
with feature-based tracking to perform re-initialization if the target is lost [17]. Retinal mo-
saics built with this method suffer from accumulated drift induced by sequential mapping
(Figure 1c). This causes misalignment artifacts and degrades the visual quality. The influen-
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tial factors are (i) the small number of features away from the optic nerve, (ii) the geometric
transformation model, (iii) the distortion induced by the geometry of the eye and the contact
lens and (iv) the fitting algorithm.

The majority of existing works on retinal image registration and mosaicing uses im-
ages obtained from a fundus camera [1,23,19,5,22]. The quality of this type of images is
higher. They have fewer specular reflections, good contrast and almost no blur. The trans-
formation models applied in these works include translation, rigid (translation and rotation),
similarity, affine and quadratic. On the other hand, slit-lamp images were covered only in
[2,18]. This type of data is degraded by an uneven illumination which comes from outside
the eye, especially from the contact lens. It creates viewpoint dependent artifacts, glare and
specular reflections. The results recently presented in [18] demonstrate the use of the rigid
transformation model. Despite the variety of works which report on different transformation
models for retinal image registration, only a few address their comparison and evaluation.
Four transformation models (translation, affine, quadratic and radial distortion correction)
were evaluated on different image modalities in [12,14]. These works, however, do not con-
sider the mosaicing of long image sequences obtained in a closed loop motion which is
exemplary for retinal examination with the slit-lamp. Thus, they do not address the problem
of accumulated registration errors and drift.

We present a comparative study of seven geometric transformation models on the subject
of their performance in sequential retinal image mosaicing of slit-lamp images. We evaluate
multiple models from existing works on retina image mosaicing as well as the homography
and the Thin-Plate Spline (TPS). We independently investigate the effects of model’s com-
plexity and the number of point correspondences on drift accumulation. We propose a new
evaluation framework and error metric to compute the amount of drift. We also derive a nor-
malization procedure for the quadratic model [5]. The normalization of the homography is
well known [7] but for the quadratic model, however, it was not. Our normalization method
improves the quadratic model fitting.

2 Materials and Methods

2.1 Slit-lamp Imaging and Geometric Assumptions

We used image sequences of retinal examination performed on volunteers in a University
Hospital of Saint-Etienne, France. The navigated PRP system developed at QuantelMedical
was used. The images were captured with a CCD camera at 60fps. Typical videos are be-
tween 2-3 minutes long. The retina is illuminated with a narrow light beam focused using a
direct contact lens. The standard way of retinal examination is to perform a closed loop mo-
tion starting from the optic nerve, moving to the periphery and coming back. The camera is
fixed on the moving base controlled by the ophthalmologist and undergoes translation only.
Small rotations caused by head tilts occasionally occur. The spherical curvature of the retina
has relatively low depth variation. The system’s optics include several parts moving inde-
pendently, namely the contact lens and the camera. Therefore, the imaging device cannot
be calibrated (the relationship between a pixel’s position in an image and the corresponding
line of sight varies in time). Thus, there is no simple physically valid transformation to relate
the images geometrically. This makes mosaicing tremendously difficult.
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2.2 Transformation Models

Previous works do not conclude on which model can best approximate the image trans-
formation in retinal image mosaicing. Thus, we have specifically choosen to evaluate the
following seven transformation models: T - translation, as an intuitive choice reflecting the
lateral motion of the camera; RG - rigid, is currently integrated in the mosaicing algorithm
used in the slit-lamp device of QuantelMedical; SM - similarity and AF - affine models were
chosen to check whether the modeling of slight eye movements during procedure improves
accuracy; H - homography, as the widely used model in mosaicing [7,20]; QD - quadratic,
as a popular choice in retinal image registration [5]; and finally the TPS - Thin-Plate Spline
with adaptive parameter smoothing [3] which might have a great potential of success due to
its elastic properties. The properties of these models are summarized in Table 1.

T RG SM AF H QD TPS
DoF 2 3 4 6 8 12 2k

Linear w.r.t.
source points yes yes yes yes no no no

Linear w.r.t.
parameters yes no yes yes no yes yes

Table 1: Summary of the transformation models’ characteristics. The Degrees of Freedom
(DoF) define the number of estimated parameters. We label each model according to whether
it is linear w.r.t. its parameters or the source point. k indicates the number of control points
of the TPS.

3 Evaluation Framework

To evaluate the models’ accumulated drift we propose a point correspondence based frame-
work. The principle is to provide a noisy but outlier-free set of correspondences to minimize
the effect of the fitting algorithm and evaluate the drift with an independent set of points
transferred through a closed loop motion. We evaluate pairwise fitting and quantify how the
model is able to connect the last and first frames in long-term image registration without
using the closed loop constraint. Our framework consists of four main steps: (1) data ac-
quisition and processing, (2) point correspondence selection, (3) transformation parameter
estimation and (4) model accuracy evaluation through a number of tests. The details of each
step are given below.

3.1 Data Acquisition

Three datasets were used in this study (Figure 2). Each dataset consists of an image sequence
obtained from a retinal examination video where every 5th frame was taken. Two datasets
(Figures 2a-b) were obtained from retinal examination videos of patients in the hospital. One
dataset of a phantom eye was included as a simplified case where the phantom was fixed on a
holder and the procedure did not involve a contact lens (Figure 2c). The length of the datasets
is 254, 242 and 326 images respectively. The image size is 720×1280 pixels. The numbers
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of point correspondences for each dataset were not the same, resulting in as minimum 100
points per pair of frames and as maximum 400. Frames containing the minimum number of
points were mostly on the periphery of the retina while frames containing more points were
closer to the optic nerve. The size of the illumination slit was fixed according to the patients’
comfort for the first two datasets. The visible part of the retina excluding regions of strong
specularities covers at least 50% of the image.

(a) dataset #1 (b) dataset #2 (c) dataset #3

Fig. 2: Sample image from each dataset.

3.2 Selection of Pairwise Point Correspondences

We segment the visible part of the retina and filter out strong specularities using intensity
thresholding and morphological operations [17]. We then detect and extract key-points with
Scale Invariant Feature Transform (SIFT) [15] and match them between consecutive frames.
Matching is performed by measuring the L2 norm of the difference between key-point de-
scriptors within a pair of frames, and the basic matching algorithm suggested by [15] to
reject matches that are too ambiguous. A combination of automated and manual refinement
steps are incorporated to exclude the remaining outliers. First we use a threshold on the
points’ relative displacement. The threshold is defined by summing the median and the me-
dian of absolute deviation of the points’ displacement. Points which moved more than the
computed threshold are discarded. Second, the manual checkup is performed with every set
of point correspondences visualized on the associated images. The position of erroneous
points is adjusted manually using a specifically developed Graphical User Interface (GUI)
in Matlab. Thus, each dataset contains between 100 and 400 correspondences p←→ q ob-
tained from f frame pairs in a closed loop I1←→ I2←→ ...←→ I f−1←→ I f ←→ I1.
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(a) (b) (c)

Fig. 3: Selection of point correspondences. (a) - original image, (b) - segmented image, (c)
- point correspondences (subsampled for legibility).

3.3 Transformation Parameter Estimation

3.3.1 General Points

A transformation function has the form w(p,θ) where θ is a vector of transformation pa-
rameters. All transformations are estimated by minimizing the sum of squared transfer dis-
crepancies. Due to the numerical instability of models containing cross terms and/or squared
terms, as the homography and the quadratic models, the estimates might not be stable. This
may be improved by data normalization, which has been well-studied for the homogra-
phy [7] but not for the quadratic model. Typical image points may have various orders of
magnitude. Their increase in squared and cross terms may cause the pixel coordinates to be-
come very large. Normalization converts pixel coordinates e.g. p ∈ [1;1000] to normalized
coordinates e.g. p ∈ [−1;1]. This is done by a simple affine transformation. The detailed
explanation and substantiation of the normalization procedure for the homography can be
found in [7] (Ch. 4.4.4). The question is whether it is possible to normalize the quadratic
model with an affine transform; the answer is yes.

3.3.2 Quadratic Model Normalization Rules

We derive normalization w.r.t. the rules of function compositions. Let N(p) = Sp+c, where
S∈ IR2×2,c∈ IR2 be the normalization transform applied to the point correspondences from
two consecutive frames. Let Q̃ be the quadratic model estimated from normalized data, using
[13] for instance. Thus, to compute Q the quadratic transform in pixel coordinates we write:

Q(p) = (D′ ◦ Q̃◦N)(p) = D′(Q̃(N(p))) (1)

where D′(p) = Ep+k, where E ∈ IR2×2,k ∈ IR2 is the denormalization transform from the
second image such that N′ ◦D′ = D′ ◦N′ = I.

The quadratic model is the second order Taylor series expansion of the general transfor-
mation [5]:

Q(p) =
[
B2×3|A2×2|t2×1

]
X(p) (2)
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where B ∈ IR2×3, A ∈ IR2×2, t ∈ IR2×1 are the 2nd , 1st and 0th order terms of the transforma-
tion, X(p) = [x2,xy,y2,x,y,1]>. We define a symmetric matrix B̂x ∈ IR2×2 to represent the
quadratic and cross terms as:

µ(bx)
def
=

[
b11

1
2 b12

1
2 b12 b13

]
= B̂x, ν(B̂x)

def
=

 b̂11

2b̂12

b̂22

= bx (3)

where b>x ∈ IR1×3 is the first row of B and µ(bx) is the ‘packing’ vector to matrix form
and ν(B̂x) its ‘unpacking’. This is a simple reorganization of model’s entries. Thus, with
µ ◦ν = id and ν ◦µ = id, we have:

ν(B̂x)
>

x2

xy
y2

= p>B̂xp, b>x

x2

xy
y2

= p>µ(bx)p (4)

Each dimension of Q̃ can then be written as:

Q̃x(p) = p>B̂xp+a>x p+ tx (5)

where a>x ∈ IR1×2 is the first row of A and tx is the first element of t.
First, to compose the quadratic model with a normalization transform N we use compo-

sition rules expressed in equation (1) and equation (5). We write the composition as follows:

(Q̃x ◦N)(p) =
1
2
(Sp+ c)>B̂x(Sp+ c)+a>x (Sp+ c)+ tx (6)

=
1
2

p>S>B̂xSp+(c>B̂x +a>x )Sp+(
1
2

c>B̂x +a>x )c+ tx

=
[ 1

2 ν(S>B̂xS)
> (c>B̂x +a>x )S ( 1

2 c>B̂x +a>x )c+ tx
]

X(p)

which shows that Q̃x◦N is a quadratic transformation which follows that Q̃y◦N is a quadratic
transformation too.

To compose the denormalization transform D′ with the quadratic model resulting from
equation (??), we follow the previous derivation and write the composition as follows:

(D′ ◦Q)(p) = E(
[
B|A|t

]
X(p))+k =

[
EB|EA|Et+k

]
X(p) (7)

which shows that D′ ◦Q is a quadratic transformation. Consequently, this establishes that,
D′ ◦ Q̃◦N is a quadratic transformation too and that normalized estimation of the quadratic
transformation is possible.

3.3.3 Normalized Estimation of the Quadratic Transformation

The following steps summarize the normalization procedure and parameter estimation for
the quadratic model:

1. Normalize: compute N and D′ using point correspondences from two consecutive im-
ages p←→ q.

2. Fit Q̃ : apply the LLS algorithm [13] to the point correspondences p←→ q to obtain Q̃.
3. Find Q : compute (Q̃x ◦N)(p) using equation (??) and apply equation (6) to obtain the

final Q.

We denote the normalized quadratic model as QDn and include it for evaluation. The effect
of this normalization is also discussed and illustrated in §4.1.
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3.4 Evaluation

To independently evaluate the effect of the model complexity and of the number of point
correspondences we analyze two types of error metrics (Figure 4 and 5). We compute the
Local Fitting Error (LFE) - the discrepancy of data point and corresponding model estimate
in pixels, to evaluate model fitting in pairwise registration as follows:

ξLFE =

√
1
n

n

∑
i=1
‖ qi−w(pi,θ) ‖2 (8)

where pi←→ qi, i = 1, ...,n are all the point correspondences.

q ip i

ξLFE

w ( pi ,θ)

Fig. 4: The Local Fitting Error quantifies pairwise registration error.

We propose a Loop Closure Error (LCE) metric. This shows how the composition of
estimated transformations affects the global registration and accumulated drift. The idea is
to initialize a uniform grid of points g1, ...,gl at the first frame of the sequence and use the set
of pairwise estimated transformations applied sequentially to transfer the grid throughout the
sequence. The discrepancy between the initial and resulting sets of points is then measured
in pixels as follows:

ξLCE =

√√√√1
l

l

∑
i=1
‖ gi−ζ ‖2

2 (9)

where ζ = w(...(w(gi,θ1,2))...,θ f ,1).

4 Results and Discussion

Our evaluation has two parts. In Part I the ξLFE and ξLCE metrics were computed for every
model on three datasets where all the pairwise point correspondences were used for param-
eter estimation. This is to analyze how the model complexity affects the local registration
error and accumulated drift. The narrow FOV, poorly textured regions of the retina and small
amount of landmarks sometimes complicates the automatic detection of a sufficient number
of point correspondences. A suitable transformation model has to cope with this limitation.
Thus, in Part II we study the effect of varying the number of point correspondences.
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w (g i ,θk , k+1)

w (g i ,θ1,2)

w(g i ,θ f ,1)

first frame

last frame

ξLCE

Fig. 5: The proposed Loop Closure Error quantifies how well the model captures the closed
loop motion.

4.1 Part I: Effect of Model Complexity

The results show that ξLFE decreases with increasing complexity of the model (Table 2).
We found that T, RG and SM provide similar results. The difference between RG and SM
is negligible. This is because isotropic scaling is almost minimal in slit-lamp imaging. H,
despite its complexity over AF, generally gives similar results to AF and even inferior in
datasets #2 and #3. This raises the question of whether perspective matters. The answer
would be no. Modeling perspective is not useful for curved retina and purely lateral motion
of the camera. Finally, the TPS provides the smallest ξLFE in datasets #1 and #2 and QD
gives the smallest ξLFE in dataset #3.

dataset # 1 dataset # 2 dataset # 3
ξLFE ξLCE ξLFE ξLCE ξLFE ξLCE

T 3.185 62.906 3.165 18.441 3.179 59.892
RG 3.164 57.262 3.066 50.288 3.161 75.162
SM 3.162 72.473 3.064 49.743 3.158 76.175
AF 3.105 102.150 2.986 78.785 3.056 221.050
H 3.073 201.950 3.000 333.650 3.066 351.390
TPS 3.019 125.150 2.864 275.920 2.971 191.790
QD F(28) F(28) F(149) F(149) 2.762 478.070
QDn F(56) F(56) 2.866 254.870 2.886 236.330

Table 2: Average ξLFE and ξLCE across the different datasets.

ξLCE , in contrast, shows the superior performance of simpler models. RG gives the
smallest ξLCE for dataset #1, while T is best in datasets #2 and #3. Following the same
pattern as for ξLFE , RG and SM have errors with difference close to 1 pixel for datasets #2
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and #3. However this does not hold for dataset #1. As one can see the difference in ξLCE
between T and RG in dataset #1 is small (only 5.644 pixels) while for datasets #2 and #3 it
is much larger (31.847 and 15.27 pixels respectively). This indicates that the rotation com-
ponent of the model was completely redundant when the patient froze during examination
(dataset #2) and the phantom eye was fixed to the holder (dataset #3). AF and TPS showed
close results in datasets #1 and #3 while for dataset #2 ξLCE differs considerably. Addition-
ally, ξLFE was similar between AF and TPS for dataset #2. This means a small impact of
affine deformations in datasets #1 and #3. H appeared to be the worst model.

QD was derived specifically to fit the curved retina [5]. However, it turned out that its
estimation from our data is not stable. As one can see this model gives the smallest ξLFE for
dataset #3 only. This, somehow, correlates with results described in the literature [1,23,19,
5]. However, this model completely fails in ξLCE as indicated with F(x) where x is a number
of the frame where failure occurred. Indeed, the accumulated drift causes some models
to prematurely stop registration before the end of the sequence. In such case, the model
contains numerically unstable parameter combinations (quadratic and cross terms) which
force point coordinates to become very large if a ‘faulty estimate occurs in the process
of chaining for ξLCE computation. Therefore, when the points tend to be in a degenerate
configuration it is the most sensitive model. Thus, we rule out QD from the next experiment.
Our normalization method improves the fitting of the quadratic model. Results for dataset
#1 showed that failure has been delayed by QDn for 28 frames. The failure was completely
eliminated in datasets #2 and #3. We illustrate this improvement with graph plots in Figure 6.
We show the ‘spread’ of the points from the uniform grid defined for ξLCE computation. This
demonstrates the model response to scene geometry at central and peripheral portions of the
retina. The dashed black lines indicate the frame when failure occured. One can observe that
QDn provides the smallest ξLFE for dataset #3 and nearly the same ξLFE as TPS for dataset
#2. One can see that normalization suppressed the effect of quadratic part making QDn fit
similar to AF in dataset #3. Examples of registered image pairs highlighting areas in which
the output of the evaluated transformation models differ are shown in Figure 7.

4.2 Part II: Effect of the Number of Points

We defined the minimum and maximum number of samples as 20 and 100 respectively and
computed the ξLFE and ξLCE by selecting points randomly with steps of 2 samples. We
made 50 trials and averaged the results. Results for this evaluation test are similar among
the three datasets. The example of dataset #2 is shown in Figure 8. All transformations
show an increase in ξLFE approximately 0.5 pixels with an increase in the number of point
correspondences. This happens because more data brings more constraints to the estimated
parameters. However, there is no common trend among results on ξLCE . Varying subsets of
point from 20 to 100 lead ξLCE to decrease approximately 1.5 times for T, RG, SM and AF.
It also decreased approximately 2.5 times for H. One can see that H shows high variance
when the number of points is not sufficient and stabilizes only when more than 50 points are
supplied. TPS showed a decreasing trend between 20 and 45 points followed by unstable
behavior in 45-78 points and starts increasing between 78 to 100 points. This instability
is due to the number of control points used to define the deformation grid in TPS, it was
constant despite of changing the number of point correspondences. QDn started to give
meaningful results only when 68 points were supplied for estimation. It showed unstable
behavior with varying ξLCE from 256 to 263 between 70 and 100 points. This indicates that
this model is very sensitive to the number of points.
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Fig. 6: The ‘spread’ evaluation results over different datasets without subsampling.
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(a) T (b) RG (c) SM (d) AF

(e) H (f) TPS (g) QDn

Fig. 7: Examples of registered image pairs with different transformation models. The images
are taken from dataset #2. The first image of the sequence is registered with the last image
by applying the set of 241 pairwise estimated transformations sequentially.
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Fig. 8: Effect of the number of points. Example of dataset #2.

5 Conclusion

We have presented a comparative study of transformation models applied to sequential reti-
nal image mosaicing in computer-assisted slit-lamp imaging. We evaluated different models
on the subject of drift accumulation. We proposed the point correspondence based evaluation
framework and the LCE metric to quantify the drift, We also derived a new normalization
procedure to improve the quadratic model’s fitting.

The results obtained on three datasets have shown that local registration error decreases
with increasing complexity of the transformation model while simple models appeared to
produce less accumulated drift. The homography turned out to be irrelevant as perspective
deformations might be considered absent. Despite its popularity in the applications of retinal
image registration the quadratic model turned out to be completely unstable on our data even
after improvement by our proposed normalization procedure. Thus, the choice is meant to
be done from the remaining models, namely translation, similarity, rigid, affine and TPS.

The translation, despite of the lowest accumulated drift, is too simple for the majority
of clinical cases where the patients are normally very photosensitive and cannot completely
freeze during the procedure. The rigid transformation, which is currently used in the sys-
tem (Figure 1a) and can model rotations, is not sufficiently flexible. The similarity covers
isotropic scaling which sometimes occur during the examination. The affine model repre-
sents a superset for translation, rigid and similarity models. It covers more deformation types
and provides better results. The TPS is complex but the adaptive smoothing makes it always
stiff causing, however, a large drift. Therefore, in sequential mosaicing with long slit-lamp
image sequences the simple models, specifically translation, rigid, similarity and affine can
be the choice among others. However, an affine model is the best possible compromise
between ability to model pairwise transformation and simplicity in dealing with drift. The
models with higher complexity are best for short-term registration on different types of data.

This work is planned to be extended to replace the rigid model currently used in Quan-
telMedical’s slit-lamp device. The idea is to establish long-term inter-frame point corre-
spondences with the affine transformation model. This will allow us to proceed with Bundle
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Adjustment as a global refinement step [16]. Using the affine model is fundamental to pro-
vide a sensible estimate to initialize Bundle Adjustment.
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