
Dense Non-Rigid Structure-from-Motion and Shading with Unknown Albedos

Mathias Gallardo1, Toby Collins2 and Adrien Bartoli1
1 EnCoV, IP, UMR 6602 CNRS, Université Clermont Auvergne, SIGMA, France
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Abstract

Significant progress has been recently made in Non-
Rigid Structure-from-Motion (NRSfM). However, existing
methods do not handle poorly-textured surfaces that de-
form non-smoothly. These are nonetheless common occur-
rence in real-world applications. An important unanswered
question is whether shading can be used to robustly han-
dle these cases. Shading is complementary to motion be-
cause it constrains reconstruction densely at textureless re-
gions, and has been used in several other reconstruction
problems. The challenge we face is to simultaneously and
densely estimate non-smooth, non-rigid shape from each
image together with non-smooth, spatially-varying surface
albedo (which is required to use shading). We tackle this
using an energy-based formulation that combines a phys-
ical, discontinuity-preserving deformation prior with mo-
tion, shading and contour information. This is a large-
scale, highly non-convex optimization problem, and we pro-
pose a cascaded optimization that converges well without
an initial estimate. Our approach works on both unorga-
nized and organized small-sized image sets, and has been
empirically validated on four real-world datasets for which
all state-of-the-art approaches fail.

1. Introduction
NRSfM aims to recover the 3D shapes of an object un-

der deformation from apparant motion in a set of 2D im-
ages, and is a fundamental and open computer vision prob-
lem. NRSfM is challenging because we do not assume any
knowledge of the object’s 3D shape a priori. We also do not
assume the object is rigid in some of the images, which pre-
vents initializing the reconstruction using rigid Structure-
from-Motion (SfM). NRSfM differs from the related and
easier problem of template-based 3D reconstruction (also
called Shape-from-Template (SfT)), where the object’s 3D
shape is known in a fixed reference pose. NRSfM is often
called template-free reconstruction to make a clear distinc-
tion, with all input data coming from 2D images.

NRSfM methods have progressed significantly [30, 32,
21, 33, 7, 26], however none of these can handle poorly-
textured surfaces and non-smooth deformations such as
folds or creases. Firstly, most methods use motion from
feature correspondences, which work well only for densely-
textured objects with many discriminative features. This is
not common in most real practical applications, particularly
with man-made objects that usually have very weak tex-
ture. These feature-based methods can be divided into two
types: those which reconstruct only the features (usually
called sparse reconstructions) [30, 32, 21, 33, 7, 8, 26], and
those which reconstruct the object’s surface densely (usu-
ally called dense reconstructions) [19]. In most applica-
tions a dense reconstruction is required. However it is diffi-
cult to achieve high-accuracy using feature-based matching,
because they only give sparse motion information. Typi-
cally non-smooth deformations such as creases and folds
can never be accurately reconstructed. For this reason,
most of NRSfM methods that densely reconstruct surfaces
from feature matches have only been demonstrated on very
smooth and well-textured objects such as bending sheets of
paper. A direct approach to NRSfM has been recently pro-
posed [34], where dense reconstruction is performed using
motion information directly at the pixel level. This works
by jointly reconstructing the surface and registering it to
each image through intensity-based matching. It was only
shown to work on weakly textured surfaces that deform
very smoothly. Similarly to feature-based reconstruction,
the reason is because motion information is fundamentally
insufficient to reconstruct textureless surface regions under-
going non-smooth deformations.

Our goal is to solve NRSfM densely by combining mo-
tion, shading and a generic physical deformation model that
can accurately represent non-smooth deformations. We re-
fer to this problem as NRSfMS (Non-Rigid Structure-from-
Motion and Shading). We are specifically interested in solv-
ing this problem for objects with unknown spatially-varying
albedo, which is the situation in most practical cases. This
is because albedos cannot be inferred directly from 2D im-
ages of a deforming object. However we must know albedos
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in order to apply shading constraints. Therefore our prob-
lem is to simultaneously and densely estimate non-smooth,
non-rigid shape from each image together with non-smooth,
spatially-varying surface albedo. This problem has not
been tackled before, and is a crucial missing component for
densely reconstructing images in unconstrained settings.

This is very challenging to solve for three main rea-
sons. Firstly, we deal with very high-dimensional defor-
mation spaces, which are needed to model non-smooth de-
formations such as surface creases that can form in arbi-
trary places. One cannot therefore approximate the problem
using a globally smooth surface representation (as is com-
mon in previous dense NRSfM methods), which both in-
creases the search space dramatically, and leads to a highly
non-convex energy landscape. Secondly, we cannot apply
shading to constrain non-rigid shape without knowing sur-
face albedo. Similarly, through shading surface albedo con-
strains non-rigid shape. We must therefore simultaneously
and densely estimate both, which is a highly non-convex
problem. Thirdly, the fact that albedo is spatially varying
significantly complicates the problem. Fundamentally, it re-
quires us to densely register the image data, which is chal-
lenging, particularly at weakly-textured regions.

We use a dense triangulated mesh model to represent the
object’s surface, and the objective is to estimate the mesh’s
vertex positions in camera coordinates for all input images,
together with surface albedos. We approach the problem
with an energy-based formulation that combines the phys-
ical, discontinuity-preserving deformation prior with mo-
tion, shading and contour information. This is a large-scale,
highly non-convex optimization problem, and we propose a
cascaded optimization that converges well without an ini-
tial estimate. Because this is the first approach to solve
NRSfMS, we also include an empirical analysis of the prob-
lem’s stability using perturbation analysis. We provide
real experiments with ground truth data and show that our
method can accurately reconstruct dense shape where exist-
ing state-of-the-art NRSfM methods fail.

2. State-of-the-Art

2.1. Non-Rigid Structure-from-Motion

There is a substantial number of approaches to NRSfM
and we do not attempt a detailed review here. The meth-
ods can be broken down along a number of different di-
mensions, and the main ones are as follows: (i) the type of
camera model used, such as perspective or affine; (ii) if the
approach uses features or direct pixel-level matching; (iii)
if it operates on a batch of images or sequentially on video
frames; (iv) what surface representation is used, such as a
pointcloud, a spline surface or a mesh surface; (v) if the
problem formulation is convex or non-convex; (vi) what de-
formation prior is used. There is no general consensus on

the best way to formulate NRSfM according to the above
dimensions. The current trend focuses on handling videos
(because temporal continuity can be exploited), perspective
cameras (because these are generally the most accurate) and
mesh surface representations (because they are simple and
can model arbitrary topology).

Feature-based approaches are the most common way
to tackle NRSfM. These are popular because the prob-
lem of motion estimation (through feature matching) can
be strongly decoupled from 3D reconstruction. Recently,
some featureless NRSfM methods have been proposed [19,
34]. These either decouple motion estimation from 3D re-
construction, by estimating motion with multi-view optic
flow [19], or by jointly reconstructing the surface and mo-
tion estimation [34]. The advantage of decoupling motion
estimation is to simplify the reconstruction problem. How-
ever, the disadvantage is that the results can be sub-optimal
and mistakes in the estimated motion cannot be corrected.

To overcome measurement noise and ambiguities in
NRSfM, two classes of deformation priors have emerged:
statistical [11, 30, 15, 21, 1] and physics-based [7, 26, 34,
32, 33, 8] priors. The first class is based on the assump-
tion that the space of object shapes or object deformations
lies on a low-dimensional manifold which can be learned
jointly with reconstruction. In all such approaches, the man-
ifold is modeled by a linear combination of shape bases [5],
which must be estimated during reconstruction. These ap-
proaches give good results for objects with a strong rigid
component, such as human faces. However, they often re-
quire a large number of images and are not suitable for ob-
jects with high deformation spaces such as deforming fab-
ric, or objects that can crease or fold in unexpected ways.
Physics-based deformation models operate very differently
to statistical models, and restrict the space of possible defor-
mations according to physical properties of the object’s ma-
terial. The most common physics-based model is isometry
or quasi-isometry [7, 26, 34, 32, 33, 8]. These assume the
object’s surface does not stretch or shrink significantly as it
deforms. Quasi-isometry means that there is non-negligible
stretching or shearing, but the model prefers solutions that
minimize stretching or shrinking. These models have been
used extensively because they dramatically restrict the solu-
tion space, and are applicable for many object classes such
as those made of thick rubber, tightly-woven fabrics, pa-
per, cardboard and plastics. It appears that NRSfM with the
isometric model is well-posed if motion can be estimated
densely across the object’s surface [32, 7, 26].

2.2. Shading in Other 3D Reconstruction Problems

Shading has been used previously in several other 3D re-
construction problems. These include Shape-from-Shading
(SfS) [28, 13, 14] and photometric stereo [3, 35, 6], rigid
SfS [22, 23, 24] and SfT [20, 25, 24, 18]. In SfS, shading is



used to reconstruct a depth-map from a single image. How-
ever, it has had very limited success because it is a weakly
constrained problem with one constraint at each pixel, and
is only solvable if accurate models of surface reflectance
(including albedos) and scene illumination are known a pri-
ori. SfS also has tremendous difficulty with external and
self-occlusions. If albedos are unknown, the problem is ill-
posed. Thus, SfS cannot be used to reconstruct the datasets
in this paper. The usual way forward is to assume that
albedo is constant, which makes the problem solvable up to
scale and the bas relief ambiguity. Photometric stereo is the
extension of SfS using multiple light sources and has shown
great success for reconstructing high-accuracy surface de-
tails with unknown albedo e.g. [3, 35]. However requires
a special hardware setup where the scene is illuminated by
a sequence of lights placed at different points in the scene,
during which time the scene is assumed to be rigid. This
setup is not applicable in many situations. Shading has also
been used in rigid SfM to achieve high-accuracy at both tex-
tured and textureless regions. Unlike SfS, this works using
multiple images and combines motion with shading infor-
mation. However deformable objects are not handled.

In SfT, the problem is to register a deformable 3D model
(also called an object template) in 3D camera coordinates
using visual information present in a 2D image. In practice
the object template can be built from a CAD model or built
from images of object in an undeformed state using dense
multiview SfM [10, 2, 25, 24]. Most SfT methods used only
motion information, though shading information has been
recently introduced to handle weakly-textured objects [20,
25, 24, 18]. Compared to NRSfMS, SfT is a considerably
easier problem because the object template is determined a
priori. By contrast in NRSfMS there is no a priori object
template.

3. Problem Modeling and Optimization

3.1. Modeling Assumptions and Inputs

To solve NRSfMS, modeling assumptions are required
for the following: shape deformation, albedo, surface re-
flectance, scene illumination, camera response and scene
geometry. We now list our assumptions. Shape defor-
mation: we use a quasi-isometric prior and discontinuity-
preserving smoother that favours piecewise-smooth defor-
mations. This has been shown previously to be a good
model for handling non-smooth, creasing surfaces [18].
We assume the surface does not tear over time. Albedo:
we assume albedo is constant over time, and piecewise-
constant over the surface. This is applicable for many
objects and particularly man-made ones. The piecewise-
constant assumption is used to reduce ambiguity between
smooth intensity variation caused by albedo variation ver-
sus surface gradient variation. We do not assume albedo is

pre-segmented. Surface reflectance: we use a Lambertian
model, which gives a good approximation of many surfaces,
and we handle modeling errors due to e.g. specular reflec-
tions with robustification (see §3.3). Illumination: we as-
sume it is constant, pre-calibrated and defined in camera co-
ordinates. In practice this can be done if we have a camera-
light rig setup such as an endoscope or camera with flash,
or a non-rig where the light and camera are not physically
connected but do not move relative to each other during im-
age acquisition. The model we use in our experiments is
the second-order spherical harmonic model, which are very
common in SfS with 9 parameters. Camera response func-
tion: we assume it is known a priori, or linear and constant
over time. Scene geometry: we assume no self or exter-
nal occlusions, which is a typical assumption in state-of-
the-art dense NRSfM and there can be background clutter.
Our model and algorithm may in principle use a reference
view where the object’s surface may be smooth or creased.
In practice however, we have obtained better reconstruction
accuracy for a smooth reference view. Our investigation of
why it happens so has not revealed a clear reason so far and
we chose to leave this point for future research.

We use t = 1, . . . , N as the image index. Our in-
puts are as follows. (i) a set of N RGB images {It},
It : R2 → [0, 255]3 and the corresponding luminance im-
ages {Lt}, Lt : R2 → R+. The luminance image stores
the light intensity striking the image plane at each pixel co-
ordinate, and if the camera response function is known it
can be built from It. If it is unknown, camera response is
assumed to be constant and linear. In this case we set Lt

as the pixel intensity, which gives luminance up to a global
scale factor. This global scale factor can be absorbed into
the surface albedos and has no effect on the reconstruction
problem. (ii) the camera intrinsics, denoted by the functions
πt : R3 → R2 which project from 3D camera coordinates
to pixel coordinates. (iii) a segmentation of the object of
interest in one of the images, which we call the reference
image, denoted by the region Ω ⊂ R2. Without loss of
generality let this be the first image. (iv) the scene illumi-
nation coefficients which we denote by l ∈ R4 or 9. (v) a set
of putative 2D correspondences from Ω to all other images.
These are assumed to be mostly correct with some outliers,
and can be computed using existing methods such as SURF
or SIFT. We denote this by the sets {St}.

3.2. Shape and Albedo Modeling

We use a regular triangular 3D mesh to model the ob-
ject’s 3D surface, which we build by meshing Ω using a reg-
ular 2D triangular mesh, with M vertices (we use a default
mesh grid of 100×100 vertices that encloses Ω). We denote
E as the mesh’s edges, where NE is the number of edges.
Because we assume the surface does not tear the mesh edges
are fixed over time. Our task is to determine, for each mesh



vertex i, its position vi
t ∈ R3 in 3D camera coordinates for

each image t ∈ [1, N ]. We use Vt = {vi
t}i∈[1,M ] to denote

the vertices in 3D camera coordinates for image t.
We parameterize V1 along lines-of-sight. Specifically,

let ui ∈ R2 denote the 2D position of the ith vertex in
the first image, defined in normalized pixel coordinates. Its
corresponding position in 3D camera coordinates at t = 1 is
v1
i = di[u

>
i , 1]>, where di is its unknown depth. We collect

these unknown depths into the set D = {d1, . . . , dN}. The
full set of unknowns that specify the object’s shape in all
images is therefore {D,V2, . . . ,VN}, which corresponds to
3M(N − 1) +M real-valued unknowns. We use the mesh
to transform any 2D point u ∈ Ω to 3D camera coordinates
using Vt, which is done using a barycentric interpolation
(a linear interpolation of the positions of the three vertices
surrounding u). We denote this by f(u;Vt) : Ω → R3.
The surface normal at u is computed from the enclosing
triangle, denoted by n(u;Vt) : Ω→ S3. Unlike f , n is non-
linear. We define an albedo-map A(u) : Ω → R+ as the
function that gives the unknown albedo for a pixel u ∈ Ω.
From the piecewise-constant assumption we can write this
as A(u) : Ω → A where A = {α1, . . . αK} denotes a
discrete set of K unknown albedos with αk ∈ R+. We
discuss how A is built in §3.4.

3.3. The Energy-based Objective Function

We construct the energy-based objective function by
combining physical priors with shading, point correspon-
dence and boundary contour information extracted from all
images. The objective function C has the following form:

C(V1, . . . ,VN ,A) ,
N∑
t=1

Cshade(Vt,A;Lt, l) + (1)

λcorrespCcorresp(Vt;St) + λcontourCcontour(Vt; It)+
λisoCiso(V1,Vt) + λsmoothCsmooth(Vt).

The termsCshade,Ccorresp andCbound are shading, motion
and boundary data terms respectively. The terms Csmooth

and Ciso are physical deformation prior terms. The terms
λcorresp, λbound, λiso and λsmooth are positive weights and
are the method’s tuning parameters.

The shading term. The shading term robustly encodes
the Lambertian relationship between albedo, surface irra-
dience and pixel luminance. We evaluate it as:

Cshade (Vt,A;Lt, l) , (2)
1

|Ω|
∑
u∈Ω

ρ (A(u) r (n(u;Vt); l)− Lt (πt ◦ f(u;Vt))) .

The function r(n; l) evaluates the Lambertian irradiance
for a normal vector n according to the spherical harmonics

model with light coefficients l. The function ρ : R → R is
an M-estimator which is used to enforce similarity between
the modeled and measured luminance, while also allowing
for some points to violate the model (caused by specular re-
flection, small shadows and other unmodeled factors). We
use the Huber M-estimator with free parameter set to 0.005.

The correspondence term. Recall that the set St holds
putative correspondences between Ω and image t ∈ [2, N ].
We denote this by St = {(uj ,qj)}s(t)

j=1, where uj denotes
the correspondence position in Ω and qj denotes the cor-
responding position in image t. The number of correspon-
dences are denoted by s(t) which varies in general between
images. The term robustly encourages each point uj to
transform to its corresponding point pj , and is given by:

Ccorresp(Vt;St) ,
∑

(uj ,pj)∈St

ρ (‖πt ◦ f(uj ;Vt)− qj‖) .

(3)

The boundary contour term. This constraint works for
surfaces with disc topology. It encourages the surface’s
boundary contour to lie close to image edges, and was
shown to significantly help register surfaces with weak tex-
ture [17, 24]. We discretize the boundary of Ω to obtain
a set of boundary pixels B , {uk∈[1,B]}. We then com-
pute a ‘boundariness map’ for each image Et : R2 → R+

where high values of Et(p) correspond to a high likelihood
of pixel p being on the boundary contour. The term is eval-
uated as:

Cbound(Vt;Et) ,
1

|B|
∑
uk∈B

ρ (Et(πt ◦ f(uk;Vt)) . (4)

We found that Et cannot be built naively using for instance
an edge response filter, because of many false positives, par-
ticularly with background clutter and strong object texture.
Instead we build it using an edge response filter that is mod-
ulated to suppress false positives according to one or more
segmentation cues. The right cue depends on the particular
dataset, for example if the background is constant over the
image set, or if the object has a distinct color distribution to
the background. We give the exact formula for computing
Et for each tested dataset in the supplementary material.

The smoothing term. The quasi-isometry term penal-
izes within-plane stretching or shearing but not curva-
ture change. Thus it is insufficient to use as a regu-
larizer for mitigating noise. We deal with this using a
discontinuity-preserving smoother which automatically de-
activates smoothing where needed at creased regions. This



is based on [17] where it was used in the SfT problem:

Csmooth(Vt) ,
1

|Ω|
∑
uj∈Ω

ρ

(
∂2f

∂u2
(uj ;Vt)

)
. (5)

The quasi-isometry term. We enforce quasi-isometry
using mesh edge-length constancy. Specifically, we mea-
sure constancy with respect to the mesh edges in the refer-
ence image. This is defined as follows:

Ciso(V1,Vt) ,
1

|E|
∑

(i,j)∈E

(
1− ‖vi

1 − vj
1‖
−2
2 ‖vi

t − vj
t‖22
)2

.

(6)
This penalizes a change in edge length relative to the refer-
ence mesh, and unlike many other ways to impose isometry,
is invariant to a global scaling of the reconstruction.

3.4. Optimization strategy

Overview. Optimizing equation (1) is a non-trivial task
because it is large-scale (typically O(105) unknowns), is
highly non-convex, and the shading term requires dense,
pixel-level registration. Recall that we do not assume the
images come from an uninterrupted video sequences, which
makes dense registration much harder to achieve. Our strat-
egy is to first achieve a rough initial estimate for the shape
terms (D,V2, . . .VN ) (and hence an initial estimate for reg-
istration) using only motion constraints from the point cor-
respondences. We then introduce the contour boundary
constraints and refine these estimates by optimizing equa-
tion (1) using iterative numerical minimization. Next we
estimate albedos by fixing the shape terms, and finally op-
timize equation (1) over all unknowns using all informa-
tion (point correspondences, boundary contours and shad-
ing) using iterative numerical minimization. We propose
this strategy because point correspondences can be used to
provide a rough, smooth solution to non-rigid shape with-
out requiring an initial estimate. By contrast we find that
boundary contour and shading terms require a good ini-
tialization to prevent incorrect convergence in a local mini-
mum. Concretely, our optimization strategy is divided into
4 stages which we now describe in detail.

Stage 1: Correspondence-based template initialization.
We take the point correspondences {St} between the ref-
erence image and the other images and input them to an
existing surface-based, initialization-free NRSfM method.
The method we currently used is [7] which has publicly
available code. This provides us with a rough estimate of
the reference image’s vertex depths D. Note that all ex-
isting initialization-free surface-based methods assume the
object’s surface is smooth in all views, thus the initial esti-
mate will not normally be highly accurate.

Stage 2: Motion and contour-based Shape-from-
Template. We back-project the mesh vertices in the refer-
ence view using their initial depth estimates D. This gives
a rough estimate of the object’s 3D shape in a reference po-
sition (corresponding to the reference image). We then use
this mesh as an object template, and call an existing SfT
method to initialize, for each image, the vertex positions Vt
using the correspondence set St. The current method we use
is [17]. We then optimize equation (1) without shading by
setting λshade = 0, over the shape unknowns {V2, . . .VN}
with D kept fixed. This can be done efficiently because
the unknowns are now decoupled between images, so each
Vt can be minimized independently. Finally we optimize
equation (1) over all shape unknowns {V2, . . .VN} with
λshade = 0. To achieve good convergence we compute the
boundary distance map (equation (4)) with an image pyra-
mid, using 3 levels with one octave per level.

Stage 3: Albedo initialization. We now use our cur-
rent shape estimates to infer albedos using the shading
term. For this we segment the reference image into lo-
cal superpixel-like clusters, where within each cluster we
assume the albedo is constant. Such segmentation will
never be perfect, so to handle this we aim for an overseg-
mentation, where neighboring segments can share the same
albedo but within the same segment we want the albedo
to be constant. We achieve this by performing an intrin-
sic images decomposition [4] on the reference view’s in-
tensity image and cluster the resulting ‘reflectance image’
using [16] with a low cluster tolerance (we use a default of
10). For each cluster k, we assign a corresponding albedo
αk. This is done by taking each pixel uj in the clus-
ter, estimating its albedo by inverting the shading equation:
α ≈ Lt (πt ◦ f(u;Vt)) r (n(u;Vt); l)−1. We then initial-
ize αk as the median over all estimates within the cluster.

Stage 4: Full refinement. We refine our estimates by
minimizing equation (1) using all terms and over all un-
knowns, which is achieved with Gauss-Newton iterative op-
timization and backtracking line-search. Because of the
very large number of unknowns, at each iteration we solve
the normal equations using an iterative solver (diagonally-
preconditioned conjugate gradient), with a default iteration
limit of 200. Recall that there is a scale ambiguity (as in
all NRSfM problems), because we cannot differentiate a
smaller surface viewed close to the camera from a large sur-
face viewed far away. We fix the scale ambiguity by scaling
all vertices to have a mean depth of 1 after each iteration.
To achieve good convergence we blur each Lt with a Gaus-
sian blur pyramid, with a default of three octaves. For the
first two pyramid levels we run Gauss-Newton until either
convergence is reached or a fixed number of iterations have
passed (we use 20 iterations). For the final pyramid level



we run it until convergence. Processing time is typically
several minutes for small-sized image sets (<10 images),
with a sub-optimal Matlab implementation on the CPU.

4. Experimental Validation
4.1. Overview

We divide the experimental validation into two parts. In
the first part we analyze the convergence basin of our en-
ergy function through perturbation analysis. This is to un-
derstand both how sensitive our formulation is to the initial
solution, and fundamentally, whether NRSfMS can be cast
as an energy-based minimization with a strong local mini-
mum near the true solution. In the second part we compare
performance to state-of-the-art NRSfM methods. Our eval-
uation has been performed using public datasets and a new
dataset, all with ground truth.

4.2. Method Comparison and Accuracy Metrics

We compare with the following competitive NRSfM
methods [30, 32, 29, 33, 7, 9, 26], denoted respectively with
EM08, PP09, LRG10, SI12, IP14, MDH16 and LT16.
EM08, LRG10, SI12 and MDH16 are methods which re-
construct only point correspondences, whereas PP09, IP14
and LT16 are methods which reconstruct dense surfaces.
To see the contribution of some terms of (1), we compare
with two versions of our method, NoS, where shading is not
used, and NoB, where the boundary constraint is not used in
stages 2 and 4. We have evaluated on 4 datasets (three pub-
lic and one new). Each dataset consists of a disc-topology
surface in 5 different deformed states, with one state per
image. We show these in figure 3. From top down we have
‘floral paper’ from [18], ‘paper fortune teller’ from [18],
‘creased paper’ (new) and ‘Kinect paper’ from [31]. ‘Kinect
paper’ is a video dataset and has no accompanying illumi-
nation parameters and no camera response function. We ap-
proximated camera response with a constant linear model,
and estimated the illumination parameters using the im-
age data and the accompanying depthmaps. This was per-
formed by selecting in a small rectangular region on the
surface with both constant albedo and non-saturated pixels,
then measuring the average pixel intensity within the region
and fitting a local plane to the region using the depthmap.
This was repeated using 30 images in the sequence, and we
then estimated the spherical harmonics illumination vec-
tor by inverting the Lambertian shading model using lin-
ear least squares. The 5 images we used for evaluation
were uniformly sampled from the video. We followed the
same procedure as described in [18] to make the ‘creased
paper’ dataset, with sub-millimetre accuracy depth-maps
computed by a structured light system [12]. Images were
captured with standard PointGrey RGB camera [27] with a
linear camera response. Each dataset has a set of point cor-

respondences between the first and all other images. As the
three first datasets are poorly-textured, the correspondences
are sparse. We plot them in each input image in figure 3. For
‘creased paper’, the texture is repetitive and wide-baseline
feature matches fail, so we found them manually at approx-
imately 20 corner locations. We note that manual corre-
spondences are commonly used to evaluate NRSfM meth-
ods. The tuning-parameters of all methods were manually
adjusted to obtain the most visually pleasing results.

We measure accuracy by comparing 3D distances with
respect to ground truth. Because reconstruction is up to
scale, we compute for each method the best-fitting scale
factor that aligns the predicted point correspondences with
their true locations in the L2 sense, then measure accuracy
with the scale-corrected reconstruction. This was done at
three locations: (i) at point correspondences, (ii) densely
across the ground truth surface, and (iii) densely at ‘creased
regions’, which are any points on the ground truth surfaces
that are within 5mm of a surface crease. Note that a dense
ground truth registration is not available on the datasets,
however we do have ground truth registration at the true
point correspondences. Thus we measure (i) by comparing
predicted surface normals and 3D positions at each corre-
spondence with the ground truth values. For (ii) and (iii) we
compare normals and 3D positions for each ground truth
surface point with the nearest reconstructed surface point.
For methods which only reconstruct the correspondences,
we can only measure the 3D point correspondence error.

4.3. Quantitative and Qualitative Results

We show in figure 3 the test datasets and a reconstruction
of one of the images per dataset from our method and the
best performing previous method (the one with lowest Root
Mean Squared Error (RMSE) with respect to (ii) above).
Visually we can see that considerable surface detail is ac-
curately reconstructed by our method as well as the global
shape.

In figure 2 we give the RMSE across all test datasets
and all compared methods. The first row gives from left
to right the distance RMSE at point correspondences (i),
over the whole GT surfaces (ii) and over creased regions
in the GT surfaces (ii). The second row gives the respec-
tive surface normal RMSEs. ‘Kinect paper’ has no creases
and the deformation is very smooth in all images. We ob-
serve that, for all datasets other than ‘Kinect paper’, there is
a good improvement with respect to all error metrics com-
pared to the other methods. This is strongest in the second
and third columns, which show our method successfully
exploits shading information in textureless and creased re-
gions. For ‘Kinect paper’ we see that our method does not
obtain the highest accuracy across all error metrics. The rea-
son is that it is a very smooth, densely textured surface, and
shading is not needed to achieve an accurate reconstruction.



Figure 1. Numerical results of the convergence basin analysis.

Figure 2. Reconstruction accuracy statistics across all test datasets and all compared methods. We recall that EM08, LRG10, SI12 and
MDH16 reconstruct only point correspondences, whereas PP09, IP14 and LT16 reconstruct dense surfaces. Also, the ‘Kinect paper’
dataset does not present any crease.

However, our method still obtain competitive results on this
dataset. We observe that the use of shading improves glob-
ally the shape of the reconstructions and that the boundary
constraint allows a better use of shading.

4.4. Convergence Basin Analysis

We performed perturbation analysis as follows. We
started with an initial reconstruction close to the ground
truth, then applied a low-pass filter (to smooth out creases,
because we do not expect these to be present in the initial
solution), then randomly perturbed the vertex positions us-
ing smooth deformation functions. For each perturbation
we optimized equation (1) by performing stages 3 and 4 in
§3.4. The initial reconstruction was carefully done by hand,
using the ground truth surfaces, point correspondences, and
a quasi-isometric nonrigid ICP registration. The perturba-
tions were designed to globally deform the initial solutions,
which is more realistic than a local perturbation of each ver-
tex. This was implemented using a 4 × 4 × 4 b-spline en-
closing the reconstructed surfaces and randomly perturbing
the spline’s control points at 7 different noise levels, with

30 random perturbations per noise level. We report results
as box-plots for the ‘floral paper’, ‘paper fortune teller’ and
‘creased paper’ datasets in figure 1. The x axis gives the
average perturbation in mm for each noise level from the
initial solution. The y axis gives the dense surface RMSE
as defined in for each random sample. For small noise lev-
els (< 5%), the box-plots are very similar, which tells us
our energy landscape has a strong local minimum close to
the ground truth, which supports our claim that NRSfMS
can be cast as an energy-based minimization (via equa-
tion (1)), with a strong local minimum near the true solu-
tion. For larger noise levels (> 5%) we can see a significant
increase in error, indicating that the optimization now be-
comes trapped more frequently in local minima.

4.5. Failures Modes

The main failure mode is if a good initial solution can-
not be obtained after stages 1 and 2. Typically this oc-
curs if there are very few, poorly-distributed point corre-
spondences. In these cases it is difficult to initialize dense
shape with any current NRSfM method. For unorganized
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Figure 3. The four real-world test datasets and results visualizations. Here we show the images from each dataset, and sample reconstruc-
tions from one of the images using our method and the best performing NRSfM method. Under each reconstruction, we give the 3D RMS
and mean 3D normal errors over the whole surface mesh. In each input image, we show the correspondences with an orange cross sign.

image sets this is a difficult problem to overcome. For
video sequences, dense point correspondences can usually
be obtained by exploiting temporal continuity and dense
frame-to-frame tracking [19]. Another failure mode is
the presence of some false positive creases. They may
be caused by the robust estimator applied in the shading
term. Such artefacts can be reduced by interleaving inten-
sity edge/shape-edge aware filtering with the optimization
framework, which we let for future works.

5. Conclusion

We have studied the problem of NRSfMS with unknown,
spatially varying albedos. This is a hard and important vi-
sion problem, needed for high-accuracy dense reconstruc-
tion of weakly-textured surfaces undergoing non-smooth
deformation from 2D images. We have proposed an energy-

based solution and a cascaded numerical optimization strat-
egy, and have demonstrated encouraging results on four
real-world datasets, for which all competitive NRSfM meth-
ods fail. This marks the first time that strongly creased,
deformable, low-textured surfaces with unknown albedos
have been densely reconstructed and registered from 2D im-
age sets without a 3D template. Our work is the basis for
many future directions, including handling non-smooth ref-
erence views and unknown light, modeling occlusions and
shadows, developing an incremental version to handle large
image sets, and a theoretical study of well-posedness.
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