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Abstract
Purpose. The slit lamp is an essential instrument for eye care. It is used in nav-
igated laser treatment with retina mosaicing to assist diagnosis. Specifics of the
imaging set-up introduce bothersome illumination artifacts. They not only degrade
the quality of the mosaic but may also affect the diagnosis. Existing solutions in
SLIM manage to deal with strong glares which corrupt the retinal content entirely
while leaving aside the correction of semi-transparent specular highlights and lens
flare. This introduces ghosting and information loss.
Methods.We propose an effective technique to detect and correct light reflections
of different degrees in SLIM. We rely on the specular-free image concept to obtain
Glare-Free (GF) image and use it coupled with a contextually driven probability
map to segment the visible part of the retina in every frame before image mo-
saicing. We then perform the image blending on a subset of all spatially aligned
frames. We detect the lens flare and label each pixel as ‘flare’ or ‘non flare’ using a
probability map. We then invoke an adequate blending method. We also introduce
a new quantitative measure for global photometric quality.
Results. We tested on a set of video sequences obtained from slit lamp examina-
tion sessions of 11 different patients presenting healthy and unhealthy retinas. The
segmentation of glare and visible retina was evaluated and compared to state-of-
the-art methods. The correction of lens flare and semi-transparent highlight with
content-aware blending was applied and its performance was evaluated qualita-
tively and quantitatively.
Conclusions. The experiments demonstrated that integrating the proposed method
to the mosaicing framework significantly improves the global photometric quality
of the mosaics and outperforms existing works in SLIM.
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28 place Henri Dunant, 63001 Clermont-Ferrand, France

mailto:prokopec.kristina@mail.ru
mailto:adrien.bartoli@gmail.com


2 Kristina Prokopetc1,2, Adrien Bartoli2

(a) NPRP system (b) Sample mosaics

Fig. 1: Retinal image mosaicing with a slit lamp. (a) slit lamp system, developed at
QuantelMedical, France and (b) sample mosaics constructed during the examina-
tion session with the slit lamp, the FOV is shown as a rectangular region. (Please,
refer to the electronic version for better visualization of all figures in this paper.)

Keywords specular highlight · glare · lens flare · motion cue · context · retinal
mosaicing · image blending · slit lamp

1 Introduction

Retinal examination with the slit lamp is the most important technique dating
back to the 1980-ies, which remains prevalent in clinical ophthalmology nowadays.
It allows the eye to be examined with a light beam or ‘slit’ whose height and width
can be adjusted. The slit of light, directed at an appropriate angle, emphasizes the
anatomic structures of the eye, allowing for a close inspection. It is also used for
laser delivery in navigated panretinal photocoagulation (NPRP) - the standard
treatment for numerous retinal diseases such as diabetic retinopathy. Currently,
NPRP can be performed by computer guided systems which combine real-time
imaging, pre-operative planning and intra-operative navigation [12,8,9,20]. Be-
cause the images captured with the slit lamp have a narrow field of view (FOV)
visualizing only thin portions of the retina, view expansion with image mosaicing
became an important part of slit lamp based NPRP systems (Fig. 1).

Obtaining a geometrically and photometrically accurate retinal mosaic is a
difficult task due to the numerous challenging conditions. When performing reti-
nal examination with a slit lamp the imaging set-up is arranged so that the axis
of the observation component is nearly coaxial with the axis of the illumination
component. Both are fixed on the moving base, controlled by the ophthalmolo-
gist. The light beam is focused on the retina using a hand-held direct contact
lens of strong convergence (Fig. 1(a)). This essential requirement, unfortunately,
introduces bothersome illumination artifacts that populate the image (Fig. 2).

The reflections of the light from the slit lamp on the cornea (the transparent
layer forming the front of the eye) and the contact lens of strong convergence cre-
ate specular highlights that are difficult to separate from the retina (Fig. 2(a)).
Worsened by changing exposure which is adopted to the patient’s comfort, they
obscure and degrade retinal details. Moreover, as they appear brighter than the
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(a) Healthy retina (b) Diabetic retina (c) Inter-patient appearance variation

Fig. 2: Typical slit lamp images demonstrating the appearance variation of the light
reflection of different origins. CWS - cotton wool spot. (Best viewed electronically.)

dominant color of the retina they may be wrongly recognized as ‘cotton wool spots’
- abnormal findings on the retina which appear as small, yellow-white (or grayish-
white), slightly elevated cloud-like lesions (Fig. 2(b)). These are typical for diabetic
retinopathy, hence complicating diagnosis. Reflection control during slit lamp as-
sisted examination relies primarily on intentional vignetting and anti-reflection
coatings of the contact lens. Despite this provision, the unwanted reflections still
occur. Glare eliminates all information in the affected pixels and the other types
of reflections can introduce artifacts in feature extraction algorithms, which are
critical in our application.

In this paper we present a new methodology to overcome this issue and ob-
tain visually consistent mosaics. We propose a two-stage solution addressing the
problem of strong glares as the pre-processing step in the mosaicing pipeline while
correcting lens flare and haze at the image blending stage. We also introduce a
new quantitative measure for global photometric quality. Our main contribution is
a SLIM dedicated method which handles different types of illumination artifacts,
as opposed to existing works.

2 Related Work

2.1 Specular Highlight Correction in Medical Imaging

Automatic glare removal in colposcopy was the focus in [6]. The authors proposed
a single-image technique where they used the green image component as the fea-
ture image, given its high glare to background ratio. Glare regions were detected as
saturated regions by adaptive thresholding and morphological top hat filters. The
watershed segmentation was then applied to find the contour of the glare regions,
which were then restored using inpainting. A similar approach was presented in
[13] to automatically detect and correct specular reflections in thoracoscopic im-
ages. The reported results proved both methods to be adequate on the application
specific datasets. Specifically, the inpainting was acceptable due to the homoge-
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neous texture of the affected regions while in SLIM this would rather produce false
details than restore the ‘true’ content.

A machine learning (ML) method was successfully applied to the segmenta-
tion and tracking of surgical tools in laparoscopic videos [1]. The authors did not
tackle the problem of specular highlights directly. Instead they used a random
forest classifier trained with feature vectors which combine color and structural
information and relied on their distinctive power. This, provided acceptable re-
sults. In [4] specular highlight segmentation was addressed as a part of ML-based
organ segmentation. The specularities were found by thresholding the luminance
and saturation channels in the HSV color space after Gaussian smoothing, and
the binary decision was appended to the main classification framework.

Related works in SLIM [2,12,9] exploit intensity thresholding based segmenta-
tion of the illuminated retina using different color channels of a single RGB image.
This approach is sufficient for simple video sequences where a care over reflection
was taken by the ophthalmologist and the patient was not very photosensitive,
resulting in reduced apparent motion. However, this is not always the case in
practice and a more complex solution is necessary to achieve acceptable results.
Recent work [20] employs ML with training on a manually labeled database for
per-pixel classification. As in [1], the authors opted to use multiple color spaces
as features, and added the spatial information. The reported results outperform
those from [12] and provide robust filtering of strong specular highlights. However,
as can be seen from the experimental outcomes, the significant part of the reti-
nal content covered by semi-transparent highlight and lens flare appeared to be
excluded from the mosaic, leading to a loss of valuable information.

2.2 Specular Highlight Correction in Non-medical Applications

[16] and [14] are the popular single-image generic solutions nowadays. More recent
works on the subject were also presented in [18,19,5,17,7,15]. [16] proposed a
method to separate diffuse and specular reflection components using chromaticity-
based iterations with regard to the logarithmic differentiation of the specular-free
(SF) image using two spatially adjacent pixels. [14] separates reflections in a color
image based on the error analysis of chromaticity and appropriate selection of
color for each pixel by solving for the dichromatic reflection model as a least-
squares problem. Both methods use the concept of SF image, which allows them
to decide for specular and diffuse pixel candidates. According to our experiments
(see Sect. 4.2) the direct application of their methods in SLIM is not sufficient.

A generic single-image based solution in [18] relies on the observation that
the maximum fraction of the diffuse color component in local patches changes
smoothly. The authors applied a low-pass filter so that the maximum diffuse chro-
maticity values can be propagated from the diffuse pixels to the specular pixels.
Unlike other methods, this can process high-resolution images at video rate, which
makes it suitable for real-time applications. In [5], similar to [16], the authors de-
rived an SF image by applying a dark channel prior and used it along with a
maximum a posteriori probability estimation to separate the specular and diffuse
components. Reported results were evaluated only visually and seem to provide
slightly better outcome compared to [16] and [18] but weaker in computation time.
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A solution for specularity removal in stereo-vision as proposed in [19], using two
images to compute a vote distribution for a number of illumination chromaticity
hypotheses via correspondence matching. The authors use motion cues assuming
that highlights on the two images do not spatially overlap. Thus, the diffuse com-
ponent of a pixel in the highlight can be recovered by finding its corresponding
pixel in the other view. This assumption holds for the cases where the observation
system and light source move independently from each other and the observed
object remains static. In SLIM, however, a larger set of observations is necessary
to recover the ‘true’ color while practically it might be possible to obtain a suitable
approximation only. An analogous assumption was employed in [17,15,7].

2.3 What Solution for SLIM?

Most of the aforementioned single-image solutions are capable to correct strong
glare. However, they share the same problem: they generally result in noticeable
artifacts when applied directly in SLIM. Multi-image methods utilize the motion
cues for highlight localization and correction. In SLIM, due to the specifics of the
imaging set-up (see Sect. 4.1), the apparent motion of specular highlights can be
noticed, but, unlike in previous work, more than two consecutive observations are
required. Moreover, the limited FOV of one frame cannot capture the highlight
fully. Therefore, the motion cues are useful but shall be engaged as soft constraints.
Learning appearance variation from multiple images has proved to outperform
simpler methods [20]. However, the inability to model complex color and intensity
variation of the reflections associated with lens flare make it unsuitable for our
goals in SLIM. Unlike related works, we do not limit the methodology only to cor-
rect the strong specular highlight like glare, but also lens flare patches of varying
colors and shapes, and a more global haze, affecting contrast and color satura-
tion. Our solution inherits some core ideas from [14,18,17,20]. Our contribution
is twofold:

– Because the generic methods applied in our application do not provide ac-
ceptable results we propose a dedicated solution to remove glare and retrieve
informative retinal content in SLIM. We introduce a fast single-image tech-
nique using the concept of SF image and contextual information as the first
stage of our method.

– As a second stage, we consider the correction of different types of specular high-
lights, unlike other methods which deal only with strong glare. We incorporate
the motion cue for content-aware image blending where appropriate action is
invoked to obtain a good approximation of the ‘true’ color.

3 Specular Highlight Correction for SLIM

3.1 Method Overview

We outline the proposed method in Fig. 3. This consists of two main steps: (i)
single-image glare removal and retina segmentation and (ii) multi-image lens flare
correction by content-aware blending. We rely on the SF image concept introduced
in [16] to obtain Glare-Free (GF) image and use it coupled with contextually driven
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Fig. 3: Method overview. (Best viewed electronically.)

probability maps to segment the visible part of the retina at every frame before
image mosaicing. For the sake of clarity we show the mosaicing block in a compact
form and refer to the method developed in [9]. We then proceed directly to the
image blending where a subset or all frames have been transformed and spatially
aligned. We detect the lens flare areas on a set of overlapping images and label
each pixel as ‘flare’ or ‘non flare’ using a probability maps. Finally, we invoke an
adequate blending method.

3.2 Single-image Glare Removal and Retina Segmentation

Segmentation of the informative retinal content from slit lamp images is a chal-
lenging task. The recent work of [20] was not found to be suitable for effective
retina segmentation in our datasets (see Sect. 4.2). The concept of SF image dis-
cussed in Sect.2 is just an approximation of ground truth. Nonetheless, it has been
demonstrated to be effective for single-image glare removal. Incorporating contex-
tual information is considered as one of the most effective approaches in medical
applications [10]. Retinal images obtained with a slit lamp have a narrow FOV lo-
calized in the center of the image resulting in big part of the image containing dark
pixels. This property can be used to obtain the region of interest (ROI) to reduce
the processing load. Our approach can be summarized in the following steps:

Step 1: pre-processing. First the image is converted to the LMS (Long, Medium,
and Short light wavelengths) color space. This is commonly used color space
to estimate the appearance of a pixel under a different illumination. Based on
the observation that the maximum fraction of the unsaturated pixels in local
patches changes smoothly we proceed with low-pass filtering similar to [18] and

obtain ILP . We then compute Cmin = min(ILP )
mean(ILP ) - the maximum chromaticity

image as a pixelwise division of the minimum value over three components of
ILP and the mean value respectively. This computation results in a binary
image, where the most glare pixels have intensity equal to 1.
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Step 2: informative pixel selection. Given the priors on the location of the slit in
the image we filter out highly improbable locations of the informative retinal
content. For each pixel in the image we compute a conditional probability of
the retinal content occurring at this pixel given the center of the image cI . We
model this contextual constraint with a Gaussian Mixture Model (GMM):

P (p|cI) =

K∑
i=1

wiG(p− cI ;µi, Σi) (1)

where K is the number of GMM components and {wi, µi, Σi}, i = 1, ...,K
are the GMM’s parameters estimated with Expectation Maximization (EM).
The model is learned offline on a set of annotated frames from different video
sequences. Here, K was empirically tuned to represent two Gaussian compo-
nents. We apply the learned GMM on a test frame and obtain a probability
map.

Step 3: combination. Here we incorporate the positional prior learned in the pre-
vious step to filter out uninformative areas of the image and obtain the fi-
nal segmentation of retinal content. Thus, we keep p as a retinal content if
P (p|cI) ≥ t, where t is a probability threshold which we empirically set to
0.6. We perform logical XOR operation with the GF image mask from Step 1
within the estimated region. This allows us to keep only those pixels for the
final result where the GF mask or the estimated region, but not both, contain
a nonzero element at the same location.

3.3 Multi-image Lens Flare Correction: Content-aware Blending

Localized flare patches in areas of uniform color and brightness in non-medical
images can be easily corrected by copying parts of neighboring areas over the
affected area. The situation is much more complicated when the flare affects areas
with lots of detail and tonal variations as retinal content. Correction is generally
not possible without knowing beforehand what the affected areas should look like
in the absence of flare. This requires a sophisticated per-pixel analysis in different
views. Given a set of spatially aligned images we want to detect which pixels are
likely to be pixels affected by lens flare. Once the lens flare regions are revealed,
their visibility may be corrected by performing an adequate color mapping. The
procedure is as follows:

Step 1: pre-processing. Because reflection caused by lens flare has a complicated
nature it is necessary to address the problem within an appropriate color space
representation. Thus, for a given pixel on the mosaic M(q), a set of overlapping
frames are first transformed to the L*a*b color space. Following the same
reasoning as described in the step 1 of section 3.2, we apply an image guided
filter to the L component. Because the L component represents scene luminance
and low-pass filtering adjusts the local intensity to its neighbors it is more likely
to obtain well preserved boundaries of areas affected by lens flare.

Step 2: flare detection from color. Because regions affected by lens flare have spe-
cific colors, which are different from the rest of the retina, it motivates the use
of color GMMs. We learn a simple GMM similarly to [4] offline on a set of
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manually annotated images where the pre-processing from the previous step
was applied:

P (l|λ) =

K∑
i=1

wiG(l;µi, Σi) (2)

withK = 3 Gaussian components. Here l is the image pixel and λ = {wi, µi, Σi},
i = 1, ...,K are the GMM’s parameters estimated with EM. We obtain a prob-
ability map for every L component in the observation set of frames on the
mosaic using the trained GMMs. This indicates the probability that a given
pixel in the observation belongs to the flared region. We use a Graph Cut algo-
rithm [3] to mark the pixel as ‘flare’ or ‘non flare’. As this is posed as a binary
labeling problem, the Pott’s Energy function is sufficient:

E(I) =
∑
p∈S

|Ip − I ′p|+
∑

p,q∈N

K(p,q)T (Ip 6= Iq) (3)

where I = {Ip|p ∈ S} are the unknown ‘true’ labels over the set of pixels S
and I ′ =

{
I ′p|p ∈ S

}
are the observed labels. The Potts interaction is specified

by P (p,q), which are the penalties for label discontinuities between adjacent
pixels. The function T is an indicator function. This is optimally solved by a
single execution of max-flow.

Step 3: blending. We count the number of pixels belonging to each label and iden-
tify the majority. We take the average luminance L of the majority as a Lt -
top luminance and the average of the rest of the pixels as a Lb - bottom lumi-
nance. We then invoke an appropriate mapping function. This is inspired by
[11]. Thus, if the majority is ‘flare’ pixels we apply ‘color burning’ - divide the
inverted Lb by the Lt, and then invert the result as Cburn = 1− (1− Lb)/Lt.
This darkens the Lt increasing the contrast. In the opposite case we apply ‘color
dodging’ - divide the Lb by the inverted Lt such as Cdodge = Lb/(1−Lt). This
lightens the Lb depending on the value of the Lt.

4 Experiments and Results

4.1 Dataset and Evaluation Strategy

The datasets used for evaluation were obtained from slit lamp examination ses-
sions performed on 11 different patients at University Hospital of Saint-Étienne,
France, presenting healthy and unhealthy retinas. The NPRP system developed
at QuantelMedical was used. The videos were captured with a CCD camera at
60fps were 2-3 minutes long. The proposed glare removal and retina segmentation
were evaluated on a set of 270 manually annotated image frames sampled from the
set of videos. This was to ensure the coverage of patient-specific and lens-specific
specular highlight variation. The images were annotated with binary masks to
separately assess the performance of glare removal and retina segmentation. The
proposed blending technique for lens flare correction was rated on a set of geo-
metrically aligned video frames obtained by the method described in [9]. Further
details along with experimental results are provided next.
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DSC = 0.69 DSC = 0.68 DSC = 0.17 DSC = 0.79

(a) GT image

DSC = 0.87

(b) Method [16]

DSC = 0.73

(c) Method [14]

DSC = 0.45

(d) Method [18]

DSC = 0.93

(e) Proposed

Fig. 4: Comparative results of glare removal. GT - Ground Truth. Example of a
simple case is shown in the first row and the second row illustrates more compli-
cated condition. (Best viewed electronically.)

4.2 Single-image Glare Removal and Retina Segmentation

We start with the comparison of our glare removal technique with the existing
methods [16,14,18]. We manually annotated selected datasets by drawing the con-
tour around regions obscured by highly saturated pixels. In simple cases, where
the patient appeared to be less photosensitive and the image acquisition was not
polluted by mixture of different degrees of reflections the glared region boundaries
were easy to locate. Because most of the time it is difficult to observe a clear
boundary between a glared region and the surrounding distorted areas, we opted
for a middleground. The results for such two cases are shown in Fig. 4.

We computed the Dice Similarity Coefficient (DSC) to assess the similarity
with the annotated regions. The higher the value the more similar the algorithm’s
output to the reference mask. For the simple case (Fig.4(first row)) all the methods
perform well while in the difficult case (Fig.4(second row)) only the proposed
method provides acceptable results.

We then combine the GF image with the spatial probability map to obtain the
visible retinal content. The experimental results of our method compared to the
simple thresholding technique used in [9] and the ML-based approach proposed in
[20], are illustrated in Fig. 5. Here we also compute statistical measures for every
output and average it over results on 270 annotated samples as shown in Table 1.
One can see that our method provides higher values indicating better performance.
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DSC = 0.37 DSC = 0.88 DSC = 0.96

(a) GT

DSC = 0.86

(b) Method [9]

DSC = 0.91

(c) Method [20]

DSC = 0.94

(d) Proposed

Fig. 5: Comparative results of retinal content segmentation. GT - Ground Truth.
(Best viewed electronically.)

Precision Accuracy Specificity Sensitivity
Method [9] 0.30 0.70 0.58 0.86
Method [20] 0.90 0.92 0.94 0.89
Proposed 0.92 0.95 0.97 0.90

Table 1: Retinal content segmentation performance.

4.3 Multi-image Highlight Correction: Content-aware Blending

The most traditional way to evaluate the photometric quality of slit lamp image
mosaics is still based on the visual assessment of ophthalmologists. Even though the
experts’ opinion is a good reference it is a subjective evaluation which may differ
between experts and may prevent the mosaic from being used. Here we propose a
new quantitative evaluation of the global photometric quality. We propose to use
a Blending Consistency Measure (BCM). It assesses the quality of the blending by
computing the standard deviation of a pixel’s intensity in the transformed image
I(q) from a set of corresponding locations in the mosaic Mi, i = 1, 2, ..., n as:

BCM =

√√√√ 1

n− 1

n∑
i=1

| I(q)− µ |2 , where µ =
1

n

n∑
i=1

Mi (4)
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The results shown in Fig. 6 (see next page) demonstrate one of the mosaics for
visual assessment. We take the mosaicing result obtained by the modified version
of the method in [9] where we removed the illumination correction (Fig.6(a)). We
then compute BCM for this uncorrected mosaic and the results obtained with the
inclusion of the correction techniques from existing works in SLIM ((Fig.6(b), (c))
and the proposed method (Fig.6(d)). The computed metric spans the range [0;255].
We show the computed results represented as a percentage value. The smaller the
value, the better the blending consistency. The mosaic in Fig.6(c) consists of 530
frames while Fig.6(a), Fig.6(b) and Fig.6(d) are made of 212 frames as they are
based on the mosaicing method [9] which uses key-frames. As can be noticed, the
mosaic in Fig.6(c) appears darker than others. This is due to the blending method
used in [20], where the intensity fades toward the border of the segmentation mask
which we have re-implemented strictly following the provided formulas.

One can see that the proposed method significantly improves the global pho-
tometric quality of the mosaic in the major areas and outperforms existing works.
This is true for the majority of the cases in our dataset. However, it does not work
well in the lower right corner of the illustrated example (Fig. 6(d)). Our glare
removal part was specifically designed to work for a middleground and keep as
much more valuable information as possible. Thus, it is not always able to erase
all the glare-like artifacts but it always keeps the ‘uncorrupted’ retina. [20], in the
other hand, does not include the mentioned region (Fig. 6(c)) and, according to
the experiments on other sequences, it cuts out a big part of the retinal content
which is not corrupted by artifacts and can be useful for diagnostic purposes. This
complication may be due to various reasons: different contact lenses were used in
the procedure, the manual navigation by an ophthalmologist is not always precise,
and the industrial prototype we use is constantly under development and it is not
perfect. The improvement we expect to achieve in future work will mainly come
from the improvement of the prototype itself.

5 Conclusion

In this paper we showed how to segment the informative part of the retinal con-
tent and correct specular highlights of different degrees in SLIM. To this end we
studied several specular highlight removal and correction approaches proposed in
the medical and non-medical domains and designed our own solution specifically
adapted to our task. Firstly, we improve on the previous works by proposing a
fast single-image technique to remove glares and segment the visible retina using
the concept of specular-free image and contextual information. Secondly, we incor-
porate the notion of the type of specular highlight and motion cue for intelligent
image blending. Our experimental results showed that the proposed methodology
exhibits a good efficiency, significantly outperforming related works in SLIM.
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ipants were in accordance with the ethical standards of the institutional andor
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(a) no correction BCM = 63% (b) Method [9] BCM = 51%

(c) Method [20] BCM = 38% (d) Proposed BCM = 23%

Fig. 6: The comparative results for one of the mosaics. (Best viewed electronically.)

national research committee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.
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