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Abstract Purpose. The registration of a preoperative 3D model, reconstructed
for example from MRI, to intraoperative laparoscopy 2D images, is the main chal-
lenge to achieve augmented reality in laparoscopy. The current systems have a
major limitation: they require that the surgeon manually marks the occluding
contours during surgery. This requires the surgeon to fully comprehend the non-
trivial concept of occluding contours and surgeon time, directly impacting accep-
tance and usability. To overcome this limitation, we propose a complete framework
for object-class occluding contour detection (OC2D), with application to uterus
surgery.
Methods. Our first contribution is a new distance-based evaluation score com-
plying with all the relevant performance criteria. Our second contribution is a loss
function combining cross-entropy and two new penalties designed to boost 1-pixel
thickness responses. This allows us to train a U-Net end-to-end, outperforming all
competing methods, which tends to produce thick responses. Our third contribu-
tion is a dataset of 3818 carefully labelled laparoscopy images of the uterus, which
was used to train and evaluate our detector.
Results. Evaluation shows that the proposed detector has a similar false negative
rate to existing methods but substantially reduces both false positive rate and
response thickness. Finally, we ran a user-study to evaluate the impact of OC2D
against manually marked occluding contours in augmented laparoscopy. We used
10 recorded gynecologic laparoscopies and involved 5 surgeons. Using OC2D led
to a reduction of 3 minutes and 53 seconds in surgeon time without sacrificing
registration accuracy.
Conclusions. We provide a new set of criteria and a distance-based measure to
evaluate an OC2D method. We propose an OC2D method which outperforms the
state of the art methods. The results obtained from the user study indicate that
fully automatic augmented laparoscopy is feasible.
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Fig. 1 (left) In augmented laparoscopy, the preoperative 3D model is registered by fitting
the occluding contours of the organ in laparoscopy images. The current systems require the
surgeon to mark these contours manually during surgery. (right) An occluding contour arises
at an organ boundary where the organ occludes another structure, as opposed to an occlusion
boundary where the organ is occluded by another structure. The set of occluding contours is
the silhouette. OC2D is the task of detecting the occluding contours for a specific object, here
the uterus. It forms a task of semantic detection far more challenging than organ segmentation.

1 Introduction

Augmented monocular laparoscopy requires the registration of a preoperative 3D
model to laparoscopy images. As shown in figure 1, the state-of-the-art registration
systems [5,11,3] rely on visual cues extracted from laparoscopy images, especially
the organ’s occluding contours. For a given imaged object, an occluding contour
refers to any boundary fragment where the object is an occluder, and is thus part
of the object’s silhouette. The occluding contours are essential to constrain the
registration of a deformable biomechanical model, as shown for the uterus [5] and
the liver [11,3]. These systems are well advanced in terms of registration computa-
tion. However, they require the surgeon to mark the occluding contours manually
on laparoscopy images during surgery. This significantly reduces the acceptance
and usability of augmented laparoscopy because the concept of occluding con-
tour is non-trivial and marking them requires surgeon time. We propose to detect
the organ’s occluding contours automatically in order to build the critically miss-
ing component needed to automatise the existing systems. We tackle the general
problem, which we refer to as object-class occluding contour detection (OC2D) and
specialise our detector to the uterus.

OC2D is an open problem, closely related to semantic edge detection and oc-
clusion boundary detection. Semantic edge detection finds the boundary of objects
and is somehow dual to semantic segmentation. The early methods relied on edges,
located on abrupt brightness changes [16,9,4]. However, object boundaries do not
always lie on edges, especially when the object and background colours are simi-
lar. Recent CNN-based approaches thus combine higher level features with learnt
shape and appearance object priors [24,26,13]. Occlusion boundary detection finds
the boundary of all objects and classifies them according to their occlusion rela-
tionship. This classification makes the task more difficult than semantic edge de-
tection. CNN-based approaches have shown to perform well over a large number of
object classes in natural images. OC2D combines the difficulty of a specific object-
class and of the occlusion relationship. Its application to the uterus in laparoscopy
images increases the difficulty as the colours are clearly not discriminative. The
literature lacks a specific solution method for OC2D, as well as several critical
parts which we discuss in the next paragraphs.



Detecting Occluding Contours to Automatise Augmented Laparoscopy 3

The first missing part for OC2D is an evaluation score complying with all the
relevant performance criteria. Three performance criteria were defined by Canny
in 1986 for edge detection in his seminal work [4]: C1, true contours should not
be missed and responses not spurious; C2, responses should be close to true con-
tours and C3, each true contour should only produce a single response. As dis-
cussed in [15,14], the evaluation scores used in the literature fail one or several
of Canny’s criteria. Most of them are derived from classification frameworks and
rely on precision-recall measures at the pixel level. They fail C2 as they equally
penalise mislocalised responses irrespective of their distance to true contours. The
use of a tolerance region allowing one to consider slightly mislocalised responses
as true responses is used in [16,9]. Yet, their score fails C2 as the response-to-
true contour distance is not considered. They also fail C3 as several responses
can match a true contour within the tolerance region. In contrast, we propose an
evaluation score complying with all of Canny’s criteria and with two other pro-
posed criteria. These, named C4 and C5, ensure that the score is left invariant
by changing object deformation, camera intrinsics and pose. They are important
because we want the occluding contours to equally constrain registration over the
set of images. Specifically, for a given object and amount of occlusion, we have
that the score should be invariant to: C4, image resolution and C5, the amount
of true contours. We compare the proposed score to existing ones [16,15,14] on
synthetic contours.

The second missing part for OC2D is the detector itself, specifically the loss to
train a CNN end-to-end. Using a CNN is a natural approach, as in related tasks [26,
2,25,6,17,22,23]. These methods do not address OC2D specifically but reveal the
important potential problem of thick responses [2,25,6]. These approaches require
complex learning pipelines and a large body of training data. In contrast, we pro-
pose an end-to-end OC2D method which encourages 1-pixel thickness responses.
We use a U-Net, and our contribution lies in a loss combining cross-entropy with
two new penalties we call BiP and TiP for binarising the outputs and thinning
the contours. We propose training strategies with these penalties.

The third missing part for OC2D is a dataset, specifically in laparoscopy. Ex-
isting datasets [21,12,19,20] do not comprise labels for anatomical structures and
the type of occlusion. We propose a dataset of 3818 carefully labelled laparoscopy
images of the uterus meant to address gynecologic surgery. The labels are as in
figure 1, the occluding contours, the occlusion boundaries and the connection con-
tours of the uterus.

We evaluated our detector on randomly chosen test images from the proposed
dataset. We used U-Net trained with cross-entropy as baseline. We also compared
with CASENet [26], which we specialised to OC2D for the uterus. All three meth-
ods show similar FN (false negative) rates, but ours is substantially better in terms
of FP (false positive) rate and thickness of response fragments.

Lastly, we conducted a user-study to evaluate the gain of using OC2D in aug-
mented laparoscopy in an existing system [5], against manual marking by the
surgeon. The user-study was performed on 9 recorded laparoscopy videos and
involved 5 surgeons. Intraoperative surgeon time was substantially reduced, reg-
istration accuracy was preserved, and the system became usable by any surgeon,
without the need to understand the concept of occluding contour. This confirmed
the crucial importance of automation in augmented laparoscopy.
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2 Related Work

Evaluation score. The principle of the score from [16,9] is widely used in se-
mantic edge detection [26,2,25]. The score is based on precision-recall obtained
by matching responses and true edges. It also uses a tolerance region to deal with
spurious responses. Unfortunately, the matching requires to solve the minimum
flow over a bipartite graph, which is in practice only solvable approximately. Also
recall that the score fails C2. An exhaustive list of scores for edge detection is given
in [14], following three categories: local, statistical and distance-based. Strong ar-
guments in favour of distance-based scores are given in [15], which gives a thorough
comparison and proposes a distance-based score integrating the number of FP and
FN. These are however unequally weighted, causing the score to be overly sensitive
to spurious responses, failing C3-C5. In contrast, the score we propose shares the
same desirable features but gracefully copes with spurious responses.

Detection methods and loss. OC2D has not been specifically addressed in
the literature, but semantic edge detection and occlusion boundary detection are
closely related tasks. For both, the best results are currently obtained with CNNs.
In semantic edge detection, the task is to detect the boundary of multiple specific
objects [26,2,25,6,13]. Weighted cross-entropy is commonly used to compensate
the imbalanced distribution between the edge and non-edge classes over the image.
This weighting however has the negative effect to favour response fragments thicker
than the true edges. However, [2,25] suggest that these may be due to the imperfect
labelled contours and adjust them during training to address this problem, while [2,
6] propose a specific loss based on the reciprocal Dice coefficient.

In occlusion boundary detection, the task is to detect all occlusion boundaries
in the image. Existing methods use a two stage approach, where the object bound-
aries are first detected and then ordered depthwise. Some methods use a shared
encoder and multiple decoders. SharpNet [17] uses a U-Net with three decoders
to predict depthmaps, occluding contours, and normals. Other methods [23,8,22]
combine two parallel streams estimating boundary location and occlusion orien-
tation. In [22], a specific loss is proposed to boost detection nearby class-agnostic
object boundaries once the cross-entropy loss stalls.

Our proposed detector designed for OC2D takes inspiration from these related
tasks. We use a U-Net and weighted cross-entropy as most methods. Similarly
to [22], we boost the detection once mere cross-entropy stalls by adding penalties.
The penalties we propose are however radically new. Our binarising penalty favours
binary responses of the network to encourage sharp contour maps and our thinning
penalty favours well-localised responses to encourage thin contours.

Datasets. There exist datasets of labelled laparoscopy images for supervised
learning based detection of surgical actions [12], surgical phases [21,19] and anatom-
ical structures [12]. These datasets are procedure specific, namely cholecystec-
tomy [21,12,19] and fibroid resection [20,12]. There exist datasets for semantic
segmentation of robotic surgical instruments, stereo correspondence and recon-
struction in endoscopy [10]. However, there do not exist public datasets of la-
paroscopy images labelled for semantic segmentation of the anatomical structures.
The proposed dataset is thus the first of its kind. It includes advanced organ bound-
ary information, namely the occlusion boundary, occluding contour and connection
contour, carefully labelled on 3818 images extracted from various procedures.
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3 Evaluation Score

We propose a contour evaluation score complying with the five performance criteria
C1-C5. We then compare it with existing scores.

3.1 Formulation and Compliance with the Five Performance Criteria

Formulation. Let I be the set of all image pixels coordinates, C ⊂ I the true
contours and R ⊂ I the responses of a contour detector. We use a tolerance
distance dmax such that a missed contour is defined as a true contour with no
response located at a distance lower than dmax from it and a spurious response is
a response located at a distance greater than dmax from true contours. In practice,
dmax is chosen as 2% of the image diagonal [9]. A missed contour and a spurious
response are considered as FN and FP respectively in the sequel. The responses
in the tolerance region T = {r ∈ I | d(r, C) < dmax} are then TP (true positives)
and the responses outside T are FP.

The proposed score S(R,C) combines dmax with the distance between true
contours and responses for the first time. It combines the following three terms:

STP =
1

2

 1

|C|
∑

r∈R∩T

d(r, C\FN ) +
1

|C|
∑

c∈C\FN

d(c,R ∩ T )

 ,

SFP =
dmax

|I| − 2|C|dmax
|FP | and

SFN =
dmax

|C| |FN |.

Specifically, S(R,C) sums the three terms and normalises by dmax:

S(R,C) =
1

dmax
(STP + SFP + SFN )

=
1

2|C|dmax

 ∑
r∈R∩T

d(r, C\FN ) +
∑

c∈C\FN

d(c,R ∩ T )


+

|FP |
|I| − 2|C|dmax

+
|FN |
|C| .

Compliance with C1, C2. STP is a symmetric distance between the true con-
tours and responses. It thus encourages C2, namely responses close to true con-
tours. SFP and SFN are the normalised FP and FN respectively, each counting
for dmax. They thus encourage C1, namely no spurious responses and no missed
contours respectively, while equally penalising spurious responses irrespective of
their distance to true contours.

Compliance with C3. The difficulty in complying with C3 arises from the dis-
tance in STP which uses the nearest true contour to each response, which possibly
associates the same true contour to multiple responses. We handle this by pe-
nalising deviation between the number of true contours and responses within the
tolerance region, using normalisation by |C|, whilst previous work use |R∩ T | [7].
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Compliance with C4, C5. A high FN rate tends to have lower impact than a
high FP rate and requires proper weighting [15]. We assume that the probability
of having a spurious response is (i) uniform within the tolerance region and (ii)
similar to the probability of missing a true contour. In order to equally penalize FP
and FN inside and outside the tolerance region, our weighting is to normalise SFP

and SFN by their spatial extent, specifically ||I| − 2|C|dmax| pixels, considered a
good approximation of the number of pixels outside the tolerance region, for SFP ,
and |C| pixels for SFN . In summary, all three terms are normalised according to
the number of true contours |C| while the second term also integrates the image
resolution to satisfy C4 and C5.

ours
Ξ
SD1

RDE1

1 - MF

P1 P2 P3 P4 P5 P6

P1 P2

P4 P5 P6

S (proposed)
Ξ
SD1

RDE1

1 - MF

P3

Fig. 2 (top row) The six types of contour perturbation P1-P6 with TP in green, FP in red,
FN in blue and TN in white. (bottom row) The evaluation scores rescaled to fit the graphs.

3.2 Evaluation

As shown in figure 2, we simulated six types of perturbation, P1-P6, between true
contours and responses, some borrowed from [14], to test C1-C5. P1: adding FP,
1 (C1 and C3): an increasing number of random false responses are added. P2:
adding FP, 2 (C3): an increasing number of false responses are added by dilating
true contours to simulate thick responses within dmax. P3: adding FN (C1): an
increasing amount of random true responses is deleted. P4: locations (C2): the
location of true responses are independently randomly perturbed with an increas-
ing magnitude. P5: downsampling (C4): the image is increasingly downscaled with
constant FN rate. P6: downscaling (C5): the contours are downscaled with con-
stant FN rate. Importantly, a score verifying C1-C5 is expected to increase for
P1-P4 and to remain steady for P5, P6. The evaluation of the proposed score S
(Proposed) and four competitors, namely Ξ [15], SD1 [9], RDE1 [9] and 1−MF [7,
16] are shown in figure 2. We observe that P1 and P2 are passed by all scores.
However, P3, P5 and P6 defeat all scores but 1−MF and S (Proposed). Finally,
only the proposed score S passes P3, and is thus compliant with all performance
criteria.
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4 Detector and Loss

Architecture and training overview. We propose the first end-to-end OC2D
method. We take care to comply with C1-C5, especially with C3, namely to return
a single response per true contour pixel. This is probably the toughest criterion as
response thickness is one of the main limitations of current CNN-based semantic
edge and occlusion boundary detectors. The problem is also well-known in edge
detection from image gradient. These detectors trigger, for instance, if the gradient
magnitude is larger than a threshold. A low threshold thus leads to overdetection
and violates C3, whereas a high threshold leads to high FN rates and violates C1.
Finding a threshold to comply with both C1 and C3 is generally not possible. The
popular Canny edge detector [4] solves this problem using a low threshold and
performs morphological operations to thin the responses.

The proposed detector takes inspiration from the Canny detector but uses a
CNN and an end-to-end training process. The key idea is to design new penalties
to integrate thinning in the loss. We chose a U-Net architecture because it per-
forms well for semantic segmentation with a limited amount of training images.
We output three probability maps P = {poc, pob, pbg} ∈ [0, 1]3 for the occluding
contours, the occlusion boundaries and the background (see figure 1) and use a
softmax layer to ensure poc + pob + pbg = 1. We propose a three-step training pro-
cedure, gradually integrating two new advanced structural penalties in the loss:
the Binarising Penalty (BiP) and the Thinning Penalty (TiP).

First training step: initial task learning. The first training step specialises
the model to the OC2D task using a mere cross-entropy loss:

L1(P,Y) =
∑

∗∈{oc,ob,bg}

µ∗LCE(p∗, y∗), (1)

where ∗ simply runs over the three classes, Y = {yoc, yob, ybg} ∈ {0, 1}3 are the
true labels with yoc + yob + ybg = 1, µoc = 1, µob = 1.5 and µbg = 0.01 are fixed
weights, and LCE is cross-entropy. We stop training when the model stalls.

Second training step: binarising. The second training step fine-tunes the
model to binarise its outputs, as in image binarisation. It combines cross-entropy
with a new Binarising Penalty (BiP) B designed to encourage binary outputs:

L2(P,Y) = L1(P,Y) +
∑

∗∈{oc,ob,bg}

α
(
(1− β)K + βB(p∗)

)
. (2)

B is affinely combined with a constant K, and involves two hyperparameters α
and β tuned during training. We propose B(x) = x(1 − x) as the simplest BiP.
We propose two training strategies meant to gradually increase the BiP effect,
illustrated in figure 3. The amplitude strategy, denoted BiPα, where α gradually
increases from 0 to 20 while β is set to 1. The frequency strategy, denoted BiPβ,
where β gradually increases from 0 to 1 while α is set to 20. The increase in α
and β is 0.05 after each epoch. We stop training when the model stalls and keep
the best model with hyperparameters αopt, βopt. The outputs are still in the [0, 1]
range but become very close to {0, 1}.
Third training step: thinning. The third training step fine-tunes the model to
favour thin responses, as in morphological edge thinning. It combines cross-entropy
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Fig. 3 (a) Binarising penalty in the amplitude strategy, BiPα, with α ∈ [0, 20] and β = 1. (b)
Binarising penalty in the frequency strategy, BiPβ, with α = 20 and β ∈ [0, 1]. (c) Thinning
penalty, TiP, for pbg ∈ [0, 0.5]. The dashed parts are not applicable, with pbg + p# > 1.
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Input & Label Step 1: CE Step 2: CE-BiPα Step 3: CE-BiPα-TiP

Fig. 4 (column 1, top) Input image for uterus OC2D with a cross-section of the occlusion
boundary in yellow. (column 1, middle) True occluding contours in red and occlusion bound-
aries in green. (columns 2-4, top) Output probability map poc from the proposed OC2D at each
of its training steps. CE is cross-entropy, BiP is our binarising penalty and TiP is our thinning
penalty. (columns 2-4, middle) Results of the proposed OC2D as in column 1, middle. (all
columns, bottom) Probabilities poc and pbg along the selected cross-section with transitions
between background and occlusion boundary in dashed black.

with a new Thinning Penalty (TiP), penalising pixels whose probability of being
an occluding contour are higher than and yet close to those of not being one:

L3(P,Y) = L1(P,Y) +
∑

#∈{oc,ob}

γmax(0, p# − pbg)σ(θ(λ− p#)), (3)

where # simply runs over the two contour classes. In the TiP term, illustrated in
figure 3, γ is a hyperparameter which we vary in the [0, 40] range, increasing by
0.05 after each epoch. The first factor penalises the pixels for which p# > pbg as
a linear function of the probability discrepancy. The second factor penalises the
pixels for which p# < λ, where λ ∈ [0, 1] is a fixed threshold which we chose as
λ = 0.8. A value close to 1 means that only those pixels nearby true contours
should be detected. It uses a sigmoid σ and a fixed slope θ = 15. We stop training
when the model stalls and keep the best model with hyperparameter γopt. The
outputs represent much thinner contours.
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5 Dataset of Uterus Laparoscopy

We propose the first dataset of laparoscopy images with accurate advanced contour
labels for 3818 images.
Images. The images come from 79 anonymous uterus laparoscopy videos, 29 avail-
able from an IRB-approved study in our hospital and 50 from YouTube. These
show a variety of procedures including hysterectomies, resections of endometriosis
nodules and cysts, salpingectomies, adenomyomectomies and myomectomies. We
extracted multiple frames from each video to ensure that our dataset captures
the two essential types of variability. The first variability is the intra-patient and
within-procedure one, which is due for instance to viewpoint change, uterus defor-
mation and colour change, as the procedure goes by. The second variability is the
inter-patient and multiple-procedure one, which is due for instance to the shape
and appearance of the uterus, and specific changes caused by the type of proce-
dure and the disease. We also took care to include various typical events such as
occlusion by surgical instruments and blurry images.
Labels and labelling. As shown in figures 1 and 5 the labels are the occluding
contours, the occlusion boundaries and the connection contours of the uterus. The
connection contours typically occur at the junction between the uterus and the
fallopian tubes, and at the cervix, where the uterus ends but there is no occlusion
boundary or occluding contour. The connection contours are not used in our OC2D
method but they nonetheless represent valuable information, as together with the
occlusion boundary and occluding contours they define the uterus region. The
labelling was done by a surgeon using the online platform Supervisely [1].

CASENet CE-BiPα-TiPCE0.87 0.35 0.25

Fig. 5 Top: Excerpts from our dataset of 3818 labelled laparoscopy images. The uterus is the
main organ of interest. The occluding contours are in green, the occlusion boundaries in cyan
and the connection contours in blue. Bottom: responses of OC2D applied on the right-most
image, showing the robustness of the proposed method to surgical smoke. The obtained scores
are of 0.87, 0.35 and 0.25 for CASENet, CE and CE-BiPα-TiP respectively.

6 Evaluation

Evaluation overview. We evaluated the proposed OC2D method and its three
training steps against a baseline and existing work. We refer to our first training
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Fig. 6 Quantitative performance evaluated during training of OC2D. From left to right: the
overall score S = 1

dmax
(STP + SFP + SFN ) and its three terms STP , SFP and SFN . The

lower the better. CASENet results are out of the graphs ranges for S, STP and SFP .

step, namely a U-Net trained with cross-entropy, as the baseline. The proposed
training from §4 is CE-BiPx-TiP, where x ∈ {α, β}. The naming uses ‘-’ between
the training steps. In order to understand the role of each loss term and of the
training steps, we have four alternative scenarios, whose names are self-explaining:
CE-BiPx, CE-BiPα-BiP+TiP and CE-TiP, where ‘+’ means an aggregate of loss
terms. We compared with CASENet [26].
Implementation. We use the implementation of U-Net and CASENet in Py-
torch from [18] and [2] respectively. We fine-tuned CASENet on our dataset from
pretraining on the Semantic Boundary Dataset [9]. We used stochastic gradient
descent and decayed the initial learning rate by 0.1 every 10 epochs. We used a
random 72%-13%-15% train-validation-test split of our dataset.
Results. Several quantitative and qualitative results of the OC2D methods ap-
plied on highly challenging cases are shown in figure 5 and figure 7. They show in
particular robustness of the proposed OC2D to strong uterus occlusions, presence
of smoke and blood. Quantitative performance evaluated during training is shown
in figure 6, using the proposed score S, and a breakdown of its three terms STP ,
SFP and SFN . Apart from CASENet which shows very poor performance, we
observe that the baseline CE has the worst performance. The proposed binarising
penalty improves performance compared to CE, similarly for both training strate-
gies in CE-BiPα and CE-BiPβ. The full proposed training CE-BiPα-TiP with both
penalties obtains the best results, improving in all respects but slightly degrading
the FN rate, as thinning increases under-detection. CE-TiP, which skips the sec-
ond training step, has lower performance. Interestingly, CE-BiPα-BiP+TiP, which
includes both penalties in the third training step, performs closely to CE-BiPα-
TiP. It improves the FN rate but degrades the TP and FP rates. The very poor
performance obtained with CASENet could be partly explained by the limited
number of training images.

7 User-Study

We ran a user study to evaluate three OC2D methods, namely our baseline CE,
CE-BiPα-TiP of §4 (the best performing in §6) and CASENet against manually
marked occluding contours in an existing augmented laparoscopy system [5]. We
used 10 recorded gynecologic laparoscopies with MRI and preoperative 3D model
collected under IRB approval in our hospital. We involved 5 surgeons, broken down
in 3 juniors and 2 seniors, all of them familiar with augmented reality. The surgeons
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0.546 0.370 0.348 1.023 0.693 0.510 0.465 0.967

Fig. 7 OC2D responses for four laparoscopy image examples. For each example, the first row
represents the input laparoscopy image and the manually marked ground truth. Occluding
contours are marked in red and occlusion boundaries in green. The second row corresponds to
the detectors responses. The third row corresponds to the output probabilities poc.

were asked to label the occluding contours of the uterus using a tactile screen (see
figure 8(a)) as in surgery conditions, and marking time was recorded, for 18 images
on average. We independently ran the OC2D methods on the same image sets,
and running time was recorded. The registration accuracy was then evaluated
for each laparoscopy by running [5]. The results of this system directly depend
on the occluding contours, as it uses them to constrain preoperative 3D model
registration. The system then tracks the uterus to perform live augmentation.
We evaluated accuracy by evaluating the reprojection error of the tracked 3D
model in a set of 10 independent frames. The reprojection error is defined as the
average distance between the tracking-predicted occluding contour and its careful
annotation, as shown in figure 8(b). The frames were selected to ensure viewpoint
variability towards the uterus and such that at least 10% of the tracked 3D model
reprojects in the image. This procedure was run for the 10 laparoscopies, the
5 surgeons and 3 OC2D methods, which led to a total of 80 cases. The results
are shown in table 1. CE and CE-BiPα-TiP led to nearly identical registration
accuracy as manual marking, but to a dramatic reduction of surgeon time of
3 minutes and 53 seconds on average, representing 97.4% of augmented reality
setup time. Despite showing completely aberrant contour responses, CASENet
shows an average error 14 pixels higher than the proposed CE and CE-BiPα-TiP,
a difference which is not as significant as we expected. It is due to the use of an
M-estimator in the occluding contour term of the minimized energy proposed in
[5] that makes the registration method highly robust to false contour responses. A
stronger consequence of this study is to indicate that fully automatic augmented
laparoscopy is feasible. The fact that the surgeon should understand the concept
of occluding contour and devote undivided attention to label around 20 images
during surgery has been prohibitive for the wide acceptance of augmented reality.
With OC2D this constraint is now dropped, and usability dramatically increased.
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Case Manual CE-BiPα-TiP CE CASENet Time OC2D Time Manual
1 34.97 42.13 42.89 71.85 7.7” 4’56”
2 56.41 53.93 53.14 60.58 7.8” 5’12”
3 93.40 94.83 95.92 127.44 6.7” 4’39”
4 42.13 40.84 43.42 50.46 7.8” 5’37”
5 85.13 88.10 80.33 93.31 8.5” 4’34”
6 90.47 90.07 91.37 100.30 5.1” 3’37”
7 96.34 90.62 92.17 84.72 6.6” 3’24”
8 46.76 48.56 49.03 54.58 5.5” 3’28”
9 32.27 33.92 33.47 49.30 6.1” 3’30”
10 39.58 41.43 38.39 67.00 2.2” 1’28”

Average 61,75 62,44 62,01 75,95 6.4” 4’02”

Table 1 User-study for 10 laparoscopies, averaged over 5 surgeons for manual results. The
reprojection error (the lower, the better) is in pixels. The time is in minute (’) and seconds
(”). Time OC2D is evaluated with CE-BiPα-TiP, but other methods present similar values.

(a) (b) (c)

Fig. 8 (a) Labelling of the occluding contours by a surgeon using a tactile screen. (b) Augmen-
tation with the preoperative 3D model registered using the occluding contours from OC2D. A
myoma is visualised in yellow and the uterus external surface in light gray. (c) Evaluation of
the registration accuracy using the reprojection error, as the distance between the silhouette
of the tracked 3D model (red) and manually labelled occluding contours of the uterus (green).

8 Conclusion

We have identified the organ-specific detection of occluding contours as a key miss-
ing component in the usability of computer-aided laparoscopy with augmented
reality. We have identified this component with OC2D, an open and challenging
semantic detection problem, for which we have proposed a complete framework.
This includes a distance-based evaluation score, the first to comply with all per-
formance criteria including Canny’s, a loss allowing one to train a CNN-based
detector, with two new specific penalties, and a dataset of carefully labelled la-
paroscopy images. Our penalties binarise the response map and thin the response
contours. They allow our detector to outperform the baseline and existing work, in
terms of response thickness, FN and FP rates. We have conducted a user-study to
evaluate the impact of automation by OC2D against manually marked occluding
contours in augmented laparoscopy. Automation led to a substantial reduction of
surgeon time while preserving augmentation accuracy. The surgeons are relieved
from the intraoperative labelling task and from understanding the concept of oc-
cluding contours, confirming our initial motivation of developing OC2D. As future
work, we plan to study self-supervision for OC2D by using silhouette constraints
from multiple-view geometry and how the proposed binarising and thinning penal-
ties may improve other detection tasks.
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performed by any of the authors.
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