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Abstract

The vast majority of mesh-based modelling applications iteratively transform the
mesh vertices under prescribed geometric conditions. This occurs in particular in
methods cycling through the constraint set such as Position-Based Dynamics (PBD).
A common case is the approximate local area preservation of triangular 2D meshes
under external editing constraints. At the constraint level, this yields the nonconvex
optimal triangle projection under prescribed area problem, for which there does not
currently exist a direct solution method. In current PBD implementations, the area
preservation constraint is linearised. The solution comes out through the iterations,
without a guarantee of optimality, and the process may fail for degenerate inputs
where the vertices are colinear or colocated. We propose a closed-form solution
method and its numerically robust algebraic implementation. Our method handles
degenerate inputs through a two-case analysis of the problem’s generic ambiguities.
We show in a series of experiments in area-based 2D mesh editing that using optimal
projection in place of area constraint linearisation in PBD speeds up and stabilises
convergence.

Keywords: triangle, optimal projection, area preservation, orientation
preservation, mesh editing, PBD

1. Introduction

A key mechanism in many mesh-based modelling applications is to transform the
mesh vertices to meet prescribed geometric conditions. For example, triangular mesh
smoothing may be achieved by moving the vertices of each triangle by a specifically
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designed two-step stretching-shrinking transformation [1] or by iteratively applying a
local smoothing transformation [2]. Another example is 3D volumetric model defor-
mation, where realism is improved by preserving the volume of the mesh’s tetrahe-
drons [3, 4]. Position-Based Dynamics (PBD) is a widely used simulation technique
that directly manipulates the vertex positions of object meshes. It can model various
object behaviours such as rigid body, soft body and fluids [5]. Due to its simplicity,
robustness and speed, PBD has become very popular in computer graphics and in the
video-game industry. In general terms, PBD updates the vertex positions through
simple integration of the external forces. These positions are then directly subjected
to a series of constraint equations handled one at a time. If the obtained projection
minimises the vertex displacement then it is qualified as optimal. For example, the
projection for vertex distance preservation is a simple problem, which was solved
optimally [6, 7]. The constraints simulate a wide range of effects like stretching,
bending, collision, area and volume conservation [7]. Over the years, improvements
have been proposed to the original formulation of PBD. These include new bending
constraints from simple geometric principles [8, 9], stability improvement by geomet-
ric stiffness [10] and faster convergence by constraint reordering [11].

Mesh editing uses a priori chosen fixed vertices and moving vertices which should
respect constraints. In 2D triangular mesh editing, local area preservation is a widely
used constraint. The mesh is deformed until the triangle-wise area variation is min-
imised. Enforcing this constraint leads to the Optimal Triangle Projection with
Prescribed Area problem (OTPPA), which we will formally define shortly. OTPPA
is a difficult problem and has not yet been given a closed-form solution in the litera-
ture, contrarily to optimal vertex distance preservation. We formally define OTPPA
as follows. We define the vertices va, vb and vc of a triangle in a 2D space as a 6D
vector v with:

v = [va, vb, vc]
> = [xa, ya, xb, yb, xc, yc]

> ∈ R6. (1)

We denote the input triangle ṽ = [x̃a, ỹa, x̃b, ỹb, x̃c, ỹc]
> and the prescribed area Ao.

We assume Ao > 0 out of practical considerations1. The general OTPPA problem is
stated as:

min
v∈R6

C (v) s.t. f(v) = 0, (2)

where C (v) is the least-squares displacement cost:

C (v) = ‖v − ṽ‖2, (3)

1Ao = 0 implies that the resulting vertices are colinear, in which case they are simply given by
the orthogonal projection of the input vertices onto a best-fit least-squares line to the input vertices.
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and f(v) is the nonconvex area preservation constraint, defined from the triangle
area function A(v) as:

f(v) = A(v)− Ao. (4)

Areas are positive quantities. This means that when we calculate the area of a
triangle using its vertices, we obtain a positive value regardless of their orientation.
In this formulation, the area constraint is the difference of two non-negative values.
That is, the area of the triangle is constrained but not its orientation. For instance, v
could be mirrored or two vertices could be swapped and the area constraint would still
be satisfied. This could result in undesired triangle inversions in mesh editing. We
thus introduce a related problem that additionally constrains the triangle orientation.
We first define the triangle area function as A(v) = |A∗(v)|, where A∗(v) is the signed
area given by the shoelace formula:

A∗(v) =
(xa − xc)(yb − ya)− (xa − xb)(yc − ya)

2
. (5)

The signed area is more informative than the area. Specifically, sign(A∗(v)) gives
the triangle orientation. We use this property to define the additional orientation
constraint. This leads to the Optimal Triangle Projection with Prescribed Area and
Orientation problem (OTPPAO), stated as:

min
v∈R6

C (v) s.t. f(v) = 0 and g(v) = 0, (6)

where g(v) is the orientation preservation constraint:

g(v) = sign(A∗(v))− s, (7)

and s ∈ {−1, 1} specifies the prescribed orientation. The value chosen for s depends
on the application. For instance, in PBD, one would choose the orientation of the
reference mesh triangle, while another possibility would be to preserve the orientation
of the input triangle by setting s = sign(A∗(ṽ)).

For both OTPPA and OTPPAO, current PBD implementations linearise the area
preservation constraint, resulting in suboptimal projection. For OTPPAO, they also
check and enforce the orientation constraint a posteriori in the inner optimisation
loop. There also exist implementations based on non-linear optimisation, namely Se-
quential Quadratic Programming (SQP), which may result in faster convergence [12].
Similarly to linearisation, these methods may fail to find the global minimum. This
will be critical when the problem is close to a degenerate configuration admitting
several solutions. In addition, any iterative method will require an unpredictable
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number of iterations to converge, rendering the actual computation time difficult to
predict. Furthermore, they degenerate for inputs where the vertices are colinear or
colocated, whereas a reliable solution should handle any input. We can thus expect
an optimal projection to improve PBD convergence compared to linearisation and
iterative methods.

We propose a closed-form method to OTPPAO and OTPPA. Our method for
OTPPAO handles degenerate inputs through a two-case analysis, guaranteeing it
to find the optimal solution and returning multiple optimal solutions for ambiguous
inputs. Our method for OTPPA directly relies on OTPPAO and shares the same
features. Our method derivation, although thoroughly detailed and relying on some
complex steps, results in a simple algebraic procedure which can be readily imple-
mented in any programming language. We use our closed-form method to implement
PBD, hence dubbed PBD-opt, for mesh editing and compare its performance with
respect to the existing PBD implementation with linearisation, dubbed PBD-lin. To
illustrate our proposal, we present a one triangle toy example in Figure 1 in which we
wish to resize the triangle to half its initial area. PBD-lin takes several iterations to
reach the prescribed area, whereas PBD-opt achieves it directly. The cost evolution
shows that PBD-lin starts with a lower cost, but by the time it complies with the
area constraint, it reaches a larger cost than PBD-opt, indicating convergence to a
local suboptimal minimum.

This paper has two parts. In the first part, we derive our closed-form methods.
We show that they deal with generic ambiguities. We then implement our methods
as numerically robust algebraic procedures. In the second part, we embed our alge-
braic procedure for OTTPAO in PBD to form an implementation of PBD-opt. We
compare its performance in convergence speed and stability with respect to the ex-
isting PBD-lin in a series of experiments and present some use-cases. We finally give
a complementary section where we present our solution to OTPPA and specialise
our methods to cases where one or two triangle vertices are fixed, which is typically
applicable to triangles at the domain boundary in mesh editing.

2. Optimal Triangle Projection with Prescribed Area and Orientation

The derivation of our closed-form method to OTPPAO starts by combining the
two constraints into a single one related to both triangle area and orientation. We
then construct the Lagrangian which leads to a nonconvex problem, which we handle
with two cases. We distinguish and geometrically interpret the two cases based on
the input vertices. In the first case, we reformulate the problem as a depressed
quartic equation and solve it analytically. In the second case, we reformulate the
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Figure 1: Method comparison on a one triangle toy example. (a), PBD-lin resizes the initial triangle
(purple) into smaller intermediary triangles (green) until it reaches a triangle with the prescribed
area (black dashed). (b), PBD-opt directly reaches the prescribed area. (c), Comparison of the
evolution of the cost of PBD-lin and the fixed cost of PBD-opt. (d), Comparison of the evolution
of the prescribed area constraint of PBD-lin and the fixed area of PBD-opt. The cost of PBD-opt
(blue) is constant as it gives a direct solution. The cost of PBD-lin is lower during the first iterations
(yellow) but the area constraint tolerance |(A(v)−Ao| ≤ 10−3

is not yet fulfilled. By the time it reaches the prescribed area (black dot), the cost
of PBD-lin (red) has become larger than the one of PBD-opt. Furthermore, after

20 iterations the area constraint for PBD-lin is 4.802 · 10−6 compared to
8.327 · 10−17 in PBD-opt.
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problem as a series of homogeneous equations and find its null space. Based on these
procedures, we develop a numerically robust algebraic implementation and show the
results in a series of illustrative examples.

2.1. Single Constraint Reformulation

We reformulate OTPPAO by merging the area and orientation constraints into a
single equivalent constraint:

f ∗(v) = 0 with f ∗(v) = sA∗(v)− Ao. (8)

We have (f(v) = 0) ∧ (g(v) = 0) ⇔ f ∗(v) = 0. The forward implication is ob-
tained by rewriting f(v) = 0 as sign(A∗(v))A∗(v) − Ao = 0 and substituting
s = sign(A∗(v)), as obtained from g(v) = 0, directly giving f ∗(v) = 0. The re-
verse implication is obtained by rewriting f ∗(v) = 0 as sA∗(v) = Ao, whose absolute
value gives f(v) = 0 and whose sign gives g(v) = 0. With this new constraint, we
reformulate OTPPAO as:

min
v∈R6

C (v) s.t. f ∗(v) = 0. (9)

This reformulation increases compactness but, more importantly, in contrast to the
previous area constraint, the new constraint does not involve an absolute value.
More specifically, f ∗(v) is a nonconvex but smooth function of v, meaning that a
Lagrangian formulation can now be safely constructed.

2.2. Lagrangian Formulation

The Lagrangian of the OTPPAO problem (9) is:

L (v, λ) = C (v) + λf ∗(v), (10)

where λ is the Lagrange multiplier. Setting the gradient to nought we obtain:

∂L

∂λ
= f ∗(v) = sA∗(v)− Ao = 0 (11)

∂L

∂v
=
∂C (v)

∂v
+ λ

∂f ∗(v)

∂v
= 2(v − ṽ) + sλ

∂A∗(v)

∂v
= 0. (12)
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Expanding ∂L
∂v

, we obtain the following six equations:

∂L

∂xa
= 2(xa − x̃a) + s

λ

2
(yb − yc) = 0

∂L

∂ya
= 2(ya − ỹa) + s

λ

2
(xc − xb) = 0

∂L

∂xb
= 2(xb − x̃b) + s

λ

2
(yc − ya) = 0

∂L

∂yb
= 2(yb − ỹb) + s

λ

2
(xa − xc) = 0

∂L

∂xc
= 2(xc − x̃c) + s

λ

2
(ya − yb) = 0

∂L

∂yc
= 2(yc − ỹc) + s

λ

2
(xb − xa) = 0.

We rewrite these equations in matrix form as:

Xv = ṽ, (13)

where X ∈ R6×6 is given by:

X =


1 0 0 sλ/4 0 −sλ/4
0 1 −sλ/4 0 sλ/4 0
0 −sλ/4 1 0 0 sλ/4

sλ/4 0 0 1 −sλ/4 0
0 sλ/4 0 −sλ/4 1 0

−sλ/4 0 sλ/4 0 0 1

 . (14)

2.3. Solving with Two Cases

We want to solve for v from equation (14). We first check the invertibility of X
from its determinant:

det(X) =
(3λ2 − 16)

2

256
. (15)

We thus have:
det(X) = 0 ⇔ |λ| = λo, (16)

where λo correspond to the reciprocal area of a normalised equilateral triangle:

λo =
4√
3
. (17)
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We show in the next section that this special case is related to input vertices repre-
senting an equilateral triangle or being colocated. We thus solve system (14) with
two cases. In Case I, which is the most general one, we have |λ| 6= λo. In Case II,
we have |λ| = λo.

2.4. Geometrically Interpreting and Distinguishing the Two Cases

The problem setting is defined by the input vertices ṽ, the prescribed area Ao
and orientation s. Most settings are solved by Case I and exceptions are handled
by Case II. Both cases can be geometrically interpreted and distinguished from each
other based on three criteria:

• Linear deficiency of ṽ. This is evaluated as the rank of matrix M ∈ R3×3

containing ṽ in homogeneous coordinates as:

M
def
=

x̃a ỹa 1
x̃b ỹb 1
x̃c ỹc 1

 . (18)

For most configurations rank(M) = 3, which means that the vertices are not
aligned and represent any given triangle whose area A(ṽ) is non-zero. In con-
trast, rank(M) = 2 means that the three vertices are colinear, in which case
A(ṽ) = 0. Finally, rank(M) = 1 means that the three vertices are colocated
and also implies A(ṽ) = 0.

• Orientation change of ṽ. This is evaluated by comparing the input vertices
orientation sign(A∗(ṽ)) and the prescribed orientation s. When the orientation
of the input vertices is preserved then sign(A∗(ṽ)) = s. On the other hand,
when the orientation of the input vertices is inverted then sign(A∗(ṽ)) = −s.

• Scale of A(ṽ) with respect to Ao. This is only useful in the special case
of an equilateral triangle with preserved orientation. It refers to whether the
absolute value of the scaled input area |zA∗(ṽ)| is larger than, equal to or
smaller than the prescribed area Ao for some z ∈ R > 0.

The interpretation of Cases I and II with the above criteria is given in Table 1 and
summarised by the following Proposition.

Proposition 1. We define a problem setting as the input vertices ṽ, the prescribed
area Ao and orientation s. Most settings fall in Case I and are then denoted So.
Exceptions, handled with Case II, are:
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• S1: ṽ is a single point

• S2: ṽ is an equilateral triangle and sign(A∗(ṽ)) = −s

• S3: ṽ is an equilateral triangle, A(ṽ)/4 ≥ Ao and sign(A∗(ṽ)) = s

The proof of Proposition 1 is based on the following five Lemmas.

Lemma 1. S1 ⇐⇒ A(ṽ) = 0 and |λ| = λo.

Lemma 2. S2 ⇐⇒ A(ṽ) 6= 0 and λ = −λo.

Lemma 3. S3 ⇒ A(ṽ) 6= 0 and λ ∈
{
λo,−λo +

√
λo
Ao
,−λo −

√
λo
Ao

}
.

Lemma 4. S3 ⇐ A(ṽ) 6= 0 and λ = λo.

Lemma 5. Choosing λ = λo leads to the optimal solution for S3.

The proofs of these Lemmas are given in Appendix A.

Proof of Proposition 1. We recall that Case I occurs for |λ| 6= λo and Case II for
|λ| = λo. Lemmas 1, 2 and 4 show that S1, S2 and S3 are the only possible settings
corresponding to |λ| = λo, hence possibly to Case II. This proves that Case I is the
general case. Lemmas 1 and 2 then trivially prove that S1 and S2 are handled by
Case II. Finally, Lemmas 3 and 5 prove that S3 is also handled by Case II.

2.5. Case I

Case I is the most general one. It occurs for |λ| 6= λo, equivalent to det(X) 6= 0.
From Proposition 1, we have rank(M) ≥ 2, in other words, at least one of the initial
vertices ṽ is different from the other two (except if the input is an equilateral triangle
under the conditions of Proposition 1). We follow two steps. We first eliminate the
vertices from the equations, which leads to a depressed quartic in λ. We then find
the roots of this quartic using Ferrari’s method and trivially solve for the vertices
from the initial linear system (13).
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Case Setting Input det(X) rank(M) A(ṽ) σ2(ṽ)
Number of

s sign(A(ṽ))
solutions

I So non zero

3 non zero

non zero ≤ 4 ±1

2 zero

II S1 zero 1 zero zero ∞ ±1

I So non zero

3

A(ṽ)/4 ≤ Ao

non zero

≤ 4 1

II S3 zero A(ṽ)/4 ≥ Ao ∞ 1

II S2 zero non zero ∞ -1

Table 1: Characteristics of Cases I and II and number of solutions.
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2.5.1. Polynomial Reformulation

Our reformulation proceeds by expressing the vertices in ṽ as a function of λ
scaled by the determinant and substituting in the signed area constraint f ∗(v) = 0.
We start by multiplying equation (13) by the adjugate X∗ of X and obtain:

det(X)v = X∗ṽ, (19)

where the adjugate is:

X∗ =
δ

256
Y =

3λ2 − 16

256


λ2 − 16 0 λ2 4sλ λ2 −4sλ

0 λ2 − 16 −4sλ λ2 4sλ λ2

λ2 −4sλ λ2 − 16 0 λ2 4sλ
4sλ λ2 0 λ2 − 16 −4sλ λ2

λ2 4sλ λ2 −4sλ λ2 − 16 0
−4sλ λ2 4sλ λ2 0 λ2 − 16

 ,
(20)

with δ = 3λ2 − 16 and Y ∈ R6×6. We notice the following:

det(X) =
δ2

256
. (21)

We substitute equations (20) and (21) in equation (19) and obtain:

δv = Y ṽ. (22)

We observe that the signed area A∗(δv) = δ2A∗(v). Thus, we calculate the signed
area of both sides of equation (19) and obtain:

δ2A∗(v) = A∗(Y ṽ). (23)

After some minor manipulations, we obtain:

A∗(Y ṽ) = a2λ
2 + a1λ+ ao, (24)

where:

a0 = 128((x̃a − x̃c)(ỹb − ỹa)− (x̃a − x̃b)(ỹc − ỹa))
a1 = −64s(x̃2

a + x̃2
b + x̃2

c + ỹ2
a + ỹ2

b + ỹ2
c − x̃ax̃b − x̃ax̃c − x̃bx̃c − ỹaỹb − ỹaỹc − ỹbỹc)

a2 = 24((x̃a − x̃c)(ỹb − ỹa)− (x̃a − x̃b)(ỹc − ỹa)).

We can rewrite these coefficients more compactly. Concretely, a0 and a2 contain the
signed area of the input vertices A∗(ṽ), as given by equation (5). Furthermore, a1
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is proportional to the sum of the variance of the x and y components of the input
vertices, as σ2(ṽ) = σ2

x(ṽ) + σ2
y(ṽ) where:

σ2
x(ṽ) =

(x̃a − x̄)2 + (x̃b − x̄)2 + (x̃c − x̄)2

3
, (25)

σ2
y(ṽ) =

(ỹa − ȳ)2 + (ỹb − ȳ)2 + (ỹc − ȳ)2

3
, (26)

and x̄ and ȳ are the x and y components of the input triangle’s centroid. We then
have:

3

2
σ2(ṽ) = x̃2

a + x̃2
b + x̃2

c + ỹ2
a + ỹ2

b + ỹ2
c − x̃ax̃b− x̃ax̃c− x̃bx̃c− ỹaỹb− ỹaỹc− ỹbỹc, (27)

and thus, a1 = −96sσ2(ṽ). We substitute equation (23) in the signed area con-
straint (8) multiplied by δ2 and obtain:

sA∗(Y ṽ)− δ2Ao = 0. (28)

This way, the signed area only depends on the known initial vertices ṽ and prescribed
sign s. Because the signed area is quadratic in the vertices, and the vertices are
quadratic rational in λ, the resulting equation is a quartic in λ:

9Aoλ
4 − 48(2Ao + sA∗(ṽ))λ2 + 96σ2(ṽ)λ+ 256(Ao − sA∗(ṽ)) = 0. (29)

This is a depressed quartic because it does not have a cubic term. We can thus
rewrite it to the standard form by simply dividing by 9Ao, giving:

λ4 + pλ2 + qλ+ r = 0, (30)

with:

p = −16(2Ao + sA∗(ṽ))

3Ao
(31)

q =
32σ2(ṽ)

3Ao
(32)

r =
256(Ao − sA∗(ṽ))

9Ao
. (33)

An important question is whether we can further simplify the depressed quartic by
nullifying one of its coefficients. The possible actions lie in choosing the coordinate
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frame in which the vertices are expressed using a proper scaled Euclidean transforma-
tion. Coefficients p and r are linear combinations of the triangle areas A∗(ṽ) and Ao
and are normalised by Ao. This means that they are scale, rotation and translation
invariant, and thus cannot be cancelled. Coefficient q is proportional to the variance
σ2(ṽ) which is also rotation and translation invariant, and thus cannot be cancelled.
Because it is normalised by the area, it is also scale invariant. Consequently, since
λ is a root of this polynomial, it is also rotation, translation and scale invariant.
Therefore, the depressed quartic cannot be simplified. The next step is to solve the
depressed quartic.

2.5.2. Solution using Ferrari’s Method

We have chosen Ferrari’s method [13, 14] to solve the quartic equation2. The
method details and proof may be found in Appendix C. We here give its main
steps for the sake of completeness and for the construction of our numerically robust
procedure in Section 2.8. We first extract the resolvent cubic for equation (30). We
then use Cardano’s formula to extract the real root αo of the resolvent cubic as:

αo =
3

√
Q2 +

√
Q3

1 +Q2
2 +

3

√
Q2 −

√
Q3

1 +Q2
2 −

p

3
(34)

where:

Q1 = −p
2 + 12r

36
(35)

Q2 =
2p3 − 72rp+ 27q2

432
. (36)

The expansion of Q1 and Q2 does not bring simplified expressions. We note that
Proposition 1 implies q 6= 0, thus αo 6= 0. We finally use αo to extract the roots of
the depressed quartic as:

λ =

s1
√
αo + s2

√
−
(
p+ αo + s1

q√
2αo

)
√

2
, (37)

where s1, s2 ∈ {−1, 1}, leaving four possibilities, hence four roots. Substituting
these roots in equation (13), we obtain four sets of vertices, at least one of which
representing an optimal solution to OTPPAO.

2There are five main types of solution methods for a quartic equation. There does not seem to
exist a consensus as to which one should be preferred in terms of stability [15, 16, 17].
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2.6. Case II

Case II is a special case. It occurs for |λ| = λo, equivalent to det(X) = 0.
From Proposition 1, this means that the initial vertices ṽ either are colocated as
ṽa = ṽb = ṽc or represent equilateral triangles under the conditions of Proposition 1.
We show that the problem is represented by translated homogeneous and linearly
dependent equations. We find their null space and then a subset constrained by the
prescribed area.

We translate the coordinate system to bring the input triangle’s centroid to the
origin as ṽ′ = ṽ − v̄, which also translates the unknown vertices to v′ = v − v̄.
Substituting |λ| = λo in matrix X, we obtain:

X =



1 0 0 s sign(λ)√
3

0 − s sign(λ)√
3

0 1 − s sign(λ)√
3

0 s sign(λ)√
3

0

0 − s sign(λ)√
3

1 0 0 s sign(λ)√
3

s sign(λ)√
3

0 0 1 − s sign(λ)√
3

0

0 s sign(λ)√
3

0 − s sign(λ)√
3

1 0

− s sign(λ)√
3

0 s sign(λ)√
3

0 0 1


. (38)

We have det(X) = 0, as expected, independently of sign(λ). In addition, all 5 × 5
minors of X are zero and the leading 4× 4 minor is non-zero:

det




1 0 0 s sign(λ)√
3

0 1 − s sign(λ)√
3

0

0 − s sign(λ)√
3

1 0
s sign(λ)√

3
0 0 1


 =

4

9
. (39)

This means that rank(X) = 4. Thus, Xv′ = ṽ′ is solvable if and only if ṽ′ lies in
the column space C(X). The column space can be calculated by factoring X into
its Singular Value Decomposition (SVD) X = UΣU> (X is symmetric) and taking
the first rank(X) columns of the unitary matrix U . For each value of s sign(λ), we
have column spaces expressed as four-dimensional linear subspaces {γ1u

−
1 + γ2u

−
2 +

γ3u
−
3 + γ4u

−
4 } and {γ1u

+
1 + γ2u

+
2 + γ3u

+
3 + γ4u

+
4 } where γ1, γ2, γ3, γ4 ∈ R and with
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bases u−1 ,u
−
2 ,u

−
3 ,u

−
4 ∈ R6 and u+

1 ,u
+
2 ,u

+
3 ,u

+
4 ∈ R6 such that:

[
u−1 u−2 u−3 u−4

]
=


0 λo/4 λo/4 0

λo/4 0 0 λo/4
1/2 −λo/8 λo/4 0
−λo/8 −1/2 0 λo/4
−1/2 −λo/8 λo/4 0
−λo/8 1/2 0 λo/4

 , (40)

and:

[
u+

1 u+
2 u+

3 u+
4

]
=


λo/4 0 0 λo/4

0 λo/4 λo/4 0
−λo/8 −1/2 0 λo/4

1/2 −λo/8 λo/4 0
−λo/8 1/2 0 λo/4
−1/2 −λo/8 λo/4 0

 . (41)

We have that u−1 ,u
−
2 ,u

+
1 and u+

2 represent centred equilateral triangles of the same
area of 1

λo
with orientation s sign(λ) and we have that u−3 ,u

−
4 ,u

+
3 and u+

4 represent

sets of colocated points. The linear combinations γ1u
−
1 + γ2u

−
2 and γ1u

+
1 + γ2u

+
2

represent equilateral triangles of any area and opposite orientations (or colocated
points if γ1 = γ2 = 0), whilst γ3u

−
3 + γ4u

−
4 and γ3u

+
3 + γ4u

+
4 represent colocated

points, hence act as a translation for the vertices of the previous linear combination.
This shows that the system is solvable if and only if ṽ′ represents an equilateral
triangle of orientation sign(A∗(ṽ′)) = s sign(λ) or colocated vertices.

The system Xv′ = ṽ′ is solved by first finding the solutions of the homogeneous
systemXvh = 0 and translating them by a particular solution vp, obtaining v′ = vh+
vp. The homogeneous system has an infinite number of solutions which come from
the null space of X. This can be represented as a two-dimensional linear subspace
vh = β1v1 + β2v2 where the coefficients β1, β2 ∈ R and with bases v1,v2 ∈ R6 such
that:

[
v1 v2

]
=



−1
2

2s sign(λ)
λo

−2s sign(λ)
λo

−1
2

−1
2

−2s sign(λ)
λo

2s sign(λ)
λo

−1
2

1 0
0 1


. (42)

We have that v1,v2 represent centred equilateral triangles of the same area of 3
λo

.
The linear combination vh = β1v1 + β2v2 generates centred equilateral triangles of
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any area of orientation −s sign(λ). We then calculate the particular solution vp using
the pseudo-inverse as:

vp = X†ṽ′ =



x̃′a
2

+
x̃′b
4

+ x̃′c
4

+ sign(A∗(ṽ′))
ỹ′b−ỹ

′
c

3λo
ỹ′a
2

+
ỹ′b
4

+ ỹ′c
4
− sign(A∗(ṽ′))

x̃′b−x̃
′
c

3λo
x̃′a
4

+
x̃′b
2

+ x̃′c
4
− sign(A∗(ṽ′)) ỹ

′
a−ỹ′c
3λo

ỹ′a
4

+
ỹ′b
2

+ ỹ′c
4

+ sign(A∗(ṽ′)) x̃
′
a−x̃′c
3λo

x̃′a
4

+
x̃′b
4

+ x̃′c
2

+ sign(A∗(ṽ′))
ỹ′a−ỹ′b

3λo
ỹ′a
4

+
ỹ′b
4

+ ỹ′c
2
− sign(A∗(ṽ′))

x̃′a−x̃′b
3λo


. (43)

We then translate the null space with the particular solution and obtain v′ =
β1v1 + β2v2 + vp. This linear combination generates centred triangles of any area.
A noticeable property is stated in the following Lemma, whose proof is given in Ap-
pendix A.

Lemma 6. vp = 0⇒ v′ is an equilateral triangle. The converse is not true.

The next step is to constrain these triangles to the prescribed area and orientation.
After some minor algebraic manipulations, we obtain the signed area of the subspace
as:

A∗(v′) = (1 + s sign(A∗(ṽ′)) sign(λ))
A∗(ṽ′)

8
− s sign(λ)

3(β2
1 + β2

2)

λo
. (44)

When A∗(ṽ′) 6= 0 we have s sign(λ) = sign(A∗(ṽ′)) thus sign(λ) = s sign(A∗(ṽ′)).
However, when A∗(ṽ′) = 0 we have sign(A∗(v′)) = −s sign(λ), which implies that
sign(λ) = −s. Using the orientation constraint (7), we can express v′ as:

v′ = β1v1 + β2v2 + vp

s.t. (s+ sign(λ) sign(A∗(ṽ′)))
A∗(ṽ′)

8
− sign(λ)

3(β2
1 + β2

2)

λo
− Ao = 0.

(45)

Because of the area and orientation constraints, and because v1 and v2 are rotated
copies of each other, the family defined by equation (42) can be generated by scaling
v1 by:

φ =
√
β2

1 + β2
2 =

√
λo(sign(A∗(ṽ′))A∗(ṽ′)− 4kAo)

12
, (46)

where k depends on the type of input:

k =

{
s sign(A∗(ṽ′)) if A∗(ṽ) 6= 0

−1 if A∗(ṽ) = 0,
(47)
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(a) Orientation Preservation
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(b) Orientation Inversion

Figure 2: Case II solutions for an equilateral triangle. (a), represents solutions where the input
orientation is preserved and (b), where it is inverted. The prescribed area Ao is 1/5 of the input
triangle’s area. For both (a) and (b), four solutions corresponding to different values for θ are
shown and assigned a colour for visual representation. The triangle family is generated by a free 2D
rotation followed by a fixed translation in the 6D triangle space, which result in triangles that are
not rotated copies of each other. Nevertheless, they all comply with the area preservation constraint
and have the same cost.

so that the area constraint is met. We can then rotate v1 by some arbitrary angle
θ. We note that when k = s sign(A∗(ṽ′)) = 1, then φ ∈ R as long as A(ṽ)/4 ≥ Ao
(which corresponds to setting S3). We define a new basis vector vc as:

vc = φ
[
−1

2
−ks 2

λo
−1

2
ks 2

λo
1 0

]>
. (48)

We translate it to the original coordinates by vt, which is the addition of the partic-
ular solution vp and the input’s centroid v̄, and obtain:

v = R(θ)vc + vt, (49)

where R(θ) is a block diagonal matrix replicating the 2D rotation matrix R(θ) three
times as R(θ) = diag(R(θ), R(θ), R(θ)). Equation (49) generates an infinite num-
ber of solutions with an identical cost, as shown by the following Lemma, proved
in Appendix A.

Lemma 7. All solutions generated by equation (49) have the same cost.

We illustrate some solutions in Case II with a toy example in Figure 2.
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2.7. Properties of the Solutions

An important property of the solutions to OTPPAO is that they preserve the
centroid of the input triangle ṽ. For Case I, this is shown by substituting the vertices
v from equation (22) in the centroid formula as:

δv̄ =
δ

3

[
xa + xb + xc
ya + yb + yc

]
=

1

3

[
(λ2 − 16)(x̃a + x̃b + x̃c) + 2λ2(x̃a + x̃b + x̃c)
(λ2 − 16)(ỹa + ỹb + ỹc) + 2λ2(ỹa + ỹb + ỹc)

+4sλ(ỹb − ỹc + ỹc − ỹa + ỹa − ỹb)
+4sλ(x̃b − x̃c + x̃c − x̃a + x̃a − x̃b)

]
=

1

3

[
(3λ2 − 16)(x̃a + x̃b + x̃c)
(3λ2 − 16)(ỹa + ỹb + ỹc)

]
=
δ

3

[
x̃a + x̃b + x̃c
ỹa + ỹb + ỹc

]
.

(50)

For Case II, we similarly substitute the vertices v from equation (45) in the centroid
formula and obtain:

v̄ =
1

3

[
xa + xb + xc
ya + yb + yc

]
=

[
(0)β1 + (0)β2s sign(λ) 2

λo

(0)β1s sign(λ) 2
λo

+ (0)β2

]
+

1

3

[
x̃a + x̃b + x̃c + sign(λ) (ỹb−ỹc−ỹa+ỹc+ỹa−ỹb)

λo

ỹa + ỹb + ỹc − sign(λ) (x̃b−x̃c−x̃a+x̃c+x̃a−x̃b)
λo

]

=
1

3

[
x̃a + x̃b + x̃c
ỹa + ỹb + ỹc

]
.

(51)

2.8. Numerical Implementation

We use the theory developed in the previous sections to construct a numerically
robust procedure, given in Algorithm 1, to solve OTPPAO. In theory, the first step
would be to test the input setting and then branch on Case I or Case II accordingly.
However, round-off errors make the test potentially unreliable. In order to deliver a
numerically robust solution, both cases must be attempted, and the optimal solution
chosen a posteriori by inspecting the cost. However, an a priori case selection method
for time critical but precision tolerant problems is discussed in Section 2.9. Algorithm
1 uses the input vertices ṽ, prescribed area Ao and orientation s as inputs. It also
uses an area error tolerance E to handle round-off in the area constraint (8). Our
method could be naturally implemented with precise arithmetic, since it provides
exact solutions. However, in the context of its use within PBD, as presented in
Section 3, we give it in floating-point arithmetic. Algorithm 1 starts by generating
the solutions from Case I, then Case II, and chooses the optimal one. For Case I, we
obtain a list v1 of at most 4 solutions. For Case II, we obtain a single best solution v2,
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the optimally rotated one, and the basis and offset to generate all solutions following
equation (49). The overall optimal solution vo is chosen amongst v1 and v2. The
algorithm returns the optimal solution, along with all the solutions from Case I and
Case II. This allows the user to deal with possible ambiguities and make the final
choice depending on application specific priors and constraints.

Algorithm 1 Optimal Triangle Projection with a Prescribed Area and Orientation

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, E - area
error tolerance

Output: vo - optimal triangle, v1 - Case I triangle set, v2 - Case II optimal triangle,
vc,vt - Case II basis and translation

1: function OTTPAO(ṽ, Ao, s, E = 10−3)
2: v1 ← SolveCase1(ṽ, Ao, s, E) . Compute Case I solutions
3: (v2,vc,vt)← SolveCase2(ṽ, Ao, s, E) . Compute Case II solutions
4: vo ← FindTriangleOfMinimalCost(v1 ∪ {v2}) . Select the optimal

solution
5: return vo,v1,v2,vc,vt
6: end function

Algorithm 2 computes the possible solutions for Case I. It first computes the
coefficients p, q, r of the depressed quartic equation (lines 2, 3 and 4). Then, it
uses Ferrari’s method, given by Algorithm 3, to find possible values of the Lagrange
multiplier in vector λ. Some values in λ may be complex because they do not
represent a solution or because of round-off error. We thus extract the real part of λ
(line 8). In theory, the next step would be to verify that λ 6= λo or δ 6= 0, because this
would create a rank-deficiency and division by zero. However, this cannot be directly
tested because of round-off error. This is better handled by taking the pseudo-inverse
δ† = (3λ2 − 16)† (line 10), recalling that 0† = 0. We can then simply check that the
triangle complies with the area and orientation constraints (line 11).

Algorithm 4 computes all the possible solutions for Case II. It achieves this by
returning the rotational solution basis vc (line 10), particular solution vp (line 11)
and offset v̄ (line 7). With these three components, the user can generate any
solution by choosing an angle θ in equation (49). All solutions generated this way
are theoretically equivalent and they all fulfil the area and orientation constraints.
However, because the input vertices might not be exactly colocated numerically
(which is the theoretical prerequisite of Case II for a colocated vertices input), one of
the solutions in the basis may stand out as having a lower score than any other one.
This solution may be, when the input vertices are close to each other, the optimal
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Algorithm 2 Closed-form Analytic Solution to Case I of OTPPAO

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, E - area
error tolerance

Output: v1 - solution list
1: function SolveCase1(ṽ, Ao, s, E)

2: p← −16(2Ao+sA∗(ṽ))
3Ao

. Compute the coefficients of the depressed quartic

3: q ← 32σ2(ṽ)
3Ao

4: r ← 256(Ao−sA∗(ṽ))
9Ao

5: λ← FerrariSolution(p, q, r) . Solve for the four possible Lagrange
multipliers

6: v1 ← ∅ . Create an empty set of solutions
7: for t← 1, . . . , 4 do . Generate and select the triangles
8: λ← Re(λ(t)) . Keep the real part
9: δ ← 3λ2 − 16 . Compute δ

10: v← δ†


(λ2 − 16)x̃a + λ2(x̃b + x̃c) + 4sλ(ỹb − ỹc)
(λ2 − 16)ỹa + λ2(ỹb + ỹc) + 4sλ(x̃c − x̃b)
(λ2 − 16)x̃b + λ2(x̃a + x̃c) + 4sλ(ỹc − ỹa)
(λ2 − 16)ỹb + λ2(ỹa + ỹc) + 4sλ(x̃a − x̃c)
(λ2 − 16)x̃c + λ2(x̃a + x̃b) + 4sλ(ỹa − ỹb)
(λ2 − 16)ỹc + λ2(ỹa + ỹb) + 4sλ(x̃b − x̃a)

 . Compute
the vertices

11: if |sA∗(v)− Ao| ≤ E then . Check the area constraint
12: v1 ← v1 ∪ {v} . Add the vertices to the solution set
13: end if
14: end for
15: return v1

16: end function
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Algorithm 3 Ferrari’s Solution to the Depressed Quartic

Input: p, q, r - coefficients of depressed quartic
Output: λ - set of four roots

1: function FerrariSolution(p, q, r)

2: Q1 ← −p2+12r
36

. Compute Cardano’s formula coefficients

3: Q2 ← 2p3−72rp+27q2

432

4: αo ← 3

√
Q2 +

√
Q3

1 +Q2
2 + 3

√
Q2 −

√
Q3

1 +Q2
2−

p
3
. Compute the real root

of the resolvent cubic
5: λ← ∅ . Create an empty solution set
6: for k1 ← {1, 2} do
7: for k2 ← {1, 2} do

8: λ←
(−1)k1

√
2αo+(−1)k2

√
−
(

2p+2αo+(−1)k1 2q√
2αo

)
2

. Compute the root
9: λ← λ ∪ {λ} . Add it to the solution set

10: end for
11: end for
12: return λ
13: end function

solution, even compared to Case I, owing to numerical round-off error. This solution
is obtained by finding the optimal rotation for the cost function, the translation
already being the optimal one, by solving:

min
R∈SO(2)

‖(Rvc + vt)− ṽ‖2 with R = diag(R,R,R). (52)

This problem has a closed-form solution [18]. We first rearrange vc and ṽ′ into 2× 3
matrices Vc and Ṽ ′. We then compute the cross-covariance matrix W = VcṼ

′> and
its SVD W = U1ΣU>2 . The optimal orthogonal matrix, which could potentially
contain a reflection in addition to the rotation, is U2U

>
1 . In order to preserve the

triangle orientation we restrict R to be a rotation only by setting R = U2DU
>
1 ,

where D = diag(1, det(U1U
>
2 )). We finally use R to generate the optimal solution v2

(line 18).

2.9. A Priori Case Selection

Exact a priori case selection cannot be done to separate Cases I and II, owing to
round-off errors. However, an approximate numerical approach can be implemented
using a numerical tolerance. First, we design a measure which determines if a triangle
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Algorithm 4 Closed-form Analytic Solution to Case II of OTPPAO

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, E - area
error tolerance

Output: v2 - optimal triangle, vc,vt - triangle basis and translation
1: function SolveCase2(ṽ, Ao, s, E)
2: if |A∗(v)| ≤ E then . Check the Input’s area
3: k ← s sign(A∗(v)) . Compute k for an equilateral triangle
4: else
5: k ← −1 . Compute k for a single point
6: end if

7: v̄← 1
3

[
x̃a + x̃b + x̃c
ỹa + ỹb + ỹc

]
. Compute the centroid of the input vertices

8: ṽ′ ← ṽ − v̄ . Translate the input vertices

9: φ←
√

λo(sign(A∗(ṽ))A∗(ṽ)−4kAo)
12

. Computes the area constraint parameter

10: vc ← Re(φ)
[
−1

2
−ks 2

λo
−1

2
ks 2

λo
1 0

]>
. Compute the solution basis

11: vp ←



x̃′a
2

+
x̃′b
4

+ x̃′c
4

+ sign(A∗(ṽ))
ỹ′b−ỹ

′
c

3λo
ỹ′a
2

+
ỹ′b
4

+ ỹ′c
4
− sign(A∗(ṽ))

x̃′b−x̃
′
c

3λo
x̃′a
4

+
x̃′b
2

+ x̃′c
4
− sign(A∗(ṽ)) ỹ

′
a−ỹ′c
3λo

ỹ′a
4

+
ỹ′b
2

+ ỹ′c
4

+ sign(A∗(ṽ)) x̃
′
a−x̃′c
3λo

x̃′a
4

+
x̃′b
4

+ x̃′c
2

+ sign(A∗(ṽ))
ỹ′a−ỹ′b

3λo
ỹ′a
4

+
ỹ′b
4

+ ỹ′c
2
− sign(A∗(ṽ))

x̃′a−x̃′b
3λo


. Compute the particular solution

12: Ṽ ′ ← rearrange ṽ′ into a 2× 3 matrix
13: Vc ← rearrange vc into a 2× 3 matrix

14: (U1,Σ, U2)← SVD
(
Ṽ ′V >c

)
. Compute the optimal rotation

15: D ← diag(1, det(U1U2))
16: vt ← vp + v̄ . Compute the translation vector
17: R← U2DU

>
1

18: v2 ← diag(R,R,R)vc + vt . Compute the optimal solution
19: return v2,vc,vt
20: end function
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is equilateral or if its vertices are colocated as, according to Proposition 1, this forms
a necessary condition for Case II. For that, we compute the edge lengths as dab, dac
and dbc and then the maximum of the absolute edge length differences. Introducing
a numerical tolerance τ1, this leads to the following necessary condition for Case
II: max(|dab − dac|, |dab − dbc|, |dac − dbc|) ≤ τ1. Still following Proposition 1, we
compute A(ṽ) and s sign(A∗(ṽ)) to determine if ṽ corresponds to any of the three
settings of Case II. The detailed implementation of a priori case selection is given in
Algorithm 5.

The numerical implementation critically depends on the two tolerance values, τ1

and τ2. There is thus a risk that this test does not select the optimal solution for all
inputs, in particular inputs being very close to an equilateral triangle, but not quite
equilateral, and for which the optimal solution would be given by Case I and not
Case II. Consequently, any application relying on this method must tune τ1 and τ2

to maximise the instances of true positive (Case II is selected when C (v1) ≥ C (v2)))
whilst minimising the instances of false negative selection (Case I is selected when
C (v1) ≥ C (v2))). Furthermore, if τ1 is very small and Case I is wrongfully selected,
then we would have λ ≈ λo and the solution would not comply with the constraint
sA∗(ṽ)− Ao ≤ E, causing significant error.

Algorithm 5 A priori case selection

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, τ1 - case
separator tolerance 1, τ2 - case separator tolerance 2

Output: selected case - case selection variable
1: function CaseSelection(ṽ, Ao, s, τ, E)
2: dab ← |va − vb| . Edge lengths
3: dac ← |va − vc|
4: dbc ← |vb − vc|
5: if max(|dab − dac|, |dac − dbc|, |dab − dbc|) < τ1 then . Case Selection
6: if A(ṽ) < τ2 or s sign(A∗(ṽ)) = −1 or A(ṽ)/4 ≥ Ao then
7: selected case ← 2
8: else
9: selected case ← 1

10: end if
11: else
12: selected case ← 1
13: end if
14: return selected case
15: end function
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2.10. Numerical Examples

We show the results of our algebraic procedure in a series of illustrative examples
presented in Tables 2 and 3. Each row represents an example with a different type
of input. The first column contains the input parameters (input vertices ṽ with area
A∗(ṽ), prescribed area Ao and orientation s). The second column shows the cost
C (v) and the generated area A∗(v). For these examples, we opted to show the four
solutions from Case I and the optimally rotated solution from Case II, and highlight
the overall optimal solution. The third column shows the input triangle and the
generated solution triangles. We draw a circle and a square in two of the vertices of
the triangles to visualise the potential inversions.

In Table 2, the inputs are random general triangles. For each example we want to
find the optimal triangle that has the prescribed area and orientation. The first and
second examples are triangles whose orientation matches the prescribed orientation,
meaning that sign(A∗(ṽ)) = s, while the third example represents the opposite case,
meaning that sign(A∗(ṽ)) = −s. The inputs in the second and third examples are
identical, except for the prescribed orientation s. In all three examples, for Case
I, we observe that the first and second solutions respect the signed area constraint
while the third and fourth do not. This happens because the third and fourth roots
of the depressed quartic are complex and the vertices produced by these solutions
are altered once we extract their real part in Algorithm 2. We also observe that the
third and fourth solutions of Case I are the same. The reason is that they correspond
to complex conjugate roots, and thus have the same real part. The solutions given
by Case II also respect the area constraint. In the first and second examples, the
vertices of the second solution of Case I and the solution of Case II are close to
the input vertices, resulting in lower costs, however the solution of Case II is always
an equilateral triangle. In both examples, the minimal cost is given by the second
solution of Case I and is considered optimal. In the third example, the resulting
vertices are not simple inversions of the previous solutions but new solutions that
are accommodated to the prescribed orientation. In this case an optimal solution is
also found, albeit at a higher cost.

In Table 3, the inputs are special configurations. The first example represents a
flat triangle with colinear input vertices. In this instance, our algorithm behaves as
expected, similarly to the examples with non-flat triangles, and returns an optimal
solution (solutions 3 and 4 of Case I return a triangle considerably larger than the
input triangle). The second example represents an example where all the input
vertices are colocated (ṽa = ṽb = ṽc). In this instance, Case I solutions are ignored
and the optimal solution is given by Case II. The solution given by Case II can be
rotated at any angle but the cost remains constant. The third example is for an
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equilateral triangle whose orientation is the opposite of the prescribed orientation.
In this example, none of the solutions given by Case I respects the area constraint
and δ is very small (especially in solutions 3 and 4 of Case I where δ† is close to zero
and thus returns a triangle 1015 times larger than the input triangle). The optimal
solution is given by Case II and vc can be rotated at any angle, producing different
triangles with the cost remaining constant. In the end, our algorithmic procedure
always computes the optimal solution for all six examples.

3. Area-based 2D Mesh Editing

We use our method in triangular 2D mesh editing. The implementation is similar
to PBD [6] but instead of linearising the area constraint, we perform an optimal
projection for each triangle in the mesh. The Np mesh vertices are in P ∈ RNp×2

and the Nt triangles in M ∈ RNt×3 with prescribed areas Ao ∈ RNt and prescribed
orientation sign(A∗(ṽ)). The implementation is given in Algorithm 6.

Algorithm 6 Prescribed Area Preservation 2D Mesh PBD

Input: P - mesh vertices, M - triangle indices, Ao - prescribed areas, Tc - displace-
ment threshold, E - area error tolerance

Output: P - edited mesh points
1: C ←∞
2: while C ≥ Tc do . Iterate until convergence
3: P̃← P . Copy the mesh vertices
4: for t← 1, . . . , Nt do
5: p←M(t, :) . Indices of the triangle
6: ṽ← P(p, :) . Coordinates of the triangle
7: Ao ← Ao(t) . Prescribed area of the triangle
8: s← sign(A∗(ṽ)) . Orientation of the triangle
9: vo ← OTTPAO(ṽ, Ao, s, E) . Optimal projection

10: P(p, :)← vo . Update mesh points
11: end for
12: C ← 1

Nt

∑Nt
i=1 ‖P̃(i, :)−P(i, :)‖ . Average displacement

13: end while

3.1. Shape Dataset

For our dataset, we used Distmesh [19] to create a set of synthetic triangular
meshes. As shown in Figure 3, the shapes ranged from simple convex shapes to
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Input Output Generated Triangles

Input: Negative
Oriented Triangle

Cost A∗(v)

-1 -0.5 0 0.5

-0.5

0

0.5

Input

Case I.1

-1 -0.5 0 0.5

-0.5

0

0.5

Input

Case I.2

Case I

s = −1 2.820 -0.500

-1 -0.5 0 0.5

-0.5

0

0.5

Input

Case II.1

ṽ =


0.666 0.666

0.666 −0.333

−1.333 −0.333


0.334 -0.500

5.065 7.629

-2 -1 0 1 2

-2

-1

0

1

Input

Case I.3

-2 -1 0 1 2

-2

-1

0

1

Input

Case I.4

5.065 7.629

A∗(ṽ) = −1.000 Case II
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Table 2: Numerical examples with single triangles. The left column shows the type of input,
prescribed orientation s, input vertices ṽ, input area A∗(ṽ) and prescribed area Ao. The middle
column shows the cost and area obtained for the triangles computed by our algebraic procedure.
All four solutions from Case I and one solution from Case II are shown, assigned a colour for visual
representation and the optimal solution is highlighted. The right column shows the computed
triangles superimposed with the input triangle.
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Table 3: Numerical examples with special triangles. The left column shows the type of input,
prescribed orientation s, initial vertices ṽ, input area A∗(ṽ) and prescribed area Ao. The middle
column shows the cost and area obtained for the triangles computed by our algebraic procedure.
All four solutions from Case I and one solution from Case II are shown and assigned a colour for
visual representation. The right column shows the computed triangles superimposed with the input
triangle. In the case of colocated or equilateral input vertices, the generated equilateral triangle
can be rotated arbitrarily without changing the cost.
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Figure 3: Shapes from the coarse subset of our synthetic polygonal mesh dataset. The vertices
located at the edge are divided in sets of connected vertices represented with the same colour.

nonconvex shapes with different levels of complexity. The dataset was divided into
two subsets: one subset of 8 coarse meshes composed approximately of 100 triangles
and one subset of 8 fine meshes composed approximately 1000 triangles. The meshes
were designed so the distances between connected vertices were approximately the
same. Our method finds the optimal triangle projection and is as such independent
of the input triangle size. Consequently, meshes with different triangle sizes are
seamlessly handled. We use the areas of each of the triangles as prescribed areas Ao.

3.2. Generating Deformation Constraints

For our experiments we require the magnitude of the initial deformation. Since
we deal with nonconvex shapes of different levels of complexity, size and orientation,
we normalise this magnitude with respect to the maximum distance between two
vertices in the direction of maximum variance. We treat the meshes as 2D point
clouds and calculate the 95% confidence ellipse that surrounds the vertices [20]. We
take the maximum distance D as twice the length of the semi-major axis of the
ellipse. We divide the vertices located at the edge of the polygonal mesh in sets of
connected vertices that represent a line or curve, as shown in Figure 3. Then, we
apply an initial deformation by translating a given set of edge vertices in a random
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direction that does not cause self-collision. The magnitude of this translation is a
fraction of D.

3.3. Methodology

We test the effectiveness of PBD-opt by applying an initial deformation to a
synthetic mesh and measuring the number iterations it takes to converge compared
to PBD-lin on the exact same generated data. Convergence is achieved when the
average displacement of the mesh vertices is lower than some displacement threshold
Tc. We test both methods with the coarse and fine mesh datasets. For each dataset,
we perform 200 random deformations per mesh (1600 deformations in total). We
applied initial deformations to the meshes of 5%, 10% and 20% of the maximum inter-
vertex distance D. We measure the convergence speed as the number of iterations it
takes to reach three different displacement thresholds Tc at 5%, 2.5% and 1% of D.
A run stops when a method’s cost reaches the lowest threshold (Tc = 1%) or after it
reaches a stopping time (104 iterations3).

We illustrate our methodology with an example presented in Figure 4. The input
is a circle shaped coarse mesh with an initial random deformation of 10% of maximum
inter-vertex distance D. As can be seen in Figure 4a, the initial displacement cost of
PBD-lin is lower than PBD-opt, however after some iterations the cost of PBD-opt
becomes lower while the cost of PBD-lin takes many more iterations to converge.
In Figure 4b, we show the evolution of the triangle area preservation constraint by
comparing the difference of between the mesh triangle areas and prescribed areas.
We observe that, by the time PBD-lin reaches convergence, its area difference is
larger compared to PBD-opt.

3.4. Results

Results can be found in Figures 5 and 6. In the left column of each Figure
we use box plots to compare the median and variability of convergence speed of
both methods according to their deformation and displacement threshold. Due to
the large number of outliers obtained, especially with PBD-lin, we decided not to
include them in the box plots but rather to represent them in stacked bar graphs in
the right column of each Figure.

For the coarse database we observe that the median convergence time for PBD-
opt is higher compared to PBD-lin for a threshold of 5% and relatively similar or
lower for 2.5% and 1%. However, since all the box plot pairs overlap each other, we

3The stopping time choice was arbitrary. However considering that the convergence speed of
PBD-opt was lower than 1000 iterations, the stopping time is sufficiently high for our experiments.
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Figure 4: Displacement cost and area difference comparison of mesh-editing for both PBD-lin (red)
and PBD-opt (blue) across the iterations. (a), displacement thresholds are used to quantify the
evolution of convergence speed (dotted and dashed black lines). (b), area thresholds are used to
quantify the evolution of the constraint convergence speed.

cannot conclude with 95% confidence that the medians differ. On the other hand, we
observe that the results of PBD-opt are more stable since they have either similar or
smaller variances compared to the results of PBD-lin. These differences are further
exacerbated when evaluating the fine meshes dataset where the variance of PBD-lin
is many times higher compared to the variance in PBD-opt.

For the outlier analysis we must make a distinction between two types of outliers.
The first type are Slow Convergence (SC) outliers, which surpasses the upper limit
of the box plot but did not reach the stopping time. The second type are Very Slow
Convergence (VSC) outliers, which reach the stopping time. For PBD-opt, at most
2% of the runs were SC outliers and 0% were VSC outliers. However for PBD-lin,
in the coarse meshes dataset, 10% of the runs were SC outliers. In the fine meshes
dataset, around 34% of the runs were VSC outliers. This means that PBD-lin has
a higher risk of getting stuck in iterations whose convergence time would be way
higher compared to their median convergence speed. PBD-opt, on the other hand,
provides more stable results with significantly fewer outliers.

3.5. Timing Evaluation

We experimentally compare the computation time of our method PBD-opt and
the PBD-lin baseline. Whilst our original implementation used Matlab, the timing
was done with a C implementation, required for realistic timing assessment. Then,
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Figure 5: Convergence speed results for coarse 2D meshes. The left column shows the statistics
for the number of iterations to reach conversion (omitting outliers). The right column shows the
proportion of Slow Convergence (SC) and Very Slow Convergence (VSC) outliers per method.
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Figure 6: Convergence speed results for fine 2D meshes. The left column shows the statistics for the
number of iterations to reach conversion (omitting outliers). The right column shows the proportion
of Slow Convergence (SC) and Very Slow Convergence (VSC) outliers per method.
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Figure 7: Computation time comparison.

we simulated 105 random triangles with normalised vertices ṽ ∈ [0, 1] and measured
the computation time. For PBD-opt the computation time was found to be 3.57·10−6

seconds. The computation time for one iteration of PBD-lin is 3.79 · 10−7 seconds,
which is an order of magnitude faster than PBD-opt. However, the total compu-
tation time for PBD-lin depends on the number of iterations required to converge,
which depends on the area constraint fulfilment, hence on the constraint tolerance.
Because different applications have different expectations in terms of numerical con-
straint fulfilment, we ran PBD-lin with a varying constraint tolerance in the interval
[10−7, 10−2] and measured computation time for each tolerance value. The results
are presented in Figure 7. As can be seen, the computation time of PBD-lin is in-
versely related to the constraint tolerance, while the computation time of PBD-opt
remains fixed, as expected. For low values of the constraint tolerance, which are
cases where we want to be strict on the area constraint in the result, PBD-lin takes
longer to converge than the optimal PBD-opt. However, when slack is introduced
by increasing the constraint tolerance, which are cases where we tolerate some in-
accuracy in the result of PBD-lin, PBD-lin runs faster than PBD-opt. Note that
in some instances, PBD-line did not manage to fulfill the constraint (which are the
VSC outliers from Section 3.4) and we omitted these instances from the graph. In
short, we can say that, in order to achieve a result on par with PBD-opt in terms of
precision, PBD-lin takes a longer runtime in the cases where it converges properly.
However, whilst PBD-opt has a fixed computation budget, PBD-lin can trade-off
runtime and accuracy.
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3.6. Use-cases

We present a series of use-cases where the triangle area and orientation constraints
are combined with additional elements such as forces and other constraints that may
be used in mesh editing. The selected elements are pin constraints (some selected
vertices are fixed during the deformation), edge length preservation and gravity. For
each use-case, we apply an initial deformation to a synthetic mesh, apply PBD-opt
and the additional forces and constraints until it converges, and compare it to PBD-
lin on the same generated data. Similarly to Section 3.3, convergence is achieved
when Tc = 1%. The notation for the different use-cases is shown in Figure 8. Note
that the initial displacement and pin constraints are applied to specific vertices,
whilst area, orientation, distance preservation constraints and gravity are applied
to all the vertices in the mesh. For each use-case we present the initial state, the
resulting deformation using both methods, the evolution of the convergence speed,
area constraint satisfaction and total displacement as shown in Figures 9, 10 and 11.
Our selected use-cases are as follows:

• Use-case 1. In this use-case, area and orientation must be preserved and
some pin constraints are applied. The results are shown in Figure 9. As can be
seen, PBD-opt converges faster than PBD-lin, while maintaining overall a lower
constraint satisfaction error. We also observe that under PBD-opt the mesh
vertices have an initial fast displacement until they reach a plateau, while under
PBD-lin they keep moving in further iterations. In this use-case, we observe
that some triangles of PBD-lin reach a local minimum, as evidenced by the
unexpected deformation seen in the lower right side of the mesh, which makes
the overall process converge slower and have a higher constraint satisfaction
error.

• Use-case 2. In this use-case, area, orientation and edge length must be pre-
served. The results are shown in Figure 10. As can be seen, the overall de-
formation, speed of convergence, constraint satisfaction and total displacement
are almost the same for PBD-opt and PBD-lin. This is explained by the edge
length preservation constraint, which has a strong impact on the deformation,
making the area constraint less significant and resulting in very rigid deforma-
tions.

• Use-case 3. In this use-case, area and orientation must be preserved, some pin
constraints are applied and gravity is added. Gravity is implemented as a small
displacement added to every non-pinned vertices of magnitude 9.8·10−4 at every
iteration. Due to this constant displacement, it is unlikely that the simulation
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Figure 8: Use-case initial deformation and constraint notation.

reaches convergence at Tc = 1%, and we thus stopped the simulation after 300
iterations. For both PBD-opt and PBD-lin, the cost and total displacement
are very similar, however, PBD-opt has an overall lower constraint satisfaction
error. The convergence profile for PBD-opt decreases consistently, while PBD-
lin increases after iteration 200. Lastly, the simulation result is much more
visually pleasing for PBD-opt than PBD-lin.

4. Conclusion

We have identified two problems related to finding the closest triangle to an
input triangle under a prescribed area constraint (the OTPPA problem) and under a
prescribed area and orientation constraints (the OTPPAO problem). We have given
a detailed analysis and a closed-form solution to both of these problems for the first
time. We have then developed a numerically robust algebraic implementation. We
have used it within Point-Based Dynamics, resulting in a 2D triangular mesh editing
procedure which has been shown to be faster and more stable than the existing
method.

Our method forms a basis to solve further related problems in the 3D space.
For a triangle in the 3D space, we can trivially apply a rigid transformation to take
this triangle to one of the basis planes, calculate the optimal projection with our
proposed 2D method and transform the vertices back to the original plane. A more
complex extension would be for a tetrahedron in the 3D space and the constraint of a
prescribed volume. This problem can be formulated similarly to OTTPAO. However,
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Figure 9: Results for use-case 1, with area and orientation preservation and pin constraints. The
first row shows (from left to right) the initial deformation and constraints, the results from PBD-opt
and PBD-lin. The second row shows the evolution of convergence speed, area constraint satisfaction
and total displacement.
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Figure 10: Results for use-case 2, with area, orientation and distance preservation. The first row
shows (from left to right) the initial deformation and constraints, the results from PBD-opt and
PBD-lin. The second row shows the evolution of convergence speed, area constraint satisfaction
and total displacement.
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Figure 11: Results for use-case 3, with area and orientation preservation, pin constraints and gravity.
The first row shows (from left to right) the initial deformation and constraints, the results from
PBD-opt and PBD-lin. The second row shows the evolution of convergence speed, area constraint
satisfaction and total displacement.

it differs by the constraint it involves. While the area constraint in OTTPAO leads
to a quadratic equation, the volume constraint leads to a cubic equation. Therefore,
while OTTPAO provides an initial step towards solving this problem, the extension
is not a trivial one and forms the subject of future work.

Appendices

Appendix A. Proof of Lemmas

Proof of Lemma 1. We start with the forward implication: S1 ⇒ A(ṽ) = 0 and
|λ| = λo. In S1, ṽ represents a single point. This implies A(ṽ) = 0 and σ2(ṽ) = 0.
Replacing these values in the depressed quartic equation (30) causes the coefficients p
and r to become constants, and coefficient q to vanish (also the orientation constraint
vanishes). The depressed quartic thus transforms into a bi-quadratic:

λ4 − 32

3
λ2 +

256

9
= 0, (A.1)

whose solutions are:
|λ| = λo. (A.2)
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We now turn to the reverse implication: S1 ⇐ A(ṽ) = 0 and |λ| = λo. We substitute
|λ| = λo in equation (28), giving:

s sign(A∗(ṽ)) sign(λ)λoA(ṽ)− σ2(ṽ) = 0. (A.3)

Since A(ṽ) = 0, then the only solution that satisfies equation (A.3) for any given
value of s sign(A∗(ṽ)) sign(λ) is with σ2(ṽ) = 0, which implies that the input triangle
is collapsed into a single point, hence to S1.

Proof of Lemma 2. We start with the forward implication: S2 ⇒ A(ṽ) 6= 0 and
λ = −λo. In S2, ṽ represents an equilateral triangle and orientation inversion. This
implies A(ṽ) 6= 0 and sign(A∗(ṽ)) = −s.

First, we show that λ is scale invariant; the invariance to rotation and translation
is trivial. In Case I (when |λ| 6= λo), λ has a varying value, depending on the in-
puts. Specifically, it is resolved from the depressed quartic equation (30). Inspecting
this quartic, we trivially see that its coefficients are scale, rotation and translation
invariant. This proves that lambda, which is a root of this polynomial, is also scale,
translation and rotation invariant. In Case II, (when |λ| = λo), λ has a fixed absolute
value. In setting S1, we have shown in Section 2.6 that sign(λ) = −s, which is thus
scale invariant. In settings S2 and S3, we have shown that sign(λ) = s sign(A∗(ṽ))
and since sign(A∗(ṽ)) is not affected by positive scaling, rotation or translation, then
S2 and S3 are also scale invariant.

Since λ is rotation, translation and scale invariant, we can safely perform a sim-
ilarity transformation to ṽ to simplify the problem. We bring one of its vertices to
the origin and another one to the x-axis, scaled to normalise their distance, giving
ṽ′ = [0, 0, 1, 0, 1/2, sign(A∗(ṽ))

√
3/2]> where sign(A∗(ṽ)) determines the orientation

of the triangle. We obtain A∗(ṽ′) = sign(A∗(ṽ))
√

3
4

and σ2(ṽ′) = 1, thus the coeffi-
cients of the depressed quartic equation (30) become:

p = −32Ao − 4
√

3

3Ao
(A.4)

q =
32

3Ao
(A.5)

r =
256Ao + 64

√
3

9Ao
. (A.6)
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Substituting these coefficients in Cardano’s formula we obtain:

Q1 = −

(
32Ao + 2

√
3

9A0

)2

(A.7)

Q2 =

(
32Ao + 2

√
3

9A0

)3

, (A.8)

making
√
Q3

1 +Q2
2 = 0 and the real root αo of Cardano’s resolvent cubic to become:

αo = 2

(
32Ao + 2

√
3

9Ao

)
+

32Ao − 4
√

3

9Ao
=

32

3
. (A.9)

We finally use αo to extract the roots of the depressed quartic:

λ =

s1

√
2λo + s2

√
−λo

(
s1+1
Ao

)
√

2
, (A.10)

where s1, s2 ∈ {−1, 1}. We thus have the following roots:

λ ∈

{
−λo,−λo, λo − i

√
λo
Ao
, λo + i

√
λo
Ao

}
. (A.11)

Considering only the real roots we have λ = −λo.
We now turn to the reverse implication: S2 ⇐ A(ṽ) 6= 0 and λ = −λo. We

substitute λ = −λo in equation (28), giving:

−s sign(A∗(ṽ))λoA(ṽ)− σ2(ṽ) = 0. (A.12)

Since A(ṽ) 6= 0 and σ2(ṽ) > 0 then equation (A.12) can only be solved when
sign(A∗(ṽ)) = −s. We perform the same similarity transformation used at the begin-
ning of the proof to the unknown input triangle ṽ giving ṽ′ = [0, 0, 1, 0, x̃′c, ỹ

′
c]
> where

one of the vertices remains unknown. We then have A∗(ṽ′) = ỹ′c
2

or

sign(A∗(ṽ′))A(ṽ′) = ỹ′c
2

and σ2(ṽ′) = 2
3
(x̃′2c + ỹ′2c − x̃′c + 1) which we substitute in

equation (A.12) and obtain:

x̃′2c + ỹ′2c − x̃′c +
√

3sỹ′c + 1 = 0, (A.13)
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which we rewrite as: (
x̃′c −

1

2

)2

+

(
ỹ′c +

√
3

2
s

)2

= 0. (A.14)

This is the equation of a single point, making ṽ′ an equilateral triangle
ṽ′ = [0, 0, 1, 0, 1/2,−

√
3s/2]>, where s determines the orientation of the triangle.

Since ṽ′ was a similarity transformation of ṽ, then ṽ is also an equilateral triangle
when sign(A∗(ṽ)) = −s, which corresponds to S2.

Proof of Lemma 3. In S3, ṽ represents an equilateral triangle with A(ṽ)/4 ≥ Ao and
no orientation inversion. This implies A∗(ṽ) 6= 0 and sign(A∗(ṽ)) = s. We perform
the same similarity transformation to ṽ as in Lemma 2, thus the coefficients of the
depressed quartic equation (30) become:

p = −32Ao + 4
√

3

3Ao
(A.15)

q =
32

3Ao
(A.16)

r =
256Ao − 64

√
3

9Ao
. (A.17)

Substituting these coefficients in Cardano’s formula we obtain:

Q1 = −
(

32Ao − 4

9A0

)2

(A.18)

Q2 = −
(

32Ao − 4

9A0

)3

, (A.19)

making
√
Q3

1 +Q2
2 = 0. After some factoring we obtain the real root αo of Cardano’s

resolvent cubic as:

αo = −2
3

√(
32Ao − 8sA∗(ṽ′)

3Ao

)3

+
32Ao + 8sA∗(ṽ′)

3Ao
. (A.20)

Since sign(A∗(ṽ)) = s and A∗(ṽ′) = sign(A∗(ṽ))A(ṽ′), then αo ∈ R only when
A(ṽ′)/8 ≥ Ao. Under this condition, we obtain αo = 32. Substituting in equation
(37) we obtain:

λ =

s1

√
2λo + s2

√
λo

(
s1−1
Ao

)
√

2
(A.21)
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where s1, s2 ∈ {−1, 1}. We thus have the following roots:

λ ∈

{
−λo −

√
λo
Ao
,−λo +

√
λo
Ao
, λo, λo

}
. (A.22)

Thus, we have two roots where |λ| 6= λo (which correspond to solutions for Case I)
and there exists at least one solution λ = λo for S3 (which correspond to the solution
of Case II).

Proof of Lemma 4. We substitute λ = λo in equation (28), giving:

s sign(A∗(ṽ))λoA(ṽ)− σ2(ṽ) = 0. (A.23)

Since A(ṽ) 6= 0 then equation (A.23) can only be solved when sign(A∗(ṽ)) = s.
We perform the same similarity transformation to ṽ as in Lemma 2, substitute
sign(A∗(ṽ′))A(ṽ′) and σ2(ṽ′) in equation (A.23) and obtain:

x̃′2c + ỹ′2c − x̃′c +
√

3sỹ′c + 1 = 0, (A.24)

which we rewrite as: (
x̃′c −

1

2

)2

+

(
ỹ′c +

√
3

2
s

)2

= 0. (A.25)

This is the equation of a single point making ṽ′ an equilateral triangle

ṽ′ =
[
0, 0, 1, 0, 1/2,−

√
3s/2

]>
where s determines the orientation of the triangle.

Since ṽ′ was a similarity transformation of ṽ, then ṽ is also an equilateral triangle
when sign(A∗(ṽ)) = s for any value A(ṽ) (including A(ṽ′)/4 ≥ Ao) which corre-
sponds to S3.

Proof of Lemma 5. We perform the same similarity transformation to ṽ as in Lemma
2 and obtainA∗(ṽ′) = sign(A∗(ṽ))

√
3

4
= sign(A∗(ṽ))

λo
. We relax the condition of S3 where

A(ṽ′)
4
≥ Ao by reformulating Ao = 1

zλo
where z is a scaling factor z > 0 ∈ R. We

substitute this in equation (A.22) and extract the roots :

λ =
[
−λo − λo

√
z,−λo + λo

√
z, λo, λo

]>
. (A.26)

We start with the solution given by Case I where |λ| 6= λo. We compact both values
as λ = −λo + s3λo

√
z where s3 ∈ {−1, 1}. We substitute this in equation (22) and

obtain:

v′ =
[√

z−s3
2
√
z

√
3(
√
z−s3)

6
√
z

√
z+s3
2
√
z

√
3(
√
z−s3)

6
√
z

1
2

√
3(
√
z+2s3)

6
√
z

]>
. (A.27)
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We calculate the cost of the solution of Case I by substituting this and ṽ′ in equation
(3) and obtain:

C1(v′) =
(
√
z − s3)2

z
(A.28)

Now we turn to the solution given by Case II where λ = λo. We calculate the basis
vector v′c, the particular solution v′p and substitute them in equation (49) and obtain:

v′ =



1
4
−
√

3
√
z−4

12
√
z√

3
12
−
√
z−4

4
√
z

3
4
−
√

3
√
z−4

12
√
z√

3
12

+
√
z−4

4
√
z

1
2

+
√

3
√
z−4

6
√
z√

3
3


. (A.29)

We calculate the cost of the solution of Case II by substituting this and ṽ′ in equation
(3) and obtain:

C2(v′) =
1

2
− 1

z
(A.30)

We compare the cost of both solutions C1(v′) ≥ C2(v′) and obtain:

(
√
z − s3)2

z
≥ 1

2
− 1

z
(A.31)

After some minor manipulations we obtain:

z − 4s3

√
z + 6

2z
≥ 0 (A.32)

We substitute
√
z = a where a > 0 ∈ R and obtain the quadratic expression:

a2 − 4s3a+ 6

2a2
≥ 0 (A.33)

which represents an upward opening parabola which is always positive for any value
of a and thus z. This implies that C1(v′) ≥ C2(v′) for any value z including z > 4.
Since ṽ′ was a similarity transformation of ṽ, then C1(v) ≥ C2(v). This means
that in S3 the solution provided by case II has the lowest cost, thus is the optimal
solution.
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Proof of Lemma 6. We start with the forward implication: vp = 0⇒ v′ is an equilat-
eral triangle. From equation (43), we have that vp = 0 when ṽ′ = 0 (trivial solution)
or when ṽ′ = 0 is in the kernel of X†. From the properties of the pseudo-inverse we
have that ker(X†) = ker(X>). Since X is symmetric then ker(X†) = ker(X) = vh, as
given in equation (42). Recall from Section 2.6 that the system Xv′ = ṽ′ is solvable if
and only if ṽ′ represents an equilateral triangle of orientation sign(A∗(ṽ′)) = s sign(λ)
or colocated vertices. Still from Section 2.6, we have that vh is an equilateral triangle
of orientation sign(A∗(vh)) = −s sign(λ), which contradicts the previous statement.
This leaves us with vp = 0 only when ṽ′ = 0, which represents a set of colocated
points centred in the origin. We then calculate v′ from equation (45) and obtain:

v′ =



−β1
2

+ 2β2 sign(A∗(ṽ))
λo

−2β1 sign(A∗(ṽ))
λo

− β2
2

−β1
2
− 2β2 sign(A∗(ṽ))

λo
2β1 sign(A∗(ṽ))

λo
− β2

2

β1

β2


. (A.34)

We can then easily show that the inter-vertex distances are equal, and thus that v′

is an equilateral triangle:

Dab =
√

(x′a − x′b)2 + (y′a − y′b)2 =
√

3β2
1 + 3β2

2

Dbc =
√

(x′b − x′c)2 + (y′b − y′c)2 =
√

3β2
1 + 3β2

2

Dac =
√

(x′a − x′c)2 + (y′a − y′c)2 =
√

3β2
1 + 3β2

2 .

We now turn to the reverse implication: vp = 0 6⇐ v′ is an equilateral triangle, for
which we simply provide a counterexample to the positive implication. We use the
equilateral triangle ṽ′ = [0, 0, 1, 0, 1/2, sign(A∗(ṽ))

√
3/2]> where A(ṽ′)/4 = Ao and

sign(A∗(ṽ)) = s. We calculate its particular solution with equation (43) and obtain:

vp =



1
4

sign(A∗(ṽ))
3λo
3
4

sign(A∗(ṽ))
3λo
1
2

4 sign(A∗(ṽ))
3λo


, (A.35)
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which implies that vp 6= 0. We substitute A(ṽ′)/4 = Ao and sign(A∗(ṽ)) = s in
the constraint equation (45) and obtain β2

1 = −β2
2 . This implies that the constraint

is fulfilled when β1 = β2 = 0 thus v′ = vp. We easily show that the inter-vertex
distances are equal:

Dab =
√

(x′a − x′b)2 + (y′a − y′b)2 =
1

2

Dbc =
√

(x′b − x′c)2 + (y′b − y′c)2 =
1

2

Dac =
√

(x′a − x′c)2 + (y′a − y′c)2 =
1

2
,

thus v is an equilateral triangle despite vp 6= 0.

Proof of Lemma 7. Our proof shows that the cost is invariant to the value chosen for
angle θ. We start by translating the coordinate system to bring the input’s centroid
to the origin as ṽ′ = ṽ− v̄, which also translates the unknown vertices to v′ = v− v̄.
Thus, the cost becomes the translated least-squares displacement cost:

C ′(v′) = ‖v′ − ṽ′‖2. (A.36)

We then continue with the case where ṽ is a single point. This implies A(ṽ) = 0 and
k = −1. The particular solution v′p can be verified to vanish, from equation (43).
We calculate the basis vector v′c from equation (48), leading, from equation (49), to:

v′ =



2φ sign(A∗(ṽ)) sin(θ)
λo

− φ cos(θ)
2

−φ sin(θ)
2
− 2φ sign(A∗(ṽ)) cos(θ)

λo

−2φ sign(A∗(ṽ)) sin(θ)
λo

− φ cos(θ)
2

−φ sin(θ)
2

+ 2φ sign(A∗(ṽ)) cos(θ)
λo

φ cos(θ)
φ sin(θ)


. (A.37)

We calculate the cost by substituting ṽ and ṽ′ in equation (A.36):

C ′(v′) = Aoλo(sin
2(θ) + cos2(θ)), (A.38)

which simplifies to C ′(v′) = Aoλo and is thus independent of θ.
We continue with the case where ṽ is an equilateral triangle. This implies that

A(ṽ) 6= 0 and k = s sign(A∗(ṽ)). We perform the same similarity transformation to

ṽ as in Lemma 2 and obtain A∗(ṽ′) = sign(A∗(ṽ))
√

3
4

= sign(A∗(ṽ))
λo

. We calculate the
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basis vector v′c from equation (48), the particular solution v′p from equation (43) and
substitute them in equation (49), leading to:

v′ =



1
4

+ 2φ sign(A∗(ṽ)) sin(θ)
λo

− φ cos(θ)
2

sign(A∗(ṽ))
3λo

− φ sin(θ)
2
− 2φ sign(A∗(ṽ)) cos(θ)

λo
3
4
− 2φ sign(A∗(ṽ)) sin(θ)

λo
− φ cos(θ)

2
sign(A∗(ṽ))

3λo
− φ sin(θ)

2
+ 2φ sign(A∗(ṽ)) cos(θ)

λo
1
2

+ φ cos(θ)
4 sign(A∗(ṽ))

3λo
+ φ sin(θ)


. (A.39)

We calculate the cost by substituting v′ and ṽ′ in equation (A.36):

C ′(v′) =
1

4
+

sin2(θ) + cos2(θ)

4
− s sign(A∗(ṽ))

Ao(sin
2(θ) + cos2(θ))

λo
, (A.40)

which simplifies to C ′(v′) = 1
2
− s sign(A∗(ṽ))Ao

λo
and is thus independent of θ.

Appendix B. Optimal Triangle Projection with Prescribed Area

In OTPPA, only the prescribed area needs to be preserved. This means that
a solution may freely choose the orientation which minimises the cost, as long as
the area constraint is satisfied. Consequently, we expect that OTPPA has a larger
set of local extrema than OTPPAO and hence more candidate algebraic solutions.
Specifically, OTPPA is stated as:

min
v∈R6

C (v) s.t. f(v) = 0. (B.1)

The area constraint in OTPPA is technically more complex to handle than the signed
area constraint in OTPPAO, because it involves an absolute value. Fortunately, a
solution may be obtained by exploiting a reformulation in terms of two rounds of
OTPPAO. Similarly to OTPPAO, we start by replacing A(v) by A∗(v) in the area
constraint f(v), expressing f as the disjunction of two cases:

f(v) = 0 ⇔
(
f+(v) = 0

)
∨
(
f−(v) = 0

)
with (B.2)

f+(v) = A∗(v)− Ao (B.3)

f−(v) = −A∗(v)− Ao. (B.4)

We seek a solution which satisfies either f+ or f−. This can be achieved by solving
OTPPAO for s = 1 and s = −1, and simply selecting the minimal cost solution a
posteriori. We present the numerically robust procedure in Algorithm 7.
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Algorithm 7 Optimal Triangle Projection with Prescribed Area

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, E - area
error tolerance

Output: vo - optimal triangle, v1 - Case I triangle set, v2 - Case II triangle set,
vc,vt - Case II basis and translations sets

1: function OTPPA(ṽ, Ao, s, E = 10−3)
2: v−1 ← SolveCase1(ṽ, Ao,−1, E) . Compute Case I solutions
3: v+

1 ← SolveCase1(ṽ, Ao, 1, E)
4: (v−2 ,v

−
c ,v

−
t )← SolveCase2(ṽ, Ao,−1, E) . Compute Case II solutions

5: (v+
2 ,v

+
c ,v

+
t )← SolveCase2(ṽ, Ao, 1, E)

6: v1 ← v−1 ∪ v+
1 . Add the vertices to the solution set

7: v2 ← {v−2 } ∪ {v+
2 }

8: vc ← {v−c } ∪ {v+
c }

9: vt ← {v−t } ∪ {v+
t }

10: vo ← FindTriangleOfMinimalCost(v1 ∪ v2) . Select the optimal
solution

11: return vo,v1,v2,vc,vt
12: end function

Appendix C. Ferrari’s Method for the Depressed Quartic Roots

We give Ferrari’s method for solving the depressed quartic equation λ4 − pλ2 +
qλ+ r = 0 ([13]).

Lemma 8. If λ4 + pλ2 + qλ+ r = 0 and q 6= 0 then there exists an αo 6= 0 such that

λ =
s1
√

2αo+s2

√
−
(

2p+2αo+s1
2q√
2αo

)
2

, where s1, s2 ∈ {−1, 1}.

Proof of Lemma 8. First, one adds and subtracts p2

4
to the depressed quartic equa-

tion and rewrites it as: (
λ2 +

p

2

)2

= −qλ− r +
p2

4
. (C.1)

The equality to the original quartic can be verified by simple expansion. One then
introduces a variable factor α into the left-hand side by adding 2λ2α + pα + α2 to
both sides. Grouping the coefficients by powers of λ in the right-hand side gives:(

λ2 +
p

2
+ α

)2

= 2αλ2 − qλ+

(
α2 + αp+

p2

4
− r
)
. (C.2)
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A quadratic expression ax2 + bx+ c is considered a perfect square when its discrim-
inant b2 − 4ac = 0 vanishes, allowing one to rewrite it as (

√
ax+

√
c)2. We use this

idea to choose a value for α such that the bracketed expression in the right-hand side
of equation (C.2), which is a quadratic in λ, becomes a perfect square. Specifically,
vanishing the discriminant gives:

q2 − 8α

(
α2 + αp+

p2

4
− r
)

= 0. (C.3)

Upon expanding, it forms a cubic equation in α, called the resolvent cubic of the
quartic equation:

8α3 + 8pα2 + (2p2 − 8r)α− q2 = 0. (C.4)

This equation implies α 6= 0. Indeed, α = 0 would imply q = 0, contradicting our
hypothesis q 6= 0. A real root αo 6= 0 is obtained from Cardano’s formula, given in
section Appendix D. Substituting in equation (C.2), we obtain:(

λ2 +
p

2
+ αo

)2

=

(
λ
√

2αo −
q

2
√

2αo

)2

. (C.5)

This equation is of the form M2 = N2, which can be rearranged as M2 −N2 = 0 or
(M +N)(M −N) = 0:(

λ2 +
p

2
+ αo + λ

√
2αo −

q

2
√

2αo

)(
λ2 +

p

2
+ αo − λ

√
2αo +

q

2
√

2αo

)
= 0. (C.6)

This is easily solved by applying the quadratic formula to each factor, leading to:

λ =

s1
√
αo + s2

√
−
(
p+ αo + s1

q√
2αo

)
√

2
, (C.7)

where s1, s2 ∈ {−1, 1}.

Appendix D. Cardano’s Method for the Cubic Roots

We consider the cubic equation:

ax3 + bx2 + cx+ d = 0 with a 6= 0.
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Its solutions are:

x1 = S1 + S2 −
b

3a

x2 = −S1 + S2

2
− b

3a
+
i
√

3

2
(S1 − S2)

x3 = −S1 + S2

2
− b

3a
− i
√

3

2
(S1 − S2),

where:

S1 =
3

√
Q2 +

√
Q3

1 +Q2
2

S2 =
3

√
Q2 −

√
Q3

1 +Q2
2

Q1 =
3ac− b2

9a2

Q2 =
9abc− 27a2d− 2b3

54a3
,

and D = Q3
1 + Q2

2 is the discriminant of the equation. For a, b, c, d ∈ R, three cases
can occur:

(1) : ifD > 0, one root is real and two are complex conjugates

(2) : ifD = 0, all roots are real, and at least two are equal

(3) : ifD < 0, all roots are real and unequal.

Appendix E. Formulation for Restricted Cases

Our original formulation assumes that the three triangle vertices are free to move.
However, there exist cases when one or two of the vertices are fixed. Typically, this
occurs for triangles lying on the domain boundary in mesh editing. We here adapt
the proposed optimal projection formulation to these cases.

Appendix E.1. One Fixed Vertex

Appendix E.1.1. A Two Case Formulation

We assume that vc is fixed. Thus, we have v = [u, x̃c, ỹc] and ṽ = [ũ, x̃c, ỹc], where
the moving vertices are represented by u = [xa, ya, xb, yb] ∈ R4 and the corresponding

48



input vertices by ũ = [x̃a, ỹa, x̃b, ỹb] ∈ R4. We take ∂L
∂u

= 0 which is formed by the
first four equalities of equation (12), which we rewrite in matrix form Xu = b as:

4 0 0 sλ
0 4 −sλ 0
0 −sλ 4 0
sλ 0 0 4



xa
ya
xb
yb

 = 4


x̃a + sλ

4
(ỹc)

ỹa − sλ4 (x̃c)
x̃b − sλ4 (ỹc)
ỹb + sλ

4
(x̃c)

 . (E.1)

We check the invertibility of X from its determinant:

det(X) = (λ2 − 16)
2
. (E.2)

We thus have:
det(X) = 0 ⇔ |λ| = 4. (E.3)

We will see that the particular case of det(X) = 0 may occur in practice. We thus
solve system (E.1) with two cases. In Case I, which is the most general, we have
|λ| 6= 4. In Case II, we have |λ| = 4. Similarly to the general case in Section 2.3, the
following Lemmas establish the relationship between the Lagrange multiplier and the
linear deficiency of the input vertices.

Proposition 2. Most settings (input vertices ṽ, prescribed area Ao and orientation
s) correspond to Fo and fall in Case I. Exceptions handled with Case II are:

• F1: ṽ is a single point

• F2: ṽ is a right isosceles triangle and sign(A∗(ṽ)) = −s

• F3: ṽ is a right isosceles triangle, A(ṽ)/4 ≥ Ao and sign(A∗(ṽ)) = s

The proof of Proposition 2 is based on the following five Lemmas.

Lemma 9. F1 ⇐⇒ A(ṽ) = 0 and |λ| = 4.

Lemma 10. F2 ⇐⇒ A(ṽ) 6= 0 and λ = −4.

Lemma 11. F3 ⇒ A(ṽ) 6= 0 and λ ∈
{

4,−4 + 2
√

2
Ao
,−4− 2

√
2
Ao

}
.

Lemma 12. F3 ⇐ A(ṽ) 6= 0 and λ = 4.

Lemma 13. λ = 4 leads to the optimal solution for F3.
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The proofs of these Lemmas are given in Appendix E.1.4. It is important to clarify
for Proposition 2, that in the right isosceles triangle, the fixed vertex corresponds to
the one opposite to the triangle’s hypotenuse.

Proof of Proposition 2. We recall that Case I occurs for |λ| 6= 4 and Case II for
|λ| = 4. Lemmas 9, 10 and 12 show that F1, F2 and F3 are the only possible settings
corresponding to |λ| = 4, hence possibly to Case II. This proves that Case I is the
general case. Lemmas 9 and 10 then trivially prove that F1 and F2 are handled by
Case II. Finally, Lemmas 11 and 13 prove that F3 is also handled by Case II.

Appendix E.1.2. Case I

This case occurs for |λ| 6= 4. In other words, this is the case where at least one of
the initial vertices in ũ is different from the other two and where the rank of the input
matrix M in equation (18) is rank(M) > 1. Similarly to Case I for three moving
vertices, the problem is reformulated as a depressed quartic polynomial and the
roots of this polynomial are found using Ferrari’s method. We start by multiplying
equation (E.1) by the adjugate X∗ of X and obtain:

det(X)u = X∗b, (E.4)

where the adjugate is:

X∗ = δY = λ2 − 16


−4 0 0 sλ
0 −4 −sλ 0
0 −sλ −4 0
sλ 0 0 −4

 , (E.5)

with δ = λ2 − 16 and Y ∈ R4×4. We note that det(X) = δ2. We substitute this and
equation (E.5) in equation (E.4) and obtain:

δu = Y b. (E.6)

We observe that the signed area A∗(δv) = δ2A∗(v). Also that δv = [u, δx̃c, δỹc].
Thus, we calculate the signed area of δv and obtain after some minor expanding:

δ2A∗(v) = a2λ
2 + a1λ+ ao, (E.7)

where:

a0 = 128((x̃a − x̃c)(ỹb − ỹa)− (x̃a − x̃b)(ỹc − ỹa)) (E.8)

a1 = −32
(
x̃2
a + x̃2

b + 2x̃2
c + ỹ2

a + ỹ2
b + 2ỹ2

c

)
(E.9)

+ 64(x̃ax̃b + x̃ax̃c + x̃bx̃c + ỹaỹb + ỹaỹc + ỹbỹc) (E.10)

a2 = 8((x̃a − x̃c)(ỹb − ỹa)− (x̃a − x̃b)(ỹc − ỹa)). (E.11)
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We rewrite these coefficients more compactly. Concretely, a0 and a2 contain the
signed area A∗(ṽ) of the input vertices and a1 contains the sum of the squared
distances Do of the two moving vertices to the fixed vertex:

Do(ṽ) = (x̃a − x̃c)2 + (ỹa − ỹc)2 + (x̃b − x̃c)2 + (ỹb − ỹc)2. (E.12)

We substitute equation (E.7) in the signed area constraint (8) multiplied by δ2 and
obtain:

sA∗(v)− δ2Ao = 0. (E.13)

This way, the signed area only depends on the known initial vertices ṽ and prescribed
sign s. Because the signed area is quadratic in the vertices, and the vertices are
quadratic rational in λ, the resulting equation is a quartic in λ:

Aoλ
4 − 16(2Ao + sA∗(ṽ))λ2 + 32Do(ṽ)λ+ 256(Ao − sA∗(ṽ)) = 0. (E.14)

This is a depressed quartic because it does not have a cubic term. We can thus
rewrite it to the standard form by simply dividing by Ao, giving:

λ4 + pλ2 + qλ+ r = 0, (E.15)

with:

p = −16(2Ao + sA∗(ṽ))

Ao
(E.16)

q =
32Do(ṽ)

Ao
(E.17)

r =
256(Ao − sA∗(ṽ))

Ao
. (E.18)

This can be solved using Ferrari’s method. We observe that when rank(M) = 2,
implying A∗(ṽ) = 0, coefficients p and r become constants. However, the equation
remains a general depressed quartic which can be solved with our procedure.

Appendix E.1.3. Case II

Case II occurs for |λ| = 4. From Proposition 2, this means that the initial
vertices ṽ are colocated as ṽa = ṽb = ṽc or represent right isosceles triangles under
conditions from Proposition 2. We show that the problem is represented by translated
homogeneous and linearly dependent equations. We find their null space, particular
solution and then a subset constrained by the prescribed area.
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We first translate the coordinate system to bring the fixed vertex to the origin
ũ′ = ũ′− vc translating the unknown vertices to u′ = u− vc. Substituting |λ| = 4 in
matrix X, we obtain:

4


1 0 0 s sign(λ)
0 1 −s sign(λ) 0
0 −s sign(λ) 1 0

s sign(λ) 0 0 1

 . (E.19)

This matrix has a rank of two and is thus non-invertible. Thus, Xu′ = ũ′ is solvable
if and only if ũ′ lies in the column space C(X). The column space can be calculated
by factoring X into its singular value decomposition (SVD) X = WΣW> and taking
the first rank(X) columns of the unitary matrix W . For each value of s sign(λ), we
have column spaces expressed as two-dimensional linear subspaces {γ1w

−
1 + γ2w

−
2 }

and {γ1w
+
1 +γ2w

+
2 } where γ1, γ2 ∈ R and with bases w−1 ,w

−
2 ∈ R4 and w+

1 ,w
+
2 ∈ R4

such that:

[
w−1 w−2

]
=


0 1√

2
1√
2

0
1√
2

0

0 − 1√
2

 , (E.20)

and:

[
w+

1 w+
2

]
=


0 1√

2
1√
2

0

− 1√
2

0

0 1√
2

 , (E.21)

We have that when we add a vertex located in the origin to w−1 ,w
−
2 ,w

+
1 and w+

2 , they
represent right isosceles triangles of the same area of 1

4
with orientation s sign(λ).

Similarly, adding a vertex located in the origin to the linear combinations γ1w
−
1 +

γ2w
−
2 and γ1w

+
1 + γ2w

+
2 represent right isosceles triangles of any area and opposite

orientations (or colocated points if γ1 = γ2 = 0). This shows that the system is
solvable if and only if v′ = [u′, 0, 0] ∈ R6 represents a right isosceles triangle of
orientation sign(A∗(ṽ′)) = s sign(λ) or colocated vertices.

The system Xu′ = ũ′ is solved by first finding the solutions of the homogeneous
system Xuh = 0 and translating them by a particular solution up, obtaining u′ =
uh + up. The homogeneous system has an infinite number of solutions which come
from the null space of X. This can be represented as a two-dimensional linear
subspace uh = β1u1 + β2u2 where the coefficients β1, β2 ∈ R and with bases u1,u2 ∈
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R4 such that:

[
u1 u2

]
=


0 −s sign(λ)

s sign(λ) 0
1 0
0 1

 . (E.22)

We have that u1 and u2 represent two pairs of vertices which form right isosceles
triangles when adding one third vertex in the origin of the same area 1

4
. The linear

combination of uh = β1u1 + β2u2 generate right isosceles triangles of any area when
adding one third vertex in the origin of orientation −s sign(λ). We then calculate
the particular solution up using the pseudo-inverse as:

up = X†ũ′ =
1

4


x̃′a + sign(A∗(ṽ′))ỹ′b
ỹ′a − sign(A∗(ṽ′))x̃′b
x̃′b − sign(A∗(ṽ′))ỹ′a
ỹ′b + sign(A∗(ṽ′))x̃′a

 (E.23)

We then translate the null space with the particular solution and obtain u′ = β1u1 +
β2u2 +up. This linear combination represents pairs of vectors. A noticeable property
is stated in the following Lemma, whose proof is given in Appendix E.1.4.

Lemma 14. up = 0 ⇒ v′ = [u′, 0, 0] is a right isosceles triangle. The converse is
not true.

The next step is to constrain these to the prescribed area and orientation. We have
v′ = [u′, 0, 0] ∈ R6. After some minor algebraic manipulations, we obtain the signed
area as:

A∗(v′) = (1 + s sign(A∗(ṽ′)) sign(λ))
A∗(ṽ′)

4
− s sign(λ)

β2
1 + β2

2

2
. (E.24)

When A∗(ṽ′) 6= 0 we have s sign(λ) = sign(A∗(ṽ′)) thus sign(λ) = s sign(A∗(ṽ′)).
However, when A∗(ṽ′) = 0 we have sign(A∗(v′)) = −s sign(λ), which implies that
sign(λ) = −s. Using the orientation constraint (7), we can express u′ as:

u′ = β1u1 + β2u2 + up

s.t. (s+ sign(λ) sign(A∗(ṽ′)))
A∗(ṽ′)

4
− sign(λ)

(β2
1 + β2

2)

2
− Ao = 0

(E.25)

Because of the area and orientation constraints, and because u1 and u2 are rotated
copies of each other, the family defined by equation (E.22) can be generated by
simply rotating u1 by

ρ =
√
β2

1 + β2
2 =

√
sign(A∗(ṽ′))A∗(ṽ′)− 4kAo

2
(E.26)
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where k depends on the type of input:

k =

{
s sign(A∗(ṽ′)) if A∗(ṽ) 6= 0

−1 if A∗(ṽ) = 0
(E.27)

so that the area constraint is met and then rotate u1 by some arbitrary angle θ. We
note that when k = s sign(A∗(ṽ′)) = 1, then ρ ∈ R as long as A(ṽ)/4 ≥ Ao (which
corresponds to setting F3). We define a new basis vector uc as:

uc = ρ
[
0 ks 1 0

]
. (E.28)

Finally the triangle vertices are translated to the original coordinates by adding the
fixed vertex vc, we obtain:

v =
[
R(θ)uc + up 0 0

]>
+
[
vc vc vc

]>
(E.29)

where R(θ) is a block diagonal matrix replicating the 2D rotation matrix R(θ) two
times as R = diag(R(θ), R(θ)). Equation (E.29) generates an infinite number of
solutions with the same cost, as shown by the following Lemma, proved in Ap-
pendix E.1.4.

Lemma 15. All solutions generated by equation (E.29) have the same cost.

Appendix E.1.4. Proof of Lemmas

Proof of Lemma 9. We start with the forward implication: F1 ⇒ A(ṽ) = 0 and
|λ| = 4. In F1, ṽ represents a single point. This implies A(ṽ) = 0 and Do(ṽ) = 0.
Replacing these values in the depressed quartic equation (E.7) causes the coefficients
p and r to become constants, and coefficient q to vanish (also the orientation con-
straint vanishes). The depressed quartic thus transforms into a bi-quadratic:

λ4 − 32λ2 + 256 = 0, (E.30)

whose solutions are:
|λ| = 4. (E.31)

We now turn to the reverse implication: F1 ⇐ A(ṽ) = 0 and |λ| = 4. We substitute
|λ| = 4 in equation (E.13), giving:

4s sign(A∗(ṽ)) sign(λ)|A∗(ṽ)| −Do(ṽ) = 0. (E.32)

Since A(ṽ) = 0, then the only solution that satisfies equation (E.32) for any given
value of s sign(A∗(ṽ)) sign(λ) is with Do(ṽ) = 0, which implies that the input triangle
is collapsed into a single point, hence to F1.
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Proof of Lemma 10. We start with the forward implication: F2 ⇒ A(ṽ) 6= 0 and
λ = −4. In F2, ṽ represents a right isosceles triangle and orientation inversion. This
implies A(ṽ) 6= 0 and sign(A∗(ṽ)) = −s. We perform a similarity transformation to
ṽ to bring the fixed vertex to the origin and another to the x-axis, scaled to normalise
their distance, giving ṽ′ = [1, 0, 0, sign(A∗(ṽ)), 0, 0]> where sign(A∗(ṽ)) determines

the orientation of the triangle. We obtain A∗(ṽ′) = sign(A∗(ṽ))
2

and Do(ṽ
′) = 2, thus

the coefficients of the depressed quartic equation (E.15) become:

p = −32Ao − 8

Ao
(E.33)

q =
64

Ao
(E.34)

r =
256Ao + 128

Ao
. (E.35)

Substituting these coefficients in Cardano’s formula we obtain:

Q1 = −
(

32Ao + 4

3A0

)2

(E.36)

Q2 =

(
32Ao + 4

3A0

)3

, (E.37)

making
√
Q3

1 +Q2
2 = 0 and the real root αo of Cardano’s resolvent cubic to become:

αo = 2

(
32Ao + 4

3Ao

)
+

32Ao − 8

3Ao
= 32. (E.38)

We finally use αo to extract the roots of the depressed quartic:

λ =

s1

√
32λo + s2

√
8
(

1−s1
Ao

)
√

2
(E.39)

where s1, s2 ∈ {−1, 1}. We thus have the following roots:

λ ∈
{
−4,−4, 4− 2i

√
2

Ao
, 4 + 2i

√
2

Ao

}
. (E.40)

Considering only the real roots we have λ = −4.
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We now turn to the reverse implication: F2 ⇐ A(ṽ) 6= 0 and λ = −4. We substitute
λ = −4 in equation (E.13), giving:

−4s sign(A∗(ṽ))A(ṽ)−Do(ṽ) = 0. (E.41)

Since A(ṽ) 6= 0 and Do(ṽ) > 0 then equation (E.41) can only be solved when
sign(A∗(ṽ)) = −s. We perform the same similarity transformation used at the begin-
ning of the proof to the unknown input triangle ṽ giving ṽ′ = [1, 0, x′b, y

′
b, 0, 0]> where

one of the vertices remains unknown. We then have A∗(ṽ′) =
ỹ′b
2

or

sign(A∗(ṽ′))A(ṽ′) =
ỹ′b
2

and Do(ṽ
′) = x′2b + y′2b + 1. which we substitute in equa-

tion (E.41) and obtain:
x′2b + y′2b + 2sy′b + 1 = 0, (E.42)

which we rewrite as:
x′2b + (y′b + s)

2
= 0. (E.43)

This is the equation of a single point, making ṽ′ a right isosceles triangle ṽ′ =
[0, 1, 0,−s, 0, 0]> where s determines the orientation of the triangle. Since ṽ′ was
a similarity transformation of ṽ, then ṽ is also a right isosceles triangle when
sign(A∗(ṽ)) = −s, which corresponds to F2.

Proof of Lemma 11. In F3, ṽ represents a right isosceles triangle with A(ṽ)/4 ≥ Ao
and no orientation inversion. This implies A∗(ṽ) 6= 0 and sign(A∗(ṽ)) = s. We
perform the same similarity transformation to ṽ as in Lemma 10, thus the coefficients
of the depressed quartic equation (30) become:

p = −32Ao + 8

Ao
(E.44)

q =
32

Ao
(E.45)

r =
256Ao − 128

Ao
. (E.46)

Substituting these coefficients in Cardano’s formula we obtain:

Q1 = −
(

32Ao − 4

3A0

)2

(E.47)

Q2 = −
(

32Ao − 4

3A0

)3

, (E.48)
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making
√
Q3

1 +Q2
2 = 0. After some factoring we obtain the real root αo of Cardano’s

resolvent cubic as:

αo = −2
3

√(
32Ao − 8sA∗(ṽ′)

3Ao

)3

+
32Ao + 16sA∗(ṽ′)

3Ao
. (E.49)

Since sign(A∗(ṽ)) = s and A∗(ṽ′) = sign(A∗(ṽ))A(ṽ′), then αo ∈ R only when
A(ṽ′)/4 ≥ Ao. Under this condition, we obtain αo = 32. Substituting in equation
(37) we obtain:

λ =

s1

√
32λo + s2

√
8
(

1−s1
Ao

)
√

2
(E.50)

where s1, s2 ∈ {−1, 1}. We thus have the following roots:

λ ∈
{
−4− 2

√
2

Ao
,−4 + 2

√
2

Ao
, 4, 4

}>
. (E.51)

Thus, we have two roots where |λ| 6= 4 (which correspond to solutions for Case I)
and there exists at least one solution λ = 4 for F3 (which correspond to the solution
of Case II).

Proof of Lemma 12. We substitute λ = 4 in equation (E.13), giving:

4s sign(A∗(ṽ))A(ṽ)− σ2(ṽ) = 0. (E.52)

Since A(ṽ) 6= 0 then equation (E.52) can only be solved when sign(A∗(ṽ)) = s.
We perform the same similarity transformation to ṽ as in Lemma 10, substitute
sign(A∗(ṽ′))A(ṽ′) and σ2(ṽ′) in equation (E.52) and obtain:

x′2b + y′2b − 2sy′b + 1 = 0, (E.53)

which we rewrite as:
x′2b + (y′b − s)

2
= 0. (E.54)

This is the equation of a single point making ṽ′ a right isosceles triangle ṽ′ =
[0, 1, 0, s, 0, 0]> where s determines the orientation of the triangle. Since ṽ′ was
a similarity transformation of ṽ, then ṽ is also a right isosceles triangle when
sign(A∗(ṽ)) = s for any value A(ṽ) (including A(ṽ′)/4 ≥ Ao) which corresponds
to F3.
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Proof of Lemma 13. We perform the same similarity transformation to ṽ as in Lemma
8 and obtain A∗(ṽ′) = sign(A∗(ṽ))

2
. We relax the condition of F3 where A(ṽ′)

4
≥ Ao by

reformulating Ao = 1
2z

where z is a scaling factor z > 0 ∈ R. We substitute this in
equation (E.51) and extract the roots :

λ =
[
−4− 4

√
z,−4 + 4

√
z, 4, 4

]>
. (E.55)

We start with the solution given by Case I where |λ| 6= 4. We compact both values
as λ = −4 + s34

√
z where s3 ∈ {−1, 1}. We substitute this in equation (E.6) and

obtain:

u′ =
[
s3√
z

0 0 s3√
z

]>
. (E.56)

We calculate the cost of the solution of Case I by substituting v′ = [u′, x̃c, ỹc] and ṽ′

in equation (3) and obtain:

C1(v′) =
2(
√
z − s3)2

z
(E.57)

Now we turn to the solution given by Case II where λ = 4. We calculate the basis
vector u′c, the particular solution u′p and substitute them in equation (E.29) and
obtain:

v′ =
[

1
2

√
z−4

2
√
z

√
z−4

2
√
z

1
2

0 0
]>
. (E.58)

We calculate the cost of the solution of Case II by substituting this and ṽ′ in equation
(3) and obtain:

C2(v′) = 1− 2

z
(E.59)

We compare the cost of both solutions C1(v′) ≥ C2(v′) and obtain:

2(
√
z − s3)2

z
≥ 1− 2

z
(E.60)

After some minor manipulations we obtain:

z − 4s3

√
z + 4

2z
≥ 0 (E.61)

We substitute
√
z = a where a > 0 ∈ R and obtain the quadratic expression:

(a− 4s3)2

2a2
≥ 0 (E.62)
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which represents an upward opening parabola which is always positive for any value
of a and thus z. This implies that C1(v′) ≥ C2(v′) for any value z including z > 4.
Since ṽ′ was a similarity transformation of ṽ, then C1(v) ≥ C2(v). This means
that in F3 the solution provided by case II has the lowest cost, thus is the optimal
solution.

Proof of Lemma 14. We start with the forward implication: up = 0 ⇒ u′ is a pair
of perpendicular vectors of equal length. From equation (E.23), we have that up =
0 when ũ′ = 0 (trivial solution) or when ũ′ = 0 is in the kernel of X†. From
the properties of the pseudo-inverse we have that ker(X†) = ker(X>). Since X
is symmetric then ker(X†) = ker(X) = uh, as given in equation (E.22). Recall
from Appendix E.1.3 that the system Xu′ = ũ′ is solvable if and only if ṽ′ =
[ũ′, 0, 0] represents a right isosceles triangle of orientation sign(A∗(ṽ′)) = s sign(λ)
or colocated vertices. Still from Appendix E.1.3, we have that vh = [uh, 0, 0] is a
right isosceles triangle of orientation sign(A∗(vh)) = −s sign(λ), which contradicts
the previous statement. This leaves us with up = 0 only when ũ′ = 0, which
represents a set of colocated points centred in the origin. We then calculate u′ from
equation (E.25) and obtain:

u′ =


−β2

β1

β1

β2

 . (E.63)

We can then easily show that the vertices distances with the origin are equal, and
thus that v′ is an isosceles triangle:

Dab =
√
β2

1 + β2
2

Dac =
√
β2

1 + β2
2 .

Also we can show that v′ is a right isosceles triangle by calculating the inner product
of its vertices:

Iab = (x′a × x′b) + (y′a × y′b) = 0. (E.64)

We now turn to the reverse implication: up = 0 6⇐ v′ = [v′, 0, 0] is a right isosceles
triangle, for which we simply provide a counterexample to the positive implication.
We use the right isosceles triangle ṽ′ = [1, 0, 0, sign(A∗(ṽ), 0, 0]> where A(ṽ′)/4 = Ao
and sign(A∗(ṽ)) = s. We calculate its particular solution with equation (E.23) and
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obtain:

up =


1
2

0
0
1
2

 , (E.65)

which implies that up 6= 0. We substitute A(ṽ′)/4 = Ao and sign(A∗(ṽ)) = s in the
constraint equation (E.25) and obtain β2

1 = −β2
2 . This implies that the constraint

is fulfilled when β1 = β2 = 0 thus u′ = up. We easily show that the inter-vertex
distances are equal:

Dab =
√

(x′a − x′b)2 + (y′a − y′b)2 =
1

2

Dac =
√

(x′b − x′c)2 + (y′b − y′c)2 =
1

2
,

and also that the vertices are perpendicular by calculating their inner product:

Iab = (x′a × x′b) + (y′a × y′b) = 0. (E.66)

Thus, v is a right isosceles triangle despite up 6= 0.

Proof of Lemma 15. Our proof shows that the cost is invariant to the value chosen
for angle θ. We start by translating the coordinate system to bring the fixed vertex
to the origin as ṽ′ = ṽ−vc, which also translates the unknown vertices to v′ = v−vc.
Thus, the cost becomes the translated least-squares displacement cost:

C ′(v′) = ‖v′ − ṽ′‖2. (E.67)

We then continue with the case where ṽ is a single point. This implies A(ṽ) = 0 and
k = −1. The particular solution v′p can be verified to vanish, from equation (E.23).
We calculate the basis vector v′c from equation (E.28), leading, from equation (E.29),
to:

u′ =


−ρ sin(θ)
ρ cos(θ)
ρ cos(θ)
ρ sin(θ)

 . (E.68)

We calculate the cost by substituting ũ and ũ′ in equation (E.67):

C ′(v′) = 2ρ2(sin2(θ) + cos2(θ)), (E.69)

which simplifies to C ′(v′) = 2ρ2 and is thus independent of θ.
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We continue with the case where ṽ is a right isosceles triangle. This implies that
A(ṽ) 6= 0 and k = s sign(A∗(ṽ)). We perform the same similarity transformation to

ṽ as in Lemma 10 and obtain A∗(ṽ′) = sign(A∗(ṽ))
2

. We calculate the basis vector u′c
from equation (E.28), the particular solution u′p from equation (E.23) and substitute
them in equation (E.29), leading to:

u′ =


1
2
− ρ sin(θ)
ρ cos(θ)
ρ cos(θ)

1
2

+ ρ sin(θ)

 . (E.70)

We calculate the cost by substituting v′ and ṽ′ in equation (E.67):

C ′(v′) =
1

2
+ 2ρ2(sin2(θ) + cos2(θ)), (E.71)

which simplifies to C ′(v′) = 1
2

+ 2ρ2 and is thus independent of θ.

Appendix E.1.5. Numerical Implementation

We use the theory developed in the previous sections to construct a numerically
robust procedure, given in Algorithm 8, to solve OTPPAO with one fixed vertex.
It uses the input vertices ṽ, prescribed area Ao and orientation s as inputs. It also
uses an area error tolerance E to handle round-off in the area constraint (8). Similar
to Algorithm 1, Algorithm 8 starts by generating the solutions from Case I, then
Case II, and chooses the optimal one. For Case I, we obtain a list v1 of at most 4
solutions. For Case II, we obtain a single best solution v2, the optimally rotated one,
the vertices basis and translation to generate all solutions following equation (E.29).
The overall optimal solution vo is chosen amongst v1 and v2. The algorithm returns
the optimal solution, along with all the solutions from Case I and Case II.

Appendix E.2. Two Fixed Vertices

We assume that vb and vc are fixed. Thus, we redefine v = [va, x̃b, ỹb, x̃c, ỹc]
>

where va is the moving vertex. We take ∂L
∂va

= 0 which are essentially the first
two equalities of equation (12). We rearrange these equations into a set of linear
equations: [

xa
ya

]
=

[
x̃a − sλ

4
(ỹc − ỹb)

ỹa − sλ
4

(x̃b − x̃c)

]
. (E.72)

We thus solve system (E.72) with two cases. In Case I, which is the most general,
we have vb 6= vc. In Case II, we have vb = vc. The solution for the latter case is
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Algorithm 8 Optimal Triangle Projection with a Prescribed Area and Orientation
with a Fixed Vertex

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, E - area
error tolerance

Output: vo - optimal triangle, v1 - Case I triangle set, v2 - Case II optimal triangle,
uc,vt - Case II basis and offset

1: function OTTPAO1(ṽ, Ao, s, E = 10−3)
2: v1 ← SolveCase1OneFixedVertex(ṽ, Ao, s, E) . Case I solutions
3: (v2,vc,uc,vt)← SolveCase2OneFixedVertex(ṽ, Ao, s, E) . Case II

solutions
4: vo ← FindTriangleOfMinimalCost(v1 ∪ {v2}) . Optimal solution
5: return vo,v1,v2,uc,vt
6: end function

trivial, since no matter what value we give to λ, the non-fixed vertex remains the
same (xa = x̃a and ya = ỹa). For Case I, we substitute the result of equation (E.72)
in v and calculate the signed area constraint (8). The resulting linear equation in λ
is a1λ+ a0 = 0 where:

a0 = 4s ((x̃a − x̃c)(ỹb − ỹa)− (x̃a − x̃b)(ỹc − ỹa))− 8Ao

a1 = −(x̃2
b + x̃2

c + ỹ2
b + ỹ2

c − 2x̃bx̃c − 2ỹbỹc).

We can rewrite these coefficients more compactly. Concretely, a0 contain the area
A∗(ṽ) of the input vertices and a1 contains the square distance Po between the two
fixed vertices:

Po = (x̃b − x̃c)2 + (ỹb − ỹc)2. (E.73)

We solve for λ and obtain:

λ = 8
sA∗(ṽ)− Ao

Po
. (E.74)

We substitute λ from equation (E.74) in equation (E.72) and obtain:[
xa
ya

]
=

[
x̃a
ỹa

]
− 4

sAo + A∗(ṽ)

Po

[
(ỹc − ỹb)
(x̃b − x̃c)

]
. (E.75)

The numerically robust procedure of this solution is given in Algorithm 11.
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Algorithm 9 Closed-form Analytic Solution to Case I of OTPPAO with One Fixed
Vertex

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, E - area
error tolerance

Output: v1 - solution list
1: function SolveCase1OneFixedVertex(ṽ, Ao, s, E)
2: Do(ṽ))← (x̃a − x̃c)2 + (ỹa − ỹc)2 + (x̃b − x̃c)2 + (ỹb − ỹc)2

3: p← −16(2Ao+sA∗(ṽ))
Ao

. Compute the coefficients of the depressed quartic

4: q ← 32Do(ṽ)
Ao

5: r ← 256(Ao−sA∗(ṽ))
Ao

6: λ← FerrariSolution(p, q, r) . Solve for the four possible Lagrange
multipliers

7: v1 ← ∅ . Create an empty set of solutions
8: for t← 1, . . . , 4 do . Generate and select the triangles
9: λ← Re(λ(t)) . Keep the real part

10: h← (λ2 − 16)† . Compute the inverse denominator

11: u← h


x̃cλ

2 + 4s(ỹb − ỹc)λ− 16x̃a
ỹcλ

2 + 4s(x̃c − x̃b)λ− 16ỹa
x̃cλ

2 + 4s(ỹc − ỹa)λ− 16x̃b
ỹcλ

2 + 4s(x̃a − x̃c)λ− 16ỹb

 . Compute the vertices

12: v = [u, x̃c, ỹc]
13: if |sA∗(v)− Ao| ≤ E then . Check the area constraint
14: v1 ← v1 ∪ {v} . Add the vertices to the solution set
15: end if
16: end for
17: return v1

18: end function
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Algorithm 10 Closed-form Analytic Solution to Case II of OTPPAO with One
Fixed Vertex

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, E - area
error tolerance

Output: v2 - optimal triangle, uc,vt vertices basis and translation.
1: function SolveCase2OneFixVert(ṽ, Ao, s, E)
2: if A(v) ≤ E then . Check the input’s area
3: k ← s sign(A∗(v)) . Compute k for a right isosceles triangle
4: else
5: k ← −1 . Compute k for a single point
6: end if
7: ṽ′ ← ṽ − vc . Translate the input vertices

8: ρ←
√

sign(A∗(ṽ′))A∗(ṽ′)−4kAo
2

. Computes the area constraint parameter

9: uc ← Re(ρ)
[
0 ks 1 0

]>
. Compute the solution basis

10: up ← 1
4


x̃′a + sign(A∗(ṽ))ỹ′b
ỹ′a − sign(A∗(ṽ))x̃′b
x̃′b − sign(A∗(ṽ))ỹ′a
ỹ′b + sign(A∗(ṽ))x̃′a

 . Compute the particular solution

11: Ũ2 ← rearrange ũ′ into a 2× 2 matrix
12: Uc ← rearrange uc into a 2× 2 matrix

13: (U1,Σ, U2)← SVD
(
Ũ2U

>
c

)
. Compute the optimal rotation

14: D ← diag(1, det(U2U
>
1 ))

15: R← U2DU
>
1

16: vt ←
[
up 0 0

]>
+
[
vc vc vc

]>
. Compute the translation vector

17: v2 =
[
R(θ)uc 0 0

]>
+ vt . Compute the optimal solution

18: return v2,uc,vt
19: end function
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Algorithm 11 Optimal Triangle Projection with a Prescribed Area and Orientation
with Two Fixed Vertices

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, E -
distance error tolerance

Output: vo - optimal triangle
1: function OTTPAO2(ṽ, Ao, s, E = 10−3)
2: Po = (x̃b− x̃c)2 + (ỹb− ỹc)2 . Compute square distance between fixed vertices
3: if Po > E then

4:

[
xa
ya

]
=

[
x̃a
ỹa

]
− 4P †o (sAo + A∗(ṽ))

[
(ỹc − ỹb)
(x̃b − x̃c)

]
5: else

6:

[
xa
ya

]
=

[
x̃a
ỹa

]
7: end if
8: vo ←

[
xa ya x̃b ỹb x̃c ỹc

]>
. Compute the optimal solution

9: return vo
10: end function
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