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Abstract One of the major and open research objectives in computer vision is to
automatically reconstruct the 3D shape of a deformable object from a monocular
image. Shape-from-Template (SfT) methods use prior knowledge embodied in a
template that provides the object’s 3D shape in a known reference position, and a
physical model that constrains deformation. SfT methods have shown great success
in recent years; however, accurate methods require an intrinsically calibrated camera.
This is an important practical limitation because the intrinsics of many real cameras
are not available, so they must be estimated with a dedicated calibration process. In
this chapter, we present a novel SfT method that handles unknown focal length (a
critical intrinsic of the perspective camera). The other intrinsics such as the principal
point and aspect ratio are assumed to take canonical values, which is valid for
many real cameras. We call this problem fSfT and we solve it by gradient-based
optimization of a large-scale non-convex cost function. This is not trivial for two
main reasons. Firstly, it requires suitable initialization, and we present a multi-start
approach using a small set of candidate focal lengths (typically fewer than three
are required). We combine this with a mechanism to avoid repeated exploration of
the search space from different starts. Furthermore, we present cost normalization
strategies, allowing the same cost function weights to be used in a diverse range of
cases. This is crucial tomake themethod practical for real-world use. Themethod has
been evaluated on twelve public datasets and it significantly outperforms a previous
state-of-the-art fSfT method in both focal length and deformation accuracy.
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1 Introduction

1.1 Shape-from-Template (SfT)

Reconstructing the 3D shape of a deformable object from a monocular image is a
central and open problem in computer vision. It is usually much harder compared
to reconstructing rigid objects because of the significantly larger problem space
and much weaker constraints. To make deformable reconstruction well-posed, prior
knowledge is required. In many previous works, including this chapter, the prior
knowledge is embodied in a template [42, 5, 37, 3, 36, 44, 58]. The template provides a
textured 3D geometric model of the object in a reference shape (usually implemented
as a surfacemesh), and it also constrains how the object can physically deform from its
reference shape. The template can be acquired by variousmeans, for example, using a
computer assisted design (CAD)model, a 3D scanner, or using a reconstruction from
monocular images viewing the object at rest with dense multi-view stereo (MVS).
The approach of solving monocular deformable reconstruction with a template is
often called Shape-from-Template (SfT) in the literature, or equivalently template-
based monocular deformable reconstruction. We use SfT in this chapter.
SfT is ill-posed if the template can deform arbitrarily because of the loss of depth

information resulting from camera projection. To overcome this, most methods use
a quasi-isometic template that prevents deformations that significantly stretch or
shrink the template. This deformation model is valid for many objects of interest
including those made of leather, plastic, stiff rubber, paper and cardboard and tightly-
woven fabrics. Crucially, a quasi-isometric template can guarantee that SfT is well-
posed with a calibrated perspective camera [42, 3]. SfT has various applications
that include Augmented Reality (AR) with deformable objects, Human-Computer
Interaction (HCI) with deforming objects, and AR-guided surgery [36, 11, 55]. We
illustrate two of these applications in Figures 1 and 2.

Fig. 1:AnHCI andARapplication of SfT from [30]. This is an interactive educational
game, implemented on a tablet, for coloring a virtual 3D cartoon model using a real
coloring book. A page from the book is colored with a pencil and SfT is used to
register images of the page with a paper template. The registration from SfT allows
the color from the image to be transferred to the paper template. Using a known
association between the template and the cartoon model, the color is then transferred
to the cartoon model. Because SfT also provides the 3D deformation of the paper
template, the cartoon model can be virtually positioned on the paper sheet in real-
time.
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Fig. 2: An AR application of SfT from [25]. This is a prototype system to assist
laparoscopic surgery of the liver using AR guidance, for safer liver resection. The
top row of images shows three frames from a laparoscopic video of a liver. The
bottom row shows the images augmented with hidden anatomical structures, includ-
ing a tumor shown in green. This has been achieved using SfT, with a template
constructed from a pre-operative CT image of the liver. The template is registered
with laparoscopic images using SfT with contour and shading constraints.

1.2 Chapter innovations

SfT has been studied extensively with a perspective camera that is fully calibrated
[42, 5, 37, 3, 36, 44, 58]. Calibrated intrinsics are required to relate camera coordi-
nates with image coordinates. However, requiring known intrinsics is an important
limitation in many real-world applications. A camera may have fixed and unknown
intrinsics, or time-varying and unknown intrinsics e.g. if the camera zooms in or
out. Neither situation can be handled by these methods. With fixed and unknown
intrinsics, a classical camera calibration is usually performed with a rigid calibra-
tion target such as a checkerboard [59]. However, this has several limitations. The
calibration process requires user interaction and time, it adds inconvenience to the
user, and a calibration target may not be available. Furthermore, a priori calibration
is only suitable when the camera intrinsics are fixed, which is restrictive.
This work describes a novel SfT algorithm that jointly estimates focal length and

the template’s 3D deformation from a single image. We refer to this problem as focal
length and Shape-from-Template (fSfT). The other intrinsics are assumed to take
canonical values. fSfT is an important problem because many real cameras can be
modeled accurately with negligible skew, an aspect ratio of one, a principal point at
the image center and negligible lens distortion. The only unknown intrinsic is the
focal length. Our approach also works if the non-focal length intrinsics have known
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non-canonical values, computed with a calibration process, however, this is a less
common use case.
We solve fSfT by designing and optimizing a large-scale non-convex cost func-

tion 𝑐( 𝑓 , 𝜽) where 𝑓 is the unknown focal length and 𝜽 is the unknown template
deformation. The form of 𝑐 is similar to cost functions used by the most accurate SfT
methods that require calibrated cameras [11, 36]. The cost function includes a data
cost to register the template, and a deformation cost to penalize non-isometric defor-
mation. We cannot optimize 𝑐 with guaranteed global optimality. Nevertheless, we
present a solution that works very well in practice, using local (iterative) optimiza-
tion, combining a well-designed initialization strategy, careful cost modeling, and
fast optimization. The principal novel characteristics and advantages of the approach
are as follows:

1. We model all deformation constraints provided by the template in the cost
function using a mesh-based physical deformation model. The results we obtain
are significantly more accurate compared to the analytical method [4].

2. Precise initialization is not required in general. Initialization can be performed
either using the analytical fSfT method [4] or using a very small number of
focal length samples (three or fewer). We introduce a mechanism to improve
computational efficiency to avoid repeated optimization in the same region of
search space from different initializations.

3. We apply normalization techniques to the cost function, which greatly reduces
the need to tune cost weights. Such tuning is a known issue in cost optimization
approaches, and thanks to normalization, the same weights can be used for any
problem instance. In our experimental evaluation, the same weights are used
in all test cases, covering different object shapes, mesh discretization, textures,
deformations, and imaging conditions. The ability to use the same weights in all
conditions represents a significant advance towards a practical SfT solution.

1.3 Chapter organization

The remainder of this chapter is organized as follows. In §2 we summarize previous
approaches for solving SfT and fSfT, and we discuss their main limitations. In §3 we
describe our fSfT method in detail. In §4 we present the experimental results and in
§5 we present our conclusion and directions for future research.
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2 Related works

2.1 SfT approaches

We categorize prior SfTmethods into threemain groups: i) closed-formmethods that
do not require an initialization, ii) optimization-based methods, that are generally
more accurate than closed-form methods but require an initialization, and more
recently iii) convolutional neural network (CNN)-based methods. We now review
these three categories.

2.1.1 Closed-form solutions

There are two main ways to solve SfT in closed-form. The first relaxes the isometric
constraint to inextensibility [37, 42, 6], which allows the surface to shrink but not
stretch. The problem is then cast as finding the deformation that maximizes the
depth of matched points such that the Euclidean distances between surface points
do not exceed their geodesic distances (as defined by the template). The problem is
convex and has been solved using a greedy approach [42] and with second order cone
programming (SOCP) using the interior point method [42, 37].When the perspective
effects are strong and there are many points, these methods can be very accurate.
However, performance deteriorates when perspective effects and/or number of points
are reduced [8].
The second main way to solve SfT in closed-form uses 1𝑠𝑡 -order non-holonomic

partial differential equations (PDEs) [3]. A PDE is setup at each surface point that
relates surface depth, normals, camera projection and registration functions to 1𝑠𝑡 -
order. By imposing the isometric constraint, the PDE can be solved analytically by
treating depth and normals as independent functions (a problem relaxation). The
approach can also solve conformal (angle preserving) deformation [3] up to an
arbitrary scale factor and convex/concave ambiguities. The PDE approach is very
fast and it can be parallelized trivially. However, an accurate registration is normally
required, which can be hard with poorly-textured surfaces.

2.1.2 Optimization-based solutions

The main disadvantage of the closed-form methods is to relax physical constraints,
yielding sub-optimal solutions. In contrast, optimization-based solutions can exploit
all available physical constraints. They take as input an initial sub-optimal solution,
and perform iterative numerical optimization of a non-convex cost function [28, 58,
36, 11, 58, 31, 44]. Practically all methods use a pseudo Maximum a Posteriori
cost function consisting of prior and data terms. The prior term nearly always
penalizes non-isometric deformation. The data term penalizes disagreement between
the deformed template and image evidence, such as the reprojection of point matches



6 Toby Collins and Adrien Bartoli

[42, 37, 8, 3], patch-based matches [11], pixel-level photo-consistency [35, 58, 31]
or contours [22, 54, 12, 17]. The main advantage of optimization-based methods is
that complex cost functions can be used with no known closed-form solution. When
properly initialized, they generally produce the most accurate solutions. Initialization
can be performed using a closed-form method, or in the case of video data, with the
solution from the previous frame (also called frame-to-frame tracking). There are
three main open challenges with optimization-based solutions. The first is to increase
the convergence basin, to reduces the dependency on good initialization. Methods
such as coarse-to-fine optimization with multi-resolution meshes [58], or advanced
schemes using geometric multi-grid [11] have proved useful. The second challenge
is to reduce the cost of optimization for real-time solutions. This has been achieved
with dimensionality reduction and GPU implementations such as [11]. The third
challenge is designing a cost function that works well in a broad range of settings
without requiring fine-tuning of hyper-parameters.

2.1.3 CNN-based solutions

CNNs have been used with great success for solving monocular reconstruction
problems with deformable objects, such as 3D human pose estimation [32, 21],
surface normal reconstruction [1, 56] and monocular depth estimation [14, 19, 27].
These works have stimulated recent progress for solving SfT with CNNs [40, 20,
15, 16]. The main idea is to train a CNN to learn the function that maps a single
RGB image with known camera intrinsics to the template’s deformation parameters.
The CNNs in these works are trained using supervised learning with labeled data
i.e. pairs of RGB images with the corresponding deformation parameters. Acquiring
labeled data is a main practical challenge and it is practically impossible to obtain
with real data. For this reason, these works rely heavily on simulated labeled data
generated by rendering software such as Blender. On one hand, this offers a way to
generate an enormous amount of training data. On the other hand, this opens up new
challenges to ensure that the training data represents the variability and realism of
real-world images. The so-called render gap is a term used to express the difference
in realism between simulated and real data, and it affects the ability of the CNN to
generalize well to real data. In SfT, we additionally face the problem that the space
of possible deformations can be exceptionally large, making it difficult to cover the
deformation space sufficiently with training data. For this reason, these works have
been shown to work with objects undergoing simple, smooth deformation with a low-
dimensional deformation space such as bending paper sheets or smoothly deforming
cloth. Furthermore, these works require intrinsically calibrated cameras. There has
been some recent progress for combining labeled simulated data with partially
labeled real data in order to reduce the render gap [15]. The real data is acquired
by a standard RGBD camera. This data does not contain sufficient information to
train the CNN with supervised learning because RGBD images provide depth but
not registration information. Consequently, the CNN is trained with a combination
of supervised learning (to learn the template’s depth) and unsupervised learning



Shape-from-Template with Camera Focal Length Estimation 7

(to learn the template’s registration). Unsupervised learning is implemented using a
photometric loss similar to multi-scale normalized cross-correlation.
While [15] marks a good step forward to solving SfT with CNNs, is requires

calibratedRGBDdata, so it is not applicable for solving fSfT. Furthermore, it requires
a CNN to be trained specifically for each template, which is a strong practical and
computational limitation. This directly contrasts our approach to fSfT, which does
not require a computationally-intensive training process for each template, making it
much easier to apply in real applications. Very recently, a CNN-based approach has
been presented that eliminates the need to train for a specific template texture [16].
This is promising work, however it only works for flat, rectangular surfaces such as
a sheet of paper. This contrasts our approach to fSfT which handles templates with
any shape or texture.

2.2 fSfT solutions

There have been a few previous approaches to solve fSfT [2, 4]. An approach using
affine correspondences (ACs) [33] has been presented using focal length sampling
[2].Given a focal length sample, the depth of eachACcan be estimated using theAC’s
motionwith plane-based pose estimation [23, 49, 59, 10]. A good focal length sample
should produce reconstructions that satisfy the isometric assumption (specifically,
that the Euclidean distance between reconstructed neighboring ACs is similar to
their geodesic distance that is known a priori from the template). The method
densely samples candidate focal lengths, and for each candidate, reconstruction
compatibility is tested with the isometric assumption. However, this approach has
several shortcomings. Firstly, it requires precisely registered ACs, which is difficult
to achieve in practice, and it normally requires iterative registration refinement that is
computationally expensive. Secondly, it cannot compute focal length in closed-form.
Thirdly, it was only shown to work well with strongly-textured surfaces with many
ACs.
An improved fSfT method that estimates focal length analytically has also been

presented [4]. Using point correspondences, a local smooth warp is fitted to point
neighborhoods, and focal length is then estimated at each point using a 2𝑛𝑑-order
PDE. In a final step, focal length estimates are robustly combined from multiple
neighborhoods. This approach is fast and works well for smooth, well-textured
surfaces. However, it is sub-optimal because it does not apply geometric constraints
acting across point neighborhoods. These are essential to obtain accurate solutions
especially when point correspondences are sparse.
fSfT has similarities with the problem of texton-based shape-from-texture with

focal length estimation [13]. In texton-based shape-from-texture, the goal is to re-
construct a surface whose texture consists of repeated units known as textons. If
the textons are small, such as the circular dots on a polka dot dress, they can each
be modeled well by a plane. When the texton’s metric shape is known a priori (for
example, knowing that the textons are circular), each texton can be reconstructed



8 Toby Collins and Adrien Bartoli

with plane-based pose estimation. The whole surface can then be reconstructed by
interpolation or surface normal integration. [13] propose two analytical approaches
to texton-based shape-from-texture with unknown focal length. The first solves 𝑓

using the fact that the Euclidean distances between neighboring textons is approxi-
mately preserved by isometric deformation, producing a unique solution to 𝑓 with
a minimum of two textons. The second finds 𝑓 that yields an integrable surface.
There are similarities between [13] and the fSFT solutions, where each texton can
be considered as a local template or a single AC. Additionally, both [13] and [4]
use a weak-perspective approximation to obtain an analytical solution. The main
limitation of [13] is to only solve texton reconstruction, and it cannot handle general
objects or textures unlike the proposed fSfT method.

3 Methodology

3.1 Problem modeling

3.1.1 Template geometry and deformation parameterization

The setup is illustrated in Figure 3. The template surface R ⊂ R3, defined in object
coordinates, is modeled using a discrete texture-mapped triangulated surface mesh,
called the template mesh. The template mesh has connected and non-overlapping
triangle faces that model the surface piecewise linearly. It consists of vertices V,
edges E and faces F . We define as 𝒚𝑖∈[1,𝑉 ] ∈ R the known 3D position of vertex 𝑖 in
object coordinates, where 𝑉 is the number of vertices. We define as 𝜽 ref the known
3D positions of all vertices in object coordinates, corresponding to the template’s
reference shape:

𝜽 ref
def
= stk

(
𝒚1, 𝒚2, . . . , 𝒚𝑉

)
(1)

where stk is the stacking operator that concatenates its arguments into a column
vector. We define as 𝒙𝑖∈[1,𝑉 ] ∈ R3 the unknown 3D position of vertex 𝑖 in camera
coordinates, and we define as 𝜽 the unknown positions of all vertices in camera
coordinates:

𝜽
def
= stk (𝒙1, 𝒙2, . . . , 𝒙𝑉 ) (2)

Wedefine as 𝑔( 𝒑; 𝜽) : R → R3 the spatial transformation of a surface point 𝒑 ∈ R
from object coordinates to camera coordinates. This is parameterized using 𝜽 with
barycentric interpolation. Specifically, 𝒑 is uniquely associated to an enclosing mesh
triangle, and transformed according to the motion of the triangle’s three vertices:

𝑔( 𝒑; 𝜽) : R → R3 def= 𝑤1𝒙𝑖 + 𝑤2𝒙 𝑗 + 𝑤3𝒙𝑘 (3)
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Fig. 3: SfT illustrated with a deformable cap [2]. The goal of SfT is to determine the
unknown deformable 3D transform 𝜽 that maps the template to camera coordinates,
using (i) visual information in the image and (ii) deformation prior knowledge
embodied in the template. The goal of fSfT is to solve SfT and jointly calibrate the
camera’s unknown focal length.

where 𝑖, 𝑗 and 𝑘 denote the three indices of the enclosing triangle, and 0 ≤
𝑤1, 𝑤2, 𝑤3 ≤ 1 are the known barycentric weights associated with point 𝒑 such
that 𝑤1 + 𝑤2 + 𝑤3 = 1.

3.1.2 Cost function

General form

We model fSfT with a non-convex cost function 𝑐(𝜽 , 𝑓 ) : Θ × R+ → R+ that maps
deformation parameters 𝜽 and focal length 𝑓 to a positive real cost. We recall that
𝜽 has been defined in Equation 2 as the unknown 3D positions of the template’s
vertices in camera coordinates.
We use a cost function inspired from the SfT literature with special attention to

cost normalization to ensure it works well for a broad variety of problem instances
(templates, deformations, viewpoints, textures etc.). The cost function is a weighted
combination of three terms as follows:

𝑐(𝜽 , 𝑓 ;P,Q) = 𝑐data (𝜽 , 𝑓 ;P,Q) + 𝜆iso𝑐iso (𝜽) + 𝜆reg𝑐reg (𝜽) (4)

The terms 𝑐data, 𝑐iso and 𝑐reg are the data, isometric and regularization costs respec-
tively. The terms 𝜆iso and 𝜆reg are weights that balance the influence of 𝑐iso and 𝑐reg,
and are important hyper-parameters. Note that 𝑓 influences only 𝑐data directly and it
influences the other terms indirectly via 𝜽 . In contrast, 𝜽 influences all terms directly.
As a pre-processing step, we normalize the template’s size by a scale factor 𝑠 so its
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total surface area is 1 unit. This makes the cost function invariant to templates of
different sizes. After optimization, the deformed template is recovered in its original
size by scaling the solution to 𝜽 by 1

𝑠
. We now summarize our implementations of

each term.

Data cost

The data cost 𝑐data forces registration between the template’s surface and the image
from point correspondences. We denote the correspondences by the ordered sets
P ∈ R3𝑁 and Q ∈ R2𝑁 , where each point P(𝑖 ∈ [1, 𝑁]) ∈ R3 is a point on the
template surface in object coordinates, and Q(𝑖 ∈ [1, 𝑁]) ∈ R2 is the point in image
coordinates. Each point correspondence is related as follows:

𝜋(𝑔(P(𝑖), 𝜽); 𝑓 ) = Q(𝑖) + 𝜖𝑖 (5)

where 𝜖𝑖 ∈ R2 is unknown measurement noise and 𝜋 : R3 → R2 is the perspective
projection function that depends on the unknown focal length 𝑓 :

𝜋
©­«©­«

𝑥

𝑦

𝑧

ª®¬ ; 𝑓 ª®¬ def= 𝑓

𝑧

(
𝑥

𝑦

)
(6)

Various approaches can be used to determine point correspondences and our
method is not tied to a specific approach. One of the most common approaches used
in previous SfT methods is image keypoint matching (also known as interest point
matching), where standard methods such as SIFT [29] or learning-based methods
such as LIFT [57] may be used. First, keypoints are detected in one or more images of
the template, which are then back projected onto the template’s surface to determine
their barycentric coordinates. A second set of keypoints are then detected in the
input image, and the two keypoint sets are matched based on keypoint descriptors to
generateP andQ. Often keypointmatchingmethods generatemismatches, which are
point correspondences that do not physically correspond to the same surface point up
to noise. In a pre-processing step, we remove mismatches with a dedicated method.
Mature methods exist that can be used without knowledge of camera intrinsics.
Possible methods include [36] where the template is fitted directly in 2D using a stiff-
to-flexible annealing scheme, RANSAC-basedmodel fitting such as [52], or methods
based on motion consistency between neighboring points [39]. Our approach can be
used with any combination of point matching and outlier detection methods, and we
give our implementation choices for these in the experimental section of this chapter.
Outlier rejection methods are not always perfect, and our SfT method includes

robustness built-into 𝑐data to handle a small proportion of residual mismatches. This
is implemented with the Huber M-estimator 𝜌ℎ , and the data cost writes as follows:
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𝑐data (𝜽 , 𝑓 ;P,Q) = 1
𝑁

∑𝑁
𝑖=1

1
𝜎2

𝜌 (𝜋(𝑔(P(𝑖); 𝜽), 𝑓 ) − Q(𝑖)) (𝑎)
𝜌(stk(𝑥, 𝑦)) def= 𝜌ℎ (𝑥) + 𝜌ℎ (𝑦) (𝑏)

𝜌ℎ (𝑧)
def
=

{ 1
2 𝑧
2 if |𝑧 | < 𝑘

𝑘 ( |𝑧 | − 12 𝑘) otherwise
(𝑐)

(7)

TheM-estimator acts to reduce the influence of correspondenceswith large residuals,
which are commonly caused by mismatched points. The term 𝜎 is an estimate of the
noise standard deviation. Its value depends on several factors, including the method
used to generate point correspondences, image resolution and image noise. Unless
𝜎 is known, we use the following as default:

𝜎 =
1
640
max(𝑤, ℎ) (8)

The image resolution (𝑤, ℎ) is taken into account in Equation (8) as 𝜎 is scaled by
max(𝑤, ℎ). The denominator (640) is merely intended to help interpret 𝜎 relative to
VGA resolution. The default defined in Equation (8) corresponds to a noise standard
deviation of 1 pixel at VGA resolution. The value 𝑘 is the Huber constant, set to a
default 𝑘 = 10𝜎.

Isometric cost

The isometric cost is implemented using a discrete approximation of the elastic strain
energy 𝐸𝑠𝑡𝑟𝑎𝑖𝑛 of continuous surfaces [50]:

𝐸𝑠𝑡𝑟𝑎𝑖𝑛 =

∫
R

‖IR − IS ‖2𝐹 dR (9)

Where IR and IS are the first fundamental forms of R (the template’s surface in
object coordinates) andS (the template’s surface in camera coordinates) respectively.
Penalizing 𝐸𝑠𝑡𝑟𝑎𝑖𝑛 encourages a deformation to preserve the first fundamental form,
equivalent to penalizing non-isometric deformation.We use a discrete approximation
of 𝐸𝑠𝑡𝑟𝑎𝑖𝑛 using a Finite Element Model (FEM) with Constant Strain Triangles
(CSTs). This is a well-knownmodel frommechanics that is suitable for relatively stiff
(quasi-isometric) materials. Furthermore, using a FEMwith CSTs gives a consistent
discretization of the continuous strain energy. That is, under appropriate refinement
conditions and norms, it is largely invariant to themesh discretization and it converges
to the continuous energy 𝐸𝑠𝑡𝑟𝑎𝑖𝑛. This is important for our purposes because it
eliminates the need to tune the cost’s weight 𝜆iso according to the mesh discretization
(number of vertices, placement of vertices and the triangulation). This is not true for
the majority of membrane-like costs used in the SfT, which often use inconsistent
isometric costs, such as those based on the preservation of mesh edge lengths [36,
6, 17] or the popular As-Rigid-As-Possible (ARAP) cost from [47]. The ARAP cost
was shown to not be a consistent scheme in [26].
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We compute the isometric cost 𝑐iso as the discrete approximation of Equation
(9) using CSTs. This is implemented by a weighted sum of strain energies from
each triangle and the implementation details are given in Appendix 2. The isometric
cost is a cubic expression in 𝜽 , which makes the minimization of 𝑐 a large-scale
non-convex problem.

Regularization cost

The regularization cost 𝑐reg is convex and it encourages smooth deformation. Various
implementations could be used, and we use a simple one using the moving least
squares energy [46], also used in [11]. First the mesh is divided into overlapping
cells where each cell describes the local motion of the mesh. We define one cell
per vertex, containing all neighboring vertices connected by a mesh edge. The cell’s
motion is determined by the movement of its constituent vertices. Regularization is
imposed by encouraging the cell’s motion from object to camera coordinates to be
described with an affine transform that is specific to each cell. This is implemented
by penalizing the residual of the least squares affine motion of each cell. It is
straightforward to show that the residuals are linear in 𝜽 , making 𝑐reg convex and
quadratic in 𝜽 . However, unlike 𝑐iso, 𝑐reg is not consistent, which means it depends
strongly on the mesh discretization. The reason is similar for why the ARAP mesh
energy is not consistent as discussed in [26]. Indeed, constructing a consistent and
convex regularization cost with surface meshes is not trivial, and it has not been
achieved before in the SfT literature. We handle this using normalization as follows.
We apply a global reweighing to 𝑐reg so that a small deformation from the rest state
induces approximately the same cost irrespective of the template’s discretization:

𝑐reg ←
1

𝑱reg

2𝐹 𝑐reg (10)

where 𝑱reg is the Jacobian matrix of 𝑐reg.

3.1.3 Cost normalization summary and weight hyper-parameters

In the cost definitions above, normalization has been used to significantly reduce the
need to tune the cost weight hyper-parameters 𝜆iso and 𝜆reg. Specifically, normal-
ization has made 𝑐 strongly invariant to four sources of variability: template scale,
template discretization, number of correspondences and image resolution. The in-
fluence of template scale is handled by rescaling the template to have unit area. The
influence of template discretization is handled by two techniques. The first technique,
used to normalize 𝑐iso, involves the use of a consistent discrete approximation of a
continuous surface function (strain energy) with an FEM, which achieves good dis-
cretization invariance by construction. The second technique, used to normalize 𝑐reg,
involves re-weighting the cost term by the magnitude of its Jacobian. This results in
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a small deformation from the rest state having approximately the same regularization
cost irrespective of the discretization.
Invariance to the number of correspondences 𝑁 is achieved by rescaling 𝑐data

inversely in𝑁 in Equation (8). Image resolution invariance is achieved in Equation (8)
by rescaling the residual error of each point inversely by the image size. Note that
image resolution invariance is often achieved in SfT methods by defining residual
errors in retinal coordinates (also called normalized pixel coordinates). However,
this does not work for fSfT because it yields a trivial solution with the focal length
at infinity.
Thanks to these normalization techniques, we use the same weights 𝜆iso and 𝜆reg

for all templates and test datasets, where mesh resolutions vary considerably from
𝑂 (100) to 𝑂 (1, 000) vertices, number of point correspondences vary from 𝑂 (10)
to 𝑂 (1, 000), and image resolutions vary from VGA to high definition (3600× 2400
pixels). In all experiments, we use a default of 𝜆iso = 1583 and 𝜆reg = 1e − 3, found
experimentally.

3.2 Optimization

3.2.1 Approach overview

The cost function 𝑐 defined in Equation (4) is non-convex in the unknowns 𝑓 and
𝜽 , arising from the non-convexity of both 𝑐iso and 𝑐data. Concerning 𝑐data, the non-
convexity is from the depth division of 𝜋. Concerning 𝑐iso, the non-convexity is
because 𝑐iso is quartic in 𝜽 as detailed in §2.2 of the appendix. Although 𝑓 appears
only directly in 𝑐data, it has an indirect influence on 𝑐data and 𝑐iso by its connection
to 𝜽 in 𝑐data.
Our goal is to determine 𝑓 and 𝜽 by optimizing the following large-scale non-

convex optimization problem, which does not admit a closed-form solution:

argmin
𝜽, 𝑓

𝑐(𝜽 , 𝑓 ;P,Q) (11)

We propose an approach based onmulti-start local (iterative) optimization that proves
very effective in practice. We run local optimization from one or more initializations
(also called starts), and the solution yielding the lowest overall cost is returned. To
reduce computational cost, we propose a mechanism to terminate repeated search of
the same search region from different initializations. There is a trade-off in having
a larger number of initializations, which increase computational cost but may also
increase the chances of finding the global minimum. This trade-off is explored in the
experimental section of the chapter.
We now describe how the initialization set is generated and then describe the

multi-start optimization algorithm.
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3.2.2 Generating the initialization set

We define an initialization set I as 𝑆 ≥ 1 pairs: I = {( 𝑓1, 𝜽1), . . . ( 𝑓𝑆 , 𝜽𝑆)}, with
each pair being an initial focal length and a corresponding initial deformation. We
generate I by exploiting the fact that given an initial focal length, we can initialize
deformation reasonablywell using an existing closed-fromSfTmethod.We therefore
first generate a set of initial focal lengths, then we pass each of these, together with
the other camera intrinsics, the template, and the point correspondences, to a closed-
form SfT method, to generate the initial deformations.

Focal length generation

We compare two approaches to generate initial focal lengths. The first approach gen-
erates one focal length, estimated analytically from the set of point correspondences
[4]. This method works best with relatively dense correspondences and smooth,
well-textured surfaces. The second approach, which does not depend on the corre-
spondences, works by focal length sampling.
We sample focal lengths using the opening angle representation, which is invariant

to image resolution. The focal length 𝑓 and lens opening angle 𝜓 are related as
follows:

tan
(
𝜓

2

)
=

𝑠

2 𝑓
, 𝑠

def
= max(𝑤, ℎ) (12)

where 𝑤 and ℎ denote the image width and height in pixels respectively. In real-world
SfT applications, lens opening angles are limited by two factors: (i) the physical limits
of camera hardware, and (ii) theoretical limits and well-posedness of our problem.
Concerning (i), the distribution of opening angles of real cameras has been studied
previously [45]. The distribution is mono-modal with a mode of approximately
50◦ and a maximum of approximately 100◦, equivalent to a short focal length of
𝑓 ≈ 12max(ℎ, 𝑤) px. This sets a focal length lower bound in practice. In contrast, (ii)
sets a focal length upper bound in practice for the following reason.A smaller opening
angle (longer focal length) reduces the field-of-view,which in turn causes the viewing
rays to become more parallel. When the viewing rays are almost parallel (known as
quasi-affine projection), it can be difficult to stably estimate focal length with noise,
which is a known result from camera calibration with rigid objects. Consequently,
fSfT will not be solvable in real-world cases if the opening angle is very small. As
such, we restrict the range of opening angle samples to 20◦ ≤ 𝜓 ≤ 100◦. We note
that this range is more than sufficient to cover all public datasets that have been used
to test previous SfT methods. We found that in practice, we do not need to densely
sample focal lengths and good results can be achieved with as few as three samples
(20◦, 50◦ and 80◦), corresponding to a narrow, average and wide field-of-view.
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Deformation generation

Given an initial focal length, there are several closed-form SfT methods that could
be used to initialize deformation. We compare two of these. The first is the so-called
Maximum Depth Heuristic method, referred to as MDH. [42, 37]. This makes a
convex relaxation of the isometric constraints, leading to a second-order cone pro-
gramming (SOCP) problem that can be solved with a depth maximization heuristic
[37] or with the interior point method [42]. In this work, we use the interior-point
method implemented in Sedumi [48]. The second approaches uses a perspective-
n-point (PnP) method, referred to as PnP, which gives the best-fitting rigid pose.
We also compare using both MDH and PnP (generating two initial deformations for
each initial focal length). This generates twice as many initializations, however it is
handled efficiently by detecting repeated search during optimization, described in
the following section. We find that this works better than using either MDH or PnP
alone and we give implementation details of MDH and PnP in §4 of the appendix.

3.2.3 Optimization process and pseudo-code

Our optimization process is summarized in pseudo-code in Algorithm 1. Each initial-
ization from the initialization set is processed (either in parallel or sequentially) and
local optimization is performed in two steps (lines 7 and 8). At line 7, deformation is
optimized with focal length fixed, and at line 8, they are both optimized jointly. These
two steps are used to improve convergence especially when the initial focal length
is far from the true solution. We implement local optimization with Gauss-Newton
with backtracking line search until some termination criteria are satisfied, denoted
by 𝑇1 and 𝑇2 respectively. When all initializations have been processed, the solution
with lowest cost is taken, and a final refinement is performed with local optimization
using termination criteria 𝑇3.
To prevent unnecessary repeated search from different initializations, wemaintain

a search historyH that holds all the solutions that have been found from a previous
initialization (line 9). During the local optimization stages (lines 7, 8 and 13), we
continuallymeasure the distance of the current estimate 𝑓 and �̂� to the closestmember
ofH using a distance function 𝑑H ((�̂� , 𝑓 ),H). We terminate local optimization early
if 𝑑H ((�̂� , 𝑓 ),H) ≤ 𝜏H where 𝜏H is a threshold. The distance function is designed
to tell us when the current estimate is likely to converge on a solution that already
exists inH (and thereforewhenwe should terminate local optimization).Wemeasure
distance in terms of surface normal dissimilarity as follows:

𝑑H ((𝜽 , 𝑓 ),H) = min
(𝜽′, 𝑓 ′) ∈H

max
𝑡 ∈[1,𝑇 ]

abs (] (𝒏𝑡 (𝜽), 𝒏𝑡 (𝜽 ′))) (13)

where 𝒏𝑡 (𝜽) is the surface normal for triangle 𝑡 generated by 𝜽 , and ](𝒂, 𝒃) is the
angle in degrees between vectors 𝒂 and 𝒃.
The following conditions are used in the termination criteria:



16 Toby Collins and Adrien Bartoli

Algorithm 1 fSfT Optimization
Require:
{( 𝑓1, 𝜽1) , . . . ( 𝑓𝑆 , 𝜽𝑆) } ⊲ initialization set
𝑐 (𝜽, 𝑓 ) : Θ × R+ → R+ ⊲ cost function

1: function fSfT_optimize({( 𝑓1, 𝜽1) , . . . ( 𝑓𝑆 , 𝜽𝑆) }, 𝑐)
2: 𝑐∗ ←∞ ⊲ lowest cost found so far
3: H ← ∅ ⊲ search history
4: 𝑓 ∗ ← 0, 𝜽∗ ← 0 ⊲ best solution with cost 𝑐∗
5: for 𝑠 ∈ [1, 𝑆 ] do
6: initialize estimates: 𝑓 ← 𝑓𝑠 , �̂� ← 𝜽𝑠
7: locally optimize 𝑐 w.r.t. �̂� until stopping criteria 𝑇1 satisfied.
8: locally optimize 𝑐 w.r.t. �̂� and 𝑓 until stopping criteria 𝑇2 satisfied.
9: update history: H ← H ∪ {( 𝑓 , �̂�) }
10: if 𝑐 ( 𝑓 , �̂�) < 𝐶∗ then
11: ( 𝑓 ∗, 𝜽∗) ← ( 𝑓 , �̂�)
12: 𝑐∗ ← 𝑐 ( 𝑓 ∗, 𝜽∗)
13: Final refinement: locally optimize 𝑐 initialized with ( 𝑓 ∗, 𝜽∗) until stopping criteria 𝑇3
satisfied.

14: return 𝑓 ∗ and 𝜽∗

S1 Maximum iterations: The number of iterations 𝜏𝑠𝑡𝑒𝑝 has been performed
S2 Small parameter update: The relative change of all unknowns is below a
threshold 𝜏Δ

S3 Small cost update: The relative change of 𝑐 is below a threshold 𝜏𝑐
S4 Out-of-bounds focal length: 𝑓 is out of bounds: 𝑓 ≤ 𝑓𝑚𝑖𝑛 or 𝑓 ≥ 𝑓𝑚𝑎𝑥

S5 Repeated search: The current solution is similar to one already in the search
history: 𝑑H ((�̂� , 𝑓 ),H) ≤ 𝜏H .

S1-S3 are standard in local optimization. S4 is used to terminate early if optimization
is converging on a focal length solution that is clearly wrong. Normally this happens
either when the problem is degenerate or when optimization has been very poorly
initialized.
The termination criteria 𝑇1, 𝑇2 and 𝑇3 in Algorithm 1 are instantiated by defin-

ing thresholds 𝜏𝑠𝑡𝑒𝑝 , 𝜏Δ, 𝜏𝑐 , 𝑓min, 𝑓max and 𝜏H . The same values are used in all
experiments and are given in Table 1 of the Appendix. We use 𝑓min = 0.1𝑤 and
𝑓max = 1000𝑤 in all cases, where 𝑤 is the image width. We highlight why the bounds
are different to the focal length bounds defined in §3.2.2. Those bounds concerned
the sampling range for initializing focal length, with opening angles between 20◦
and 100◦. However, there could be cases where the true focal length lies out of these
bounds. For that reason, the range of permissible focal lengths during optimization
is larger than the range considered for initialization. The range of 0.1𝑤 to 1000𝑤 is
arbitrary, and it is probably overly broad in practice.
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4 Experimental results

4.1 Datasets

We evaluate our method on 12 public datasets of quasi-isometrically deforming
objects from the existing SfT literature (Figure 4), with total of 310 test images. These
datasets represent a range of real-world challenges, in particular strong deformation
and weak texture. Each dataset has a set of images of a deformable object, a template,
and point correspondences in each image. We give full dataset details, including the
number of images per dataset, focal lengths and number of points correspondences
in §5 of the Appendix.
The first four datasets (‘Spider-man’ [9], ‘Kinect paper’ [53], ‘Van Gogh paper’

[43] and ‘Hulk’ [7]) are of smoothly deforming paper sheets that are relatively well
textured. The Spider-man dataset has images taken at 9 different focal lengths with
opening angles from 24.8◦ to 65.3◦. The other datasets have a fixed focal lengths with
opening angles 62.4◦, 44.5◦, and 66.1◦ respectively. The next four datasets (‘Cap’
[2], ‘Bedsheet’ [41], ‘Kinect t-shirt’ [53] and ‘Handbag’ [18]) are of deforming
objects made of cloth. These datasets have fixed focal lengths with opening angles
of 53.3◦, 44.5◦, 62.4◦ and 50.9◦ respectively. The next two datasets (‘Floral paper’
[18] and ‘Fortune teller’ [18]) are of creased paper objects with sparse texture,
making them especially difficult objects. The next dataset (‘Bending cardboard’
[44]) is of a smoothly deforming cardboard sheet with very sparse texture. The
final dataset (’Pillow cover’ [18]) is of a deforming pillow cover made of fabric
with sparse texture. Outlier-fee point correspondences are provided with six of the
datasets (Spider-man, Hulk, Handbag, Floral paper, Fortune teller and Pillow cover).
We generated point correspondences for the other datasets ourselves. The images
from the Kinect paper, Van Gogh paper, Bedsheet, Kinect t-shirt, and Bending
cardboard are from video clips, so point correspondences were make by tracking
keypoints over time. We used KLT feature tracking [51], which worked well in
practice because the objects deform relatively smoothly with limited motion blur.
Forward-backwards consistency checking was used to detect and remove outliers
tracks. Point correspondences for the cap dataset were computed by hand using an
interactive graphical user interface.
Several of the datasets have images where the object is flat and facing the camera

(the Kindet paper, Van Gogh paper, Bedsheet, Kinect t-shirt and Bending cardboard
datasets). These cases are unsolvable because of the ambiguity between focal length
and surface depth. We therefore exclude an image from the evaluation if all surface
normals approximately align with the optical axis (we use a threshold of 5◦).
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Fig. 4: The 12 public datasets used for evaluation. One representatative image per
dataset is shown.

4.2 Evaluation metrics

We evaluate solution accuracy for each image with two metrics. The first is Focal
Length Percentage error (FLPE) and the second is Shape Error (SE). FLPE is defined
as follows:

FLPE( 𝑓 , 𝑓 ) def= 100 ×
�� 𝑓 − 𝑓 𝑔𝑡

��
𝑓 𝑔𝑡

(14)

where 𝑓 is the estimate focal length and 𝑓 𝑔𝑡 is the ground-truth focal length (all
datasets provide ground-truth focal lengths). SE is computed for all datasets with
ground truth (Spider-man, Kinect paper, Hulk, Cap, Kinect t-shirt, Handbag, Floral
paper, Fortune teller and Bedsheet) as follows. For each image and each point
correspondence, we evaluate the Euclidean distance between the reconstructed 3D
point in camera coordinates �̂� ∈ R3 and ground truth 𝒒𝑔𝑡 ∈ R3. The Reconstruction
Error (RE) is defined as RE ( �̂�, 𝒒𝑔𝑡 ) def= ‖ �̂� − 𝒒𝑔𝑡 ‖.
RE has been used extensively for SfT evaluation. However, it has an important

limitation for fSfT evaluation. We now explain this, motivating the use of an adapted
metric, called the Shape Error (SE). The isometric prior penalizes stretching and
shrinking of the template. This fixes the scale ambiguity that would otherwise exist
between 𝑓 and the template’s scale. However, in cases where the perspective effects
areweak (i.e.when the viewing rays of the point correspondenceswere approximately
parallel), an ambiguity emerges between 𝑓 and the template’s average depth 𝑑. That
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is, one can obtain a similar image by reducing 𝑓 by a scale factor 𝛼 and increasing 𝑑
by 1

𝛼
. This ambiguity is well-known in the case of rigid objects and was previously

identified in fSfT [4]. In terms of evaluation, this highlights a shortcoming of RE: in
cases with weak perspective effects, it may be possible to reconstruct the shape of
the template accurately, but not possible to precisely determine 𝑑 and 𝑓 . A method
able to accurately reconstruct shape in these cases would receive a high RE error,
which would be unfair.
To handle this, we adapt RE to make it insensitive to a global shift in average

depth. First, a least-squares translation 𝑡𝑧 is computed along the camera’s optical
axis to align the reconstructed 3D point correspondences with their ground truths.
SE is then computed as follows:

SE
(
�̂�, 𝒒𝑔𝑡

) def
=
100
𝑆
×


�̂� + 𝑡𝑧 − 𝒒𝑔𝑡




2 (15)

The denominator 𝑆 is used to make SE independent of the template’s size. We set
this as the maximum spatial range of the template’s rest shape with respect to its 3
spatial coordinates. Consequently an SE of 1 corresponds to approximately 1% of
the template’s size. We emphasize that this is to help interpret results, and it is not
linked to a reconstruction scale ambiguity.

4.3 Success rates

We compare performance using success rates, which are the proportion of images
for which a method returns a solution with an error less than a threshold 𝜏. We use
FLPE-success@𝜏 to denote the FLPE success rate using a threshold 𝜏. Similarly, we
use SE-success@𝜏 to denote the SE success rate.We use a few different thresholds to
assess how often very accurate results are achieved (smaller 𝜏) and how often results
in the right ‘ballpark’ are achieved (larger 𝜏). Success rate was selected because it
is a robust statistic, required to handle the fact that in some instances fSfT can be
weakly-posed, leading to extreme FLPE and SE values.

4.4 FLPE and SE results

We evaluate our approach with three different policies for creating the initialization
set. There is a trade-off between using a larger initialization set (increasing com-
putational cost) and a smaller initialization set (reducing computational cost but
potentially reducing the chance of finding the global optimum). In this section we
test three initialization policies that are specified by a set of lens opening angles,
defined as Ψ𝑖𝑛𝑖𝑡 , and a set of closed-form SfT methods, defined asM:

• Policy 1: Ψ𝑖𝑛𝑖𝑡 = {𝜓𝐴𝑛},M = {MDH, PnP}
• Policy 2: Ψ𝑖𝑛𝑖𝑡 = {20, 50, 80},M = {MDH, PnP}
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(a)

(b)

Fig. 5: Focal Length Percentage Error (FLPE) results for the analytical method
(denoted as ‘fAn+MDH’) and optimization-based method (denoted as ‘Opt.’) using
different initialization policies. The initialization policies are defined in terms of
the set 𝜓𝑖𝑛𝑖𝑡 of initial focal lengths and the set of SfT methodsM used to initialize
deformation. (a) shows FLPE success rates at 15% and (b) shows FLPE success rates
at 5%.

• Policy 3: Ψ𝑖𝑛𝑖𝑡 = {20, 30, 40, 50, 60, 70, 80},M = {MDH, PnP}

Weuse𝜓𝐴𝑛 to denote the opening angle estimated by the analytical method . For each
focal length initialization, we generate two deformation initializations using MRD
and PnP. The number of initializations 𝑆 for policies 1,2 and 3 are therefore 2, 6,
and 14 respectively. We compare results against the analytical method to solve focal
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(a)

(b)

Fig. 6: (a-b) shows the Shape Error (SE) of the method (denoted as ‘fAn+MDH’) and
optimization-based method (denoted as ‘Opt.’) using different initialization policies.
The initialization policies are defined in terms of the set 𝜓𝑖𝑛𝑖𝑡 of initial focal lengths
and the set of SfT methods M used to initialize deformation. Van Gogh paper,
Bedsheet and Bending cardboard dataset have no errors because they do not contain
ground truth 3D information. For this reason there are no bars associated with them.

length, combined with the MDHmethod to compute deformation. This combination
is denoted as FAn+MDH.
We consider FLPE below 15% to be a good result for fSfT and FLPE below 5%

to be an exceptional result. Thus, we evaluate both FLPE-success@15 and FLPE-
success@5, shown in Figure 5(a) and (b) respectively. Similarly, Figure 6(a) and
Figure 6(b) show SE-success@5% and SE-success@2% respectively.
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We first consider FLPE-success@15 in Figure 5(a). We observe the following
points:

1. The performance of FAn+MDH is very good for the Kinect and VanGogh Paper
dataset, where FLPE-success@15 is 100.0%. FAn+MDH achieves a relatively
high FLPE-success@15 of 80.0% for the Hulk dataset. Recall that these dataset
are smoothly deforming paper sheets with dense texture. These results indicate
that the analytical method can estimate the focal length well in these cases.

2. For the other dataset (Spider-man, Cap, Bedsheet Kinect t-shirt, Handbag, Floral
paper and Bending cardboard),FAn+MDH performs relatively poorly andmuch
worse than optimization-based method (with any initialization policy). Indeed
for the Cap and Bending cardboard datasets FAn+MDH has FLPE-success@15
of 0.0%: Therefore it was not able to find a focal length within 15% of ground
truth in any of the images of those dataset. These results indicate that the
analytical method does not work well in more difficult cases when texture is
sparse and/or when deformation is complex.

3. There is little difference between policies 2 and 3. They achieve FLPE-
success@15 of 100% for datasetswith smoothly deforming,well textured objects
(Spider-man, Kinect paper, Van Gogh and Hulk datasets). They achieve FLPE-
success@15 above 60% for the Cap, Bedsheet, Kinect t-shirt, Handbag and
Floral paper datasets. Considering the challenges associated with these datasets
including strong complex and non-isometric deformation, this is a strong result.
Furthermore, it indicates that (i) initialization with three fixed focal length sam-
ples (short, medium, far) achieves similar or better performance compared to
policy 1, and (ii) there appears to be very little benefit in using more than three
focal length samples.

4. For the Cap dataset, policy 2 has a higher success rate than policy 3. This
may seem surprising because policy 3 initializes with more starts, including
all starts in policy 2, so we may think policy 3 should always do better. This
is not necessarily the case. The reason is because there exists an image in the
Cap dataset with a spurious solution that has a lower cost compared to the true
solution. This was located using policy 3 but not with policy 2. However, because
in all other datasets the performance of policies 2 and 3 are practically identical,
we see that this kind of events is extremely rare.

5. Performance is clearly strongly dataset dependent. The Bending cardboard and
Pillow cover datasets have the lowest performance among all dataset. Recall
that these datasets are very challenging because the Bending cardboard has
extremely sparse correspondences, and the Pillow cover has many views that are
approximately fronto-parallel (making fSfT poorly conditioned).

We now consider FLPE-success@5 in Figure 5(b). We observe the following:

6. Because of the much more stringent success threshold of 5%, we observer lower
success rates for most datasets. Nevertheless, 100% success rate is achieved by
the optimization-basedmethod for the Kinect paper dataset with all initialization
policies. Success rates above 78% are achieved for the Spider-man, Van Gogh
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paper and Hulk dataset with the optimization-based method and all initialization
policies. This shows that we can solve fSfT with the optimization-based method
and achieve very high accuracy (FLPE below 5%) for strongly isometric and
well-textured objects.

7. For less isometric and/or weakly textured objects (those other than Spider-man,
Kinect paper, Van Gogh paper and Hulk datasets), it is very challenging to solve
fSfT consistently with high accuracy and FLPE below 5%.

8. Unlike FLPE-success@15, FAn+MDH achieves significantly lower success
rates for FLPE-success@5 with the Kinect paper, Van Gogh and Hulk datasets
compared to the optimization-based method. This indicates that the analytical
method can achieve focal lengths in the right ballpark (< 15% error) for iso-
metric well-textured objects, but it is not as precise as the optimization-based
method.

We now consider Shape Error (SE) shown in Figure 6. Recall that Van Gogh,
Bedsheet and Bending cardboard datasets do not have ground truth 3D information
so SE cannot be measured. We observe the following points:

9. Very similar SE results are achieved for the different initialization policies for
each dataset. This agrees with the FLPE results.

10. SE-success@5 is above 80% for all datasets with the optimization-based method
with all initialization policies. Recall that an SE of 5 occurs when the Euclidean
error at each reconstructed point is within 5% relative to the size of the object
template. Thus, SE-success@5 above 80% is a strong result.

11. Unlike the FLPE results, the simpler dataset (Spider-man, Kinect paper and
Hulk) do not have systematically better SE results compared to other datasets.
Indeed, the Pillow cover dataset, which had the second lowest FLPE success
rate among all dataset, has very similar SE-success@2 as the Hulk dataset. This
highlights the intrinsic difficulty of the Pillow-cover dataset. It has little variation
in depth, leading to weak perspective effects. This causes an ambiguity between
the distance of the object to the camera and focal length, explaining why its
shape can be estimated well but the focal length cannot.

12. The shape error of FAn+MDH is similar to the optimization-based method for
the Hulk dataset, but it is generally significantly worse for the other datasets.
Recall that the Hulk dataset has relatively strong perspective effects thanks to
the short focal length and deformation is smooth with well-distributed point
correspondences.

4.5 Results visualizations

We visualize results of the optimization-based method (policy 2) in Figures 8, 9, 10.
The figures are laid out in the same way, with four representative images per dataset.
Below the images are the corresponding deformation solutions rendered from the
camera’s viewpoint and shaded to show the shapes. We give the corresponding
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FLPE with each image below each render. For all datasets with ground-truth, point
correspondences are colored-mapped using their shape error. For datasets without
ground-truth, point correspondences are colored in green. We can see the method
has been able to estimate deformations very well, especially considering the complex
deformations exhibited by the handbag, floral paper, fortune teller and cap datasets.
Note that the floral paper and fortune teller datasets have strongly creased objects
with relatively few point correspondences. We see our method is able to recover
the general shape well despite these challenges. In some datasets, a relatively large
FLPE was obtained (mainly the cardboard and pillow-cover datasets), while the
shape appears to be reconstructed well. These results suggest fSfT is weakly-posed
in those cases, with an ambiguity between focal length and surface distance,

4.6 Convergence basin

As only a few initializations are required with widely-spread focal lengths to achieve
good results, this suggests that the cost function’s convergence basin is relatively
wide. We provide a graphical illustration of the convergence basin in figure 7 using
the first image from the Floral paper dataset as a typical example. These graphs
are generated by sampling 20 focal lengths with opening angles ranging from 1◦
(extreme tele-photo) to 170◦ (extreme wide-angle), including the ground-truth focal
length. For each sample, Algorithm 1 is run using two SfTmethods (MDH and PnP),
and the cost of the final solution returned by the algorithm is recorded. Figure 7 (top)
shows the final costs plotted against the initial focal lengths (expressed as opening
angles). Figure 7 (bottom) shows the FLPE of the final solution plotted against initial
focal length. The ground truth focal length is illustrated by the vertical lines. For
initial focal lengths between 1◦ and 100◦, the same FLPE and final cost are achieved
(FLPE of 1.2%). This clearly demonstrates a relatively wide convergence basin with
respect to initial focal length.

4.7 Results summary.

The results show that the optimization-based method generally achieves far better
accuracy compared to the analytical method. Therefore, in practical applications, the
analytical method should be considered as a way to initialize the optimization-based
method (as done in policy 1), and not as a competitive approach. Initializationwith the
analytical method appears to achieve similar accuracy compared to initializationwith
focal length sampling (policies 2 and 3). Furthermore, there appears to be no benefit
in initializing with more than three focal length samples (policy 2 versus policy
3). We have implemented the method in Matlab a standard x64 Linux workstation
computer, and it run in approximately 5 seconds using initialization policy 2 (6
initializations). We confidently believe it can be run in real-time with a C++ and
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Fig. 7: Graphical illustration of the cost function’s convergence basin with respect
to initial focal length (expressed in opening angles). 20 different initial focal lengths
are tested using Algorithm 1, ranging from 1◦ (extreme tele-photo) to 170◦ (extreme
wide-angle). The top graph shows final cost and the bottom graph shows final FLPE
against initial focal length respectively. ground-truth focal length is shown as a
vertical line.

CUDA implementation based on [11]. A more detailed analysis of computation time
with different initialization policies is provided in §7 of the appendix.

4.8 Additional initialization sensitivity experiments

We conducted an additional experiment to further investigate the impact of the
initialization policy on computation time and accuracy. The public datasets were
limiting for this because the range of opening angles was not very large (24.8◦ to
65.3◦). Consequently, one focal length sample at 50.0◦ worked very well in practice.
We therefore augmented the datasets by adding simulated digital zoom variability.
We also added synthetic point correspondence noise. Because of space restrictions,
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we give further details for the augmented datasets and results in §6 of the appendix,
and we summarize the findings here:

13. In the original datasets (without simulated digital zoom or point correspondence
noise), initialization with the analytical solution had very similar performance
as initialization with one focal length sample at 50.0◦. However, when zoom
augmentationwas added, initializationwith the analytical solution outperformed
one focal length sample at 50.0◦.

14. Initializing with three opening angles of 20.0◦, 50.0◦ and 80.0◦ gives slightly
better performance compared to initializing with analytical solution.

15. There is a clear benefit in using both PnP and MDH for initializing deformation,
compared to using just MDH. Because the optimization algorithm had an early
terminationmechanism to avoid repeated search, the computational cost of using
both PnP and MDH is only approximately 50% greater than just using MDH.

16. There is little benefit in using more than three focal length samples.

We therefore recommend initializing with three opening angles at 20.0◦, 50.0◦ and
80.0◦ as the default, and using both PnP and MDH for initializing deformation for
each opening angle. We refer the reader to §6 of the appendix for the experiment
details and quantitative performance statistics.

4.9 Isometric weight sensitivity

We end the experiments section by investigating the sensitivity of the isometric
weight 𝜆iso on solution accuracy, and showing the positive effects our normalization
techniques have had in restricting the range of good isometric weights. We test 10
different isometric weights ranging from 𝜆iso = 1000×𝜆′iso to 𝜆iso =

1
100 ×𝜆

′
iso, given

in the legend in Figure 11. For each isometric weight, we optimize the cost function
using Algorithm 1, initialized using initialization policy 3 (3 opening angles at 20.0◦,
50.0◦ and 80.0◦, and using both PnP and MDH for initializing deformation). The
results are shown in Figure 11. We see that 𝜆iso strongly influences performance,
where excessively large or small weights compared to 𝜆′iso lead to poor performance.
This is seen for all dataset groups and performance metrics. Performance is generally
uni-modal in 𝜆iso, and peaking at, or very close to 𝜆′iso. Using a fixed weight in the
range 12𝜆

′
iso ≤ 𝜆iso ≤ 2𝜆′iso leads to similar performance where 𝜆iso = 𝜆′iso is generally

the best. The results also shows the importance of normalization. If for example we
changed the template’s size by a factor of 10, then without scale normalization, the
influence of the isometric cost (Equation 3.1.2) would be 10 times greater, and 𝜆′iso
would not longer be a good weight: results would be equivalent to using a weight of
10𝜆′iso, with much worse results. Similarly, if we were to not normalize the number
of point correspondences 𝑁 , a change in 𝑁 by a factor of 10 would also lead to
significantly worse performance equivalent to 𝜆iso = 𝜆′iso/10. These results strongly
indicate our normalization strategies are effective, because the same isometric weight
can be used in all datasets with near optimal performance.
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5 Conclusion

fSfT is a challenging problem that must be solved in real-world SfT applications
when the camera’s focal length (a key intrinsic) is unknown. We have modeled
and solved fSfT with a large-scale non-convex cost function that is optimized with
multi-start Gauss-Newton with a mechanism to avoid repeated search. The method
has received a relatively large evaluation comprising 12 public datasets with various
challenges that include sparse texture and creased surfaces. The method is consider-
ably more accurate compared to the analytical solution [4] in all datasets. It uses a
carefully-designed cost function with normalization techniques that allow the same
deformation weights to be used for all datasets, making our solution practical for
real-world use without the need to tune cost weights at run-time. In future work,
we aim to combine the method with deep learning-based dense image registration
and to extend the method to multiple views sharing a common focal length. We also
aim to study the practical and theoretical limits of solving SfT with more unknown
intrinsics.
Matching quality is an important factor that affects results, and a deeper analysis

would be useful. There are three main aspects to match quality: match density, match
noise and incorrect matches (also called ‘outliers’ or ‘mis-matches’). By including
objects with different amounts of texture, match density is varied in our experi-
ments. As shown in Figure 13, the poorly textured objects (Floral paper, Fortune
teller, Bending cardboard and Pillow cover) tend to have higher reconstruction error
than well-textured objects (with denser matches). Fortune teller represents a ‘break-
point’ because of the combination of very sparse matches and highly discontinuous
deformation (folds). The matches do not provide enough motion information for
consistent and accurate focal length estimation. This is shown in Figure 5a, where
focal length estimates with 15% error were attained in 50% of the Fortune teller
images. Concerning mis-matches, as with most prior works in SfT, we assume that
the majority of mis-matches have been detected and removed by a dedicated ‘outlier
rejection’ method, then the remaining matches are passed to our fSfT method. In
particular, [38] and its extension to arbitrary template meshes [36] has shown ex-
cellent robustness in a tracking-by-detection setting. A dedicated evaluation of the
robustness of the complete pipeline, using different outlier rejection methods, would
be interesting to perform for future work. We also aim to conduct a more detailed
analysis of the influence of point noise on reconstruction accuracy.
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Fig. 8: fSfT results with our method. Four representative images from the Spider-
man, Bedsheet, Kinect paper and Kinect t-shirt datasets are shown (top to bottom).
The estimated deformations are shown below each image as shaded renders. Point
correspondences are visualized and color-mapped according to their SE. The Bed-
sheet dataset does not have ground-truth 3D, so point correspondences are shown in
green. Focal length information and FLPE is given below each render.
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Fig. 9: fSfT results with our method. Four representative images from the Van Gogh
paper, Handbag, Pillow cover and floral paper datasets are shown (top to bottom).
The estimated deformations are shown below each image as shaded renders. Point
correspondences are visualized and color-mapped according to their SE. The Van
Gogh paper dataset does not have ground-truth 3D, so point correspondences are
shown in green. Focal length information and FLPE is given below each render.
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Fig. 10: fSfT results with our method. Four representative images from the Fortune
teller, Bending cardboard and Cap datasets (top to bottom). The estimated deforma-
tions are shown below each image as shaded renders. Focal length information and
FLPE is given below each render.
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Fig. 11: FLPE performance (top) and SE performance (bottom) with different iso-
metric weights. Note that Bedsheet, Bending cardboard and Van Gogh paper do not
have ground truth 3D, so SE for those datasets cannot be measured.
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Appendix

1 Overview

This appendix is organized into 7 sections. §2 describes the implementation of the
isometric cost defined in §3.1.2 with a triangulated mesh. §3 gives the default values
of the termination condition thresholds used in Algorithm 1 and in all experiments.
§4 gives the implementation details of the MDH and PnP SfT methods. §5 provides
additional numerical details of each dataset. §6 provides the details for the initializa-
tion sensitivity experiment described in §4.8. §7 provides additional computational
cost analysis.

2 Discrete quasi-isometric cost implementation

2.1 Triangle geometry and embedding functions

A constant strain triangle (CST) is a triangular element whose stress and strain
fields are constant in the triangle’s domain. Each triangle is associated with a flat
2D triangular domain Ω𝑡 ⊂ R2 where 𝑡 ∈ [1, 𝑇] is the triangle index. We define
Ω𝑡 by three 2D vertices denoted as 𝑢1𝑡 ∈ R2, 𝑢2𝑡 ∈ R2 and 𝑢3𝑡 ∈ R2. We define as
𝒚𝑖𝑡 ∈ R3 and 𝒙𝑖𝑡 ∈ R3 the position of the 𝑖𝑡ℎ vertex of triangle 𝑡 in object and camera
coordinates respectively. We define as 𝜁𝑡 : Ω𝑡 → R3 the embedding of triangle 𝑡
into object coordinates. We define as 𝜙𝑡 : Ω𝑡 → R3 the embedding of triangle 𝑡 into
camera coordinates. Recall that 𝜁𝑡 is known from the template and 𝜙𝑡 to be estimated
by fSfT.

2.2 Cost

The isometric cost 𝑐iso is constructed by the following discrete approximation of
𝐸𝑠𝑡𝑟𝑎𝑖𝑛:

𝑐iso =

𝑇∑︁
𝑡=1

𝑎𝑡 ‖𝐺 (𝐽 (𝜁𝑡 )) − 𝐺 (𝐽 (𝜙𝑡 ))‖2𝐹 ≈ 𝐸𝑠𝑡𝑟𝑎𝑖𝑛 (16)

where𝐺 (𝑿) def= 𝑿>𝑿 is the Gramian operator, 𝑎𝑡 is the known surface area of the 𝑡𝑡ℎ
triangle and 𝐽 ( 𝑓 ) denotes the Jacobian of a function 𝑓 . Taken strictly, Equation (16)
equates the first fundamental form of the two triangle embeddings.
We position the vertices 𝒖𝑖∈[1,3]

𝑡 such that the triangle in object coordinates is
isometric with Ω𝑡 as follows:
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𝒖𝑖
𝑡 =

[
1 0 0
0 1 0

]
𝑹𝑡 𝒚

𝑖
𝑡 (17)

where 𝑹𝑡 is any 3D rotation that aligns the triangle’s normal in object coordinates
to the 𝑧 axis. As a consequence, 𝐺 (𝐽 (𝜁𝑡 )) = 𝑰2. Returning to Equation (16), we are
left with expressing 𝐽 (𝜙𝑡 ). Because 𝜙𝑡 is linear within Ω𝑡 from the definition of a
CST, as a local affine embedding 𝐽 (𝜙𝑡 ) ∈ R3×2 is constant and it is found from the
following linear system of 6 equations:

𝐽 (𝜙𝑡 )
(
𝒖𝑖
𝑡 −
1
3

(
𝒖1𝑡 + 𝒖2𝑡 + 𝒖3𝑡

))
=

(
𝒙𝑖𝑡 −

1
3

(
𝒙1𝑡 + 𝒙2𝑡 + 𝒙3𝑡

))
, ∀𝑖 ∈ [1, 3] (18)

The solution to 𝐽 (𝜙𝑡 ) in Equation (18) is a linear expression in the unknown vertex
positions 𝒙1𝑡 , 𝒙2𝑡 and 𝒙3𝑡 . We recall that from the definition of 𝜽 in Equation (2), 𝒙1𝑡 ,
𝒙2𝑡 and 𝒙3𝑡 are contained within 𝜽 (𝜽 holds the positions of all vertices in camera
coordinates). As a consequence, 𝐽 (𝜙𝑡 ) is linear in 𝜽 , and therefore Equation (16) is
quartic in 𝜽 .

3 Optimization termination conditions

𝜏𝑠𝑡𝑒𝑝 𝜏Δ 𝜏𝑐 𝜏H
𝑇1 10 1e − 5 1e − 5 20
𝑇2 20 1e − 5 1e − 5 20
𝑇3 100 1e − 5 1e − 5 20

Table 1: Default termination values used in Algorithm 1

4 SfT implementation details

4.1 MDH

MDH is considered one of the best closed-form SfT methods. Given an initial
opening angle 𝜓𝑠 with focal length 𝑓𝑠 , and the set of 𝑁 point correspondences P and
Q, we compute 𝜽𝑠 in two stages as follows. In the first stage we reconstruct the depths
Z = {𝑧1, 𝑧2, . . . , 𝑧𝑁 } of Q by solving a convex relaxation of SfT following [42].
Specifically, we maximize the depth of each point such that the Euclidean distance
𝑒𝑖 𝑗 between any two points (𝑖, 𝑗) ∈ [1, 𝑁]2 does not exceed their geodesic distance
𝑑𝑖 𝑗 . The geodesic distances are known a priori from the template and they can be
computed efficiently using e.g. Fast Marching [24]. The following SOCP problem is
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then solved:

max
∑𝑁

𝑖=1 𝑧𝑖 s.t.

∀(𝑖, 𝑗) ∈ N



 zifs stk (Q(𝑖), 𝑓𝑠) − 𝑧 𝑗

𝑓𝑠
stk (Q( 𝑗), 𝑓𝑠)




2
2
≤ 𝑑𝑖 𝑗

(19)

The set N defines pairs of point correspondences, constructed with a K-nearest
neighbor (KNN) graph with a default of min(𝑁, 15) neighbors. We solve Equation
(19) quickly using the interior point method from Mosek [34]. When 𝑁 is not
large (𝑁 ≤ 500), this typically takes between 100 and 500 ms on the benchmark
computer. If 𝑁 > 500 we reduce the problem size by randomly sub-sampling 500
correspondences without replacement using furthest point sampling, and we ignore
the remaining points. This normally has little effect on reconstruction accuracy.
In the second stage we compute 𝜽𝑠 fromZ and 𝑓𝑠 . We solve a regularized linear

least squares system that finds a smooth 3D deformation of the template mesh that
fits the reconstructed point correspondences in camera coordinates. This problem is
as follows:

𝜽𝑠 = argmin
𝜽

1
𝑁

∑𝑁
𝑖=1




𝑔(P(𝑖); 𝜽) − 𝑧𝑖
𝑓
stk(𝑄(𝑖), 𝑓𝑠)




2
2
+ 𝜆𝑐reg (𝜽) (𝑎)

= argmin
𝜽
‖𝑨𝑚𝑑ℎ𝜽 − 𝒃𝑚𝑑ℎ ‖22 (𝑏)

(20)

where 𝜆 is a regularization weight. Equation (20-b) is equivalent to Equation (20-a)
where we have rearranged the problem to a standard LLS format with known terms
𝑨𝑚𝑑ℎ and 𝒃𝑚𝑑ℎ . The matrix 𝑨𝑚𝑑ℎ does not depend on 𝑓𝑠 norZ. We exploit this by
solving Equation (20)with a factorization of 𝑨𝑚𝑑ℎ . Importantly, the factorization can
be done once and be reused for any 𝑓𝑠 orZ. We weight 𝑐reg using the normalization
technique described in §3.1.3, and we use the same 𝜆 for all problem instances (we
use a default of 𝜆 = 100 in all experiments).
The factorization can be solved very quickly when the number of mesh vertices

𝑉 is small (a few hundred) using sparse Cholesky factorization. However for larger
meshes it become unreasonably expensive. We deal with this by applying dimen-
sionality reduction by eliminating high-frequency deformation components from the
problem. We implement this with linear bases using a modal analysis of the design
matrix of the regularization cost. This reduces the problem to a smaller dense linear
system that is solved efficiently with Cholesky factorization (we use Eigen’s LDLT
implementation).

4.2 PnP

PnP estimates the rigid pose of the template in camera coordinates from a focal
length sample 𝑓𝑠 , and the point correspondences P and Q. Despite not estimating
deformation, we find this is a surprisingly effective and fast initialization method
for fSfT. When P is co-planar we use IPPE [10], otherwise we use OpenCV’s
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SolvePnP method that implements the direct linear transform (DLT) initialization
and Levenberg-Marquardt refinement.

5 Dataset descriptions

Additional dataset descriptions are provided in Tables 2, 3 and 4.

Cap Handbag Pillow-cover Spider-man

Object material Fabric Fabric Fabric Paper
Template geometry 3D open 3D open 3D open Flat open
Number of template
vertices (𝑉 )

4854 1098 1368 2918

Number of template
triangles (𝑇 )

9502 2063 2587 5000

Video (vid.) or image
collection (col.)

col. col. col. col.

Number of images (𝑀 ) 15 7 9 79
Image resolution
(𝑤 × ℎ)

2048 × 1536 1280 × 960 1280 × 960 1728 × 1152

Correspondences per
image (𝑁 )

266 150 63 1176 ± 468

Focal length (px) 2039 1344.0 1344.0 1348.4→
3937.9

Focal length (% of 𝑤) 99.6 105.0 105.0 78.0→
277.9

Lens opening angle (◦) 53.3 50.9 50.9 65.3→
24.8

Has ground truth 3D Yes Yes Yes Yes

Table 2: Cap, Pillow-cover, Handbag and Spider-man dataset statistics.

6 Additional initialization sensitivity experiments

6.1 Initialization policies

We test 8 initialization policies in this experiment. The first 3 policies are the same
as defined previously and we introduce 5 new policies as follows:

• Policy 1: Ψ𝑖𝑛𝑖𝑡 = {𝜓𝐴𝑛},M ∈ {MDH, PnP}
• Policy 2: Ψ𝑖𝑛𝑖𝑡 = {20, 50, 80},M ∈ {MDH, PnP}
• Policy 3: Ψ𝑖𝑛𝑖𝑡 = {20, 30, 40, 50, 60, 70, 80},M ∈ {MDH, PnP}
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Floral paper Fortune
teller

Hulk Bending
cardboard

Object material Paper Paper Foam Cardboard
Template geometry 3D open 3D open Flat open Flat open
Number of template
vertices (𝑉 )

1248 936 122 609

Number of template
triangles (𝑇 )

2342 1747 200 1120

Video (vid.) or image
collection (col.)

col. col. col. vid.

Number of images (𝑀 ) 13 6 20 18 (87)
Image resolution
(𝑤 × ℎ)

1280 × 960 1280 × 960 4928 × 3264 720 × 576

Correspondences per
image (𝑁 )

18 20 20 52

Focal length (px) 1344.0 1344.0→
3937.9

3784.9 879.6

Focal length (% of 𝑤) 105.0 105.0→
277.9

76.8 122.2

Lens opening angle (◦) 50.9 50.9 66.1 44.5
Has ground truth 3D Yes Yes Yes No

Table 3: Floral paper, Fortune teller, Hulk and Bending cardboard dataset statistics.

Bedsheet Kinect
t-shirt

Kinect
paper

Van Gogh
paper

Object material Fabric Fabric Paper Paper
Template geometry Flat open Flat open Flat open Flat open
Number of template
vertices (𝑉 )

1271 1089 1089 1189

Number of template
triangles (𝑇 )

2400 2048 2048 2240

Video (vid.) or image
collection (col.)

vid. vid. vid. vid.

Number of images (𝑁 ) 14 (68) 63 (313) 33 (100) 24 (71)
Image resolution
(𝑤 × ℎ)

720 × 576 640 × 480 640 × 480 720 × 576

Correspondences per
image 𝑁

1393 367 1228 4665

Focal length (px) 879.6 528.0 528.0 879.6
Focal length (% of 𝑤) 122.2 82.5 82.5 122.2
Lens opening angle (◦) 44.5 62.4 62.4 44.5
Has ground truth 3D No Yes Yes No

Table 4: Bedsheet, Kinect t-shirt, Kinect paper and Van Gogh paper dataset statistics.
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• Policy 4: Ψ𝑖𝑛𝑖𝑡 = {50},M ∈ {MDH}
• Policy 5: Ψ𝑖𝑛𝑖𝑡 = {50},M ∈ {MDH, PnP}
• Policy 6: Ψ𝑖𝑛𝑖𝑡 = {𝜓𝐴𝑛},M ∈ {MDH}
• Policy 7: Ψ𝑖𝑛𝑖𝑡 = {20, 50, 80},M ∈ {MDH}
• Policy 8: Ψ𝑖𝑛𝑖𝑡 = {𝜓𝐺𝑇 },M ∈ {MDH, PnP}

Policies 4 and 5 have one focal length sample whose opening angle is 50◦. We
compare them to evaluate the benefit of initializating with two SfT methods (MDH
and PnP) compared with one (MDH). This is similarly done with policies 6 and 1,
and policies 7 and 2.
Policies 6 and 1 have one focal length sample which is from the analytical

method. Policies 7 and 2 have three focal length samples and policy 3 has 7 focal
length samples. Policy 8 has one focal length sample, which is the ground truth
with opening angle denoted by 𝜓𝐺𝑇 . Of course, we cannot use policy 8 in practice
because it requires the ground truth. However, we use it to compare how well the
other policies perform compared to the ideal of initializing with the ground truth
focal length.

6.2 Dataset versions

We use six dataset versions in this experiment as follows:

• v1: No augmentation (original datasets)
• v2: Zoom augmentation and noise augmentation with 𝜎 = 0.16𝑤
• v3: Zoom augmentation and noise augmentation with 𝜎 = 0.32𝑤
• v1+SF: v1 with Solvable Filtering
• v2+SF: v2 with Solvable Filtering
• v3+SF: v3 with Solvable Filtering

We now describe zoom augmentation, noise augmentation and Solvable Filtering.

Zoom augmentation implementation

Zoom augmentation is implemented as follows. For each image in each dataset, we
convert the point correspondences to retina coordinates then we projected them back
to image coordinates using a simulated intrinsic matrix with a random focal length
𝑓𝑟𝑎𝑛𝑑 , with principal point at the image center and zero skew. We compute 𝑓𝑟𝑎𝑛𝑑
independently for each image, using an opening angle 𝜓𝑟𝑎𝑛𝑑 drawn with uniform
probability in the range 10◦ to 90◦, producing a wide range of focal lengths. We
illustrate examples of images with simulated digital zoom for the Cap dataset in
Figure 12.
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Fig. 12: 8 representative images from the Cap dataset where zoom augmentation is
applied.

Noise augmentation implementation

Noise augmentation is implemented to simulate increasingly adverse conditions, by
adding noise to each point correspondence and by reducing the number of point
correspondences. Reducing points is required because additional noise has a smaller
influence on accuracy when there are many points. For each image in each dataset,
we retain 𝑁 ′ points sampled randomly and without replacement where 𝑁 ′ is drawn
uniformly in the range [min(𝑁, 75), min(𝑁, 100)] where 𝑁 is the original number of
points in the image. Noise is added by randomly perturbing each of the retained image
points by Gaussian I.I.D. noise of standard deviation 𝜎 (px). We test 𝜎 = 0.16𝑤 and
𝜎 = 0.32𝑤 where 𝑤 is the image width. These are equivalent to a standard deviation
of 1px and 2px respectively at 640 × 480 resolution. The latter can be considered
strong noise.

Solvable Filtering (SF) implementation

There may exist problem instances that are not solvable by any fSfT method. This is
a limitation because such instances dilute the effect of different initialization policies
on the performance metrics. To deal with this, we also measure performance on
a sub-set of problem instances for which the optimization-based method succeeds
(we define success if the FLPE is below 15%.) To implement this, we run the
optimization-based method using all initializations contained in policies 1-8, and we
filter out the problem instance if its corresponding FLPE was above 15%. By only
evaluating on the filtered set of problem instances, we could answer the question:
How well does an initialization policy perform given that the problem is solvable
using at least one of the initialization policies?
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6.3 Results

Focal length results are shown in Figure 13, where Figure 13(a) shows FLPE-
success@15 and Figure 13(b) shows FLPE-success@5 averaged across all datasets.
We make the following observations:

Fig. 13: Focal Length Percentage Error (FLPE) performance of the analytical method
(denoted as ‘fAn+MDH’) and optimization-based method (denoted as ‘Opt.’) using
different initialization policies. The initialization policies are defined in terms of the
set 𝜓𝑖𝑛𝑖𝑡 of initial focal lengths and the set of SfT methods M used to initialize
deformation.
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17. There is a strong trendwhere usingmore focal length samples in the initialization
policy reduces focal length error. There is a slight improvement using policy
3 (with 7 samples) compared to policy 2 (with 3 samples). By contrast there
is a strong benefit using policy 2 compared to policy 5 (with one sample).
This illustrates diminishing returns where increasing the number of focal length
samples has less of a benefit on solution accuracy.

18. The benefit of more focal length samples is less in v1+SF compared to v2+SF
and v3+SF. This is because in v1+SF we do not apply zoom augmentation, so
the focal lengths in v1+SF have opening angles in the range 24.8◦ ≤ 𝜓 ≤ 65.3◦.
In these cases the benefits of using more focal length samples is less pronounced
compared to one sample at 50◦.

19. There is a strong trend where using two SfT methods for initialization (MDH
and PnP) improves performance compared to one SfT method (MDH). Recall
that these methods operate very differently: MDH estimates deformation, and
although it works well in general, there are cases when it does not estimate
shape well thanks to the convex relaxation. By contrast, PnP does not estimate
deformation, so the initialization it provides is the rigid pose that best fits the
data. Adding the PnP solution appears to improve robustness in cases when the
MDH solution cannot give a good initial estimate.

20. Initializingwith the analyticalmethod (policy 1) performsworse than initializing
with a fixed opening angle of 50◦ (policy 5) for v1+SF. However, for v2+SF and
v3+SF,we see a benefitwhere policies 6 and 1 outperformpolicies 4 and 5.Recall
that v2+SF has zoom augmentation, and it has amuch larger variation in opening
angles compared to the original datasets without zoom augmentation (v1+SF).
Therefore, when there is larger variation in opening angles, the analytical method
is able to provide a better initialization compared to using a fixed opening angle
of 50◦. By contrast, in v1+SF, where the range of possible opening angles spans
40.5◦ with a midpoint at 45.0◦, using a single opening angle of 50◦ performs
better than using the opening angle from the analytical method.

21. Initializing with the ground truth focal length (policy 8) performs approximately
the same as policy 2 (three focal length samples) for all dataset versions. This
shows that accurate focal length initialization is not required by Algorithm 1.

22. Initializing with policy 8 performs worse in general than initializing with policy
3 (7 focal length samples). This can seem counter intuitive and we study the
cause inmore detail below. In short, the reason is becausewhenwe initialize with
multiple focal length samples, we introduce shape diversity into the initialization
set as a side effect. This diversity can help to locate the global optimum. We call
this the diverse initialization effect.

The shape error results are shown in Figure 14, where Figure 14(a) shows SE-
success@5 and Figure 14(b) shows SE-success@2. We observe all the same perfor-
mance trends as we have observed for FLPE. The diverse initialization effect is also
present.
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Fig. 14: Shape Error (SE) performance of the analytical method (denoted as
‘fAn+MDH’) and optimization-based method (denoted as ‘Opt.’) using different
initialization policies. The initialization policies are defined in terms of the set 𝜓𝑖𝑛𝑖𝑡

of initial focal lengths and the set of SfT methodsM used to initialize deformation.

7 Computation cost analysis

We compare the computational cost of the different initialization policies by mea-
suring the average number of optimization iterations (Gauss-Newton steps) required
by Algorithm 1 using each policy. We use this instead of computation time be-
cause it is invariant to the implementation platform, and it is roughly proportional
to computation time because the cost of executing each Gauss-Newton iteration is
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approximately constant at each iteration. The results are shown in Figure 15 where
we observe the following:

23. There is a clear increase in computational cost using policies with a larger
initialization set.

24. There is practically no difference in the computational cost of initializing using
one focal length sample (policies 4 and 5) and using the analytical method’s focal
length estimate (policies 6 and 1). This indicates that the number of iterations
required for convergence is not highly sensitive to the accuracy of the initial
focal length estimate.

25. The early termination criteria used in Algorithm 1 to avoid repeated search
of solution space are proving effective. Without them, we would be seeing a
doubling in the number of optimization iterations from policies using MDH to
policies using both MDH and PnP. For example, the extra cost from policy 7 to
policy 2 is between 22.2% and 32.7% depending on the dataset version. Without
early termination the additional cost would be approximately 100%.

26. There is a slight increase in computational cost from v1 to v2 (and v1+SF to
v2+SF) for all policies. This indicates that increasing noise also increases the
number of iterations required for convergence.

Fig. 15: Computational cost the optimization-based method with different initializa-
tion policies. This is expressed in the average number of Gauss-Newton iterations
required for Algorithm 1 to converge.
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