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Abstract
Purpose. Augmented Reality (AR) in Laparoscopic Liver Resection (LLR)
requires anatomical landmarks and the silhouette to be found on the laparoscopic
image. They are used to register the preoperative 3D model obtained from CT
segmentation. The existing AR systems rely on the surgeon to 1) annotate the
landmarks and silhouette and 2) provide an initial registration. These non-trivial
tasks require surgeon attention which may perturb the procedure. We propose
methods to solve both tasks, hence registration, automatically. Methods. The
landmarks are the lower ridge and the falciform ligament. We solve 1) by training
a U-Net from a new dataset of 1415 labelled images extracted from 68 proce-
dures. We solve 2) by a novel automatic coarse-to-fine pose estimation method,
including visibility-reasoning within an iterative robust process. In addition, we
propose to divide the ridge into six anatomical sub-parts, making its annotation
and use in registration more accurate. Results. Our method detects the silhouette
with an error equivalent to an experienced surgeon. It detects the ridge and liga-
ment with higher errors owing to under-detection. Nonetheless, our method suc-
cessfully initialises the registration with tumour target registration errors of 22.4,
14.8 and 7.2 mm for 3 clinical procedures. In comparison, the errors from manual
initialisation are 30.5, 15.1 and 16.3 mm. Conclusion. Our results are promis-
ing, suggesting that we have found an appropriate methodological approach.

Keywords: Laparoscopic Liver Resection, 3D-2D Registration, Model Initialisation,
Curvilinear Landmark Detection, Monocular Vision
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1 Introduction
In Laparoscopic Liver Resection (LLR), the surgeon must precisely locate the
tumours in order to remove them and avoid recurrence. Because some tumours are not
visible from outside the liver, additional information from preoperative CT is needed.
However, combining CT and laparoscopy is challenging, especially because the liver
deforms between the preoperative and intraoperative times. Augmented Reality (AR)
assists the surgeon by registering a 3D preoperative model reconstructed from the CT
to the laparoscopic image, to predict the intraoperative tumour shape and location.

We study the registration problem with the pipeline in figure 1. The inputs are
the preoperative 3D models of the liver and tumours and the camera intrinsics are
obtained by static calibration when surgery starts. Registration crucially depends
on corresponding anatomical landmarks between the preoperative 3D liver model
and the laparoscopic image, as well as the silhouette. The model landmarks are
determined prior to surgery and the corresponding image landmarks during surgery.
Existing AR systems require the surgeon to annotate the image landmarks and silhou-
ette and to manually initialise the registration by providing a rigid pose of the 3D liver
model. Both steps must be done during the procedure, which is highly inappropriate.

We present methods to overcome these issues and automate registration. Alterna-
tively, these methods may also be used to initialise existing interactive methods. We
first study the automatic detection of the image landmarks and silhouette, using a U-
Net trained with a loss function adapted to thin regions. Our contribution is a database
and a study of the anatomical structure of the landmarks. We define the ridge land-
mark as the lower anterior ridge of the liver and the ligament landmark as the junction
between the falciform ligament and the liver. They are represented as curves. We fix
an issue from previous works where the ridge is considered as a single curve. We pro-
pose a subdivision which copes with the variability in camera viewpoint and then a
new method for automatically estimating the initial registration pose. Estimating pose
automatically from curve correspondences for a single RGB image is a complex task
owing to the issue of visibility, which has not received a solution in computer vision.
We propose an iterative method, establishing point-wise correspondences between
the landmarks, while refining visibility prediction and eventually combining the vis-
ible landmarks and the silhouette. Our methods can be readily extended to stereo
images. Our experiments show that our automatic methods compare favourably with
the manual results, suggesting that they could facilitate fully automatic AR in LLR.

2 Related Work
Most registration approaches split the problem into two parts: initial registration and
tracking [1]. We focus on stages of the initial registration, shown in figure 1, though
our methods could also be used for tracking.

Liver registration landmarks and silhouette. Registration requires correspondences
between the preoperative liver and the surgical image. These are provided by the
ridge and ligament landmarks (figures 2 and 3) [2]. For stereo laparoscopy, the visi-
ble surface may also be used, whereas for monocular laparoscopy, the silhouette is
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Fig. 1: Registration pipeline. The green, blue and grey boxes respectively encode the
already automatic, automated by our methods and still manual tasks.

considered instead [3, 4]. The ridge is modelled as a single curve [2, 3, 5]. This does
not match its real shape, as we show in a careful anatomical study in section 3.1.

Detection of landmarks and silhouette in laparoscopic images. Detecting the
landmarks and silhouette in an image is a semantic segmentation task, for which
the state-of-the-art is end-to-end CNNs [6]. However, most methods deal with thick
regions, as opposed to the thin curvilinear landmark shapes. Nonetheless, the U-Net
architecture [6] was used on small and medium-sized datasets [7, 8] using specific
function losses for thin contour detection. A compound loss with a weighted sum of
Cross-Entropy (CE) and of the Dice Loss was used [8]. The Tversky Loss is a gener-
alisation of the Dice Loss [9], more appropriate to highly imbalanced classes, which
weights False Negatives (FN) more heavily than False Positives (FP). The objective
is indeed not to miss the thin or small regions, the predicted labels being preferred a
bit thicker than unseen. The Hybrid and Unified Focal Losses [10] are other alterna-
tives for dealing with highly imbalanced classes. Three specific loss functions were
used in successive steps [7]: CE, then a binarising loss and eventually a thinning one.
We extensively tested loss combinations and report the best results in section 4.3.

Liver registration initialisation. The preoperative liver model pose is initialised
manually in the vast majority of works [3, 5], with two exceptions [11, 12]. Rigid reg-
istration is performed in [11] using the ridge and a reconstructed intraoperative 3D
point cloud from stereo by means of a shape matching technique. Alternatively, other
3D registration methods such as [13] could be used. Rigid registration is performed
in [12] using the ridge and the silhouette. The approach is brute-force: it samples a
large set of camera poses from a camera keyhole assumption and estimates the visi-
ble liver surface. In contrast, we search for the pose directly from the landmarks and
silhouette, without requiring stereo, without assuming a known keyhole position and
without sampling camera poses, thanks to a proposed specific highly robust process
given in section 3.2.

3 Methodology

3.1 Analysis and Refinement of the Registration Landmarks
The ridge and ligament have been used as landmarks since [2]. We assume the fal-
ciform ligament was cut, which happens in most LLR procedures. Both landmarks
are visible for frontal or fronto-lateral views. They are rarely entirely visible, owing
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(a) Refined example, central
part in the white border

(b) GT on an
image from test set

(c) Predictions for
the image in (b)

(d) Predictions for
another test image

Fig. 2: Image, ground truth and predicted landmarks examples. Silhouette in orange,
ligament in yellow, refined ridge parts in green and blue nuances.

to occlusions and self-occlusions. Previous works model the ridge as a single curve,
which we call the single ridge model. However, depending on the camera position
relative to the liver, the central part of the ridge next to the ligament may correspond
to different positions in the model. We illustrate this issue in figure 2(a). Several
annotations can be performed for the left central part of the ridge. This central part
corresponds to the part surrounding the round ligament, close to the Rex recessus.
This is the surface formed by the inferior medial segment (IVb) and the inferior lat-
eral segment (III) outer surface closer to the intersection delimited by the frontal
extremity of the ligament. This part varies substantially across patients. We propose
to label both the upper and lower limits of this surface, for each side, right and left.
We thus obtain the following landmarks for the central part:

• The upper-left central limit (may be visible from frontal left views and guessed
from right fronto-lateral and frontal views)

• The upper-right central limit (may be visible from frontal right views and guessed
from frontal left and frontal views)

• The lower-left central limit (may be visible from opposite lateral views)
• The lower-right central limit (may be visible from opposite lateral views)

We call this the split ridge model. Its most reliable landmarks are the right ridge and
left ridge from each side of the central part. We illustrate this delimitation in figure 2.

3.2 Automatic Registration Initialisation
Iterative deformable registration requires an initialisation. This is often obtained with
a rigid model, which consists in estimating the camera pose with respect to the liver
model. This is typically done manually. Indeed, Perspective-n-Point (PnP) pose esti-
mation cannot be directly used because 3D-2D point correspondences are not known
between the preoperative 3D model and the 2D image landmarks.

We propose to solve this challenging pose problem iteratively, in three coarse to
fine steps, as given by Algorithm 1. The main differences between these steps are
the preoperative 3D vertices (with their image correspondences) selected for pose
estimation in a RANSAC-based PnP solution. The coarse step 1© uses all landmark
vertices. The following step 2© refines pose iteratively using the visible landmark
vertices only, determined from the current pose estimate (line 34, figure 3(c)). The
fine step 3© adds the silhouette vertices related to the image silhouette (line 32).
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Algorithm 1 Pose Estimation Pseudo-code
1: main variables:
2: VL: 3D landmark vertex coordinates in preoperative space
3: IL, IS : 2D landmark and silhouette coordinates in image space
4: T : threshold set for inlier selection in extended RANSAC-based PnP
5:
6: MinError← +∞, BestPose← ∅
7: 1© Coarse estimation from all landmark vertices
8: BestPose, MinError← ESTIMATEPOSE(VL,IL,T ,MinError,BestPose)
9: 2© Refinement from visible landmark vertices only

10: BestPose, MinError← REFINEPOSE(False,VL,IL,IS ,T ,MinError,BestPose)
11: 3© Refinement from visible landmark vertices and the silhouette
12: BestPose, MinError← REFINEPOSE(True,VL,IL,IS ,T ,MinError,BestPose)
13:
14: procedure ESTIMATEPOSE(Vt,It,T ,MinError,InitialPose)
15: BestPose← InitialPose
16: Ît ← SAMPLEIMAGELANDMARKSASMODELVERTEXONES(It,Vt)
17: for each τ in T do
18: EstimatedPose← RANSACPNP(Vt,Ît,τ ,InitialPose)
19: ProjectedVt← PROJECTTOIMAGEPLANE(Vt,EstimatedPose)
20: MSD← COMPUTEMSD(GETVISIBLEPROJECTIONS(ProjectedVt),It)
21: if MSD<MinError then MinError←MSD, BestPose← EstimatedPose
22: return BestPose,MinError
23:
24: procedure REFINEPOSE(WithSilhouette,VL,IL,IS ,T ,MinError,BestPose)
25: PreviousMinError← +∞
26: while MinError<PreviousMinError do
27: PreviousMinError← MinError
28: VisibleVL ← DETERMINEVISIBLEVERTICESINIMAGE(VL,BestPose)
29: if WithSilhouette then
30: VS ← DETERMINESILHOUETTEVERTICES(BestPose)
31: V̂S , ÎS ← GETCORRESPONDENCES(VS ,IS ,BestPose)
32: Vt ← [VisibleVL, V̂S ], It ← [IL, ÎS ]
33: else
34: Vt ← VisibleVL, It ← IL
35: BestPose,MinError← ESTIMATEPOSE(Vt,It,T ,MinError,BestPose)
36: return BestPose,MinError

The correspondences are the closest points between the projection of the silhouette
vertices and the image silhouette (V̂S and ÎS in line 31).

The procedure for estimating the pose is given in lines 14-22. First, the landmark
image curves are sampled uniformly to create one-to-one correspondences with the
model vertices (line 16). From these 3D-2D correspondences, we solve a RANSAC-
based PnP (line 18) using OpenCV. PnP uses a non-linear Levenberg-Marquardt
minimisation to refine the initial pose. For 1©, this is initialised with Direct Linear
Transformation while for 2© and 3© it uses the best pose from the previous steps.

RANSAC highly depends on the reprojection error threshold defining the inlier
set. An unadapted threshold leads to an inlier set with too many or too few points
and then to an incorrect pose. In the problem at hand, the threshold cannot be cho-
sen a priori. This is because the error not only depends on observation noise, as in
classical vision problems, but also on modelling error. The latter stems from sev-
eral factors, the use of a rigid registration to approximate the real deformation field
being the strongest one. We propose an extension of RANSAC to determine an opti-
mal threshold at runtime. This works by repeating RANSAC for several thresholds
from a set T ⊂ R. Each threshold τ ∈ T gives an inlier set (figure 3(a)) and a pose
estimate. We eventually select the best solution using the Mean Sum of Distances

https://docs.opencv.org/4.5.3/d9/d0c/group__calib3d.html
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(a) Original image and model landmarks
(yellow and blue) used in 1© (coarse pose
estimation) for solving PnP. In pink, best
pose result for 1© w.r.t. MSD after inlier
selection (cyan) by RANSAC.

(b) Example of image and model land-
marks (respectively magenta and yellow)
used for MSD computation in one of the
first two steps ( 1© and 2©).

(c) Example of visible landmarks (lime)
used as inputs in 2©.

(d) Example of refined pose estimate after
step 2© and final one 3© (respectively
orange and red).

Fig. 3: Illustration of the proposed method details for automatic pose estimation.

(MSD) criterion [14] between the image landmarks It and the reprojected visible
model vertices (line 20, figure 3(b)). The MSD between point sets U = (u1, ..., un)
and V = (v1, ..., vm) is:

MSD(U,V) = 1
m+n

(
m∑
i=1

min
j
‖vi − uj‖+

n∑
i=1

min
j
‖ui − vj‖

)
.

Usually, n = m so the measure is symmetric. The mean may possibly replace the
sum for each component. Unlike line 28, only self-occluded landmark vertices are
considered invisible. They are determined by a ray-triangle intersection method from
trimesh. Projected landmark vertices in the black border and outside the image are
kept in the MSD computation. Figure 3(d) shows results for each step of our pipeline.

4 Experimental Evaluation

4.1 Overview
We first find a baseline objective for automatic landmark and silhouette detection by
determining the manual annotation interoperator variability. We then evaluate auto-
matic annotation detection and registration initialisation for both the single and split
ridge models. We merge the left ridge and upper left central limit as well as the right
ridge and right central limit to replicate the single ridge model. Finally, we evaluate
the pose obtained from our automatic method against the optimal and manual poses
in phantom and clinical datasets. We also compare to deformable registration ini-
tialised from these poses to achieve the whole registration pipeline. All experiments

https://trimsh.org/trimesh.ray.ray_pyembree.html
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(a) Patient 1, TRE 1/2/3: 13.0/12.9/10.2 (b) Patient 2, failure case, TRE 1: 39.4

(c) Patient 3, TRE 1/2/3: 32.5/22.2/20.2 (d) Patient 4, TRE 1/2/3: 18.4/7.0/6.7

Fig. 4: Manual (1-red) and automatic (2-green) pose reprojection for the liver and
tumour. Deformable registration reprojection (3-blue) initialised from 2. The tumour
GT, landmarks and silhouette are in pink and yellow. The TRE is in mm.

were performed on an Intel Core i9-10900K CPU @ 3.70GHz 20 computer with
graphics card GeForce RTX 2080 Ti.

4.2 Manual Annotation Interoperator Variability
We construct a dataset where 5 surgeons annotated the landmarks and silhouette for
8 laparoscopic 1080p images from different patients. For each image we compute
the average closest distance across annotations, equivalent to the MSD criterion, as
well as the percentage of annotations within 15 px and 30 px agreement. The esti-
mated mean manual annotation interoperator variability is slightly over 30 px, see
table 1. However, some images substantially increase variability as can be seen with
the median being around 20 px. More than 80% of each landmark or silhouette from
one annotation are within 30 px from another annotation. These are the baseline
objectives for automatic detection.

Table 1: Manual annotation variability between 5 surgeons (2 junior and 3 senior
ones) on 8 images, measured by mean, median and max MSD across images and
mean percentages of annotation within 15 and 30 px for the landmarks and silhouette.

Mean MSD
(px)

Median
MSD (px)

Max MSD
(px)

% < 15
px

% < 30
px

Silhouette 32 19 102 83 87
Ligament 29 17 96 68 80

Single Ridge 33 20 86 70 81
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4.3 Automatic Landmark and Silhouette Detection
Between 10 and 30 1080p frames were extracted from LLR videos of 68 patients.
The frames were selected to represent various views and configurations of each liver.
Manual annotations of the landmarks and the silhouette were performed on each
image. Our dataset contains 1415 annotated images. We used Leave One (patient)
Out Cross-Validation (LOOCV) to evaluate detection accuracy. For each fold, train
and validation sets respectively use 90% and 10% of the randomly selected data. The
test set uses the images from the left-out patient. Training takes about 20 min for a
fold, while detection takes less than 10 ms. In contrast, the manual annotation of all
the landmarks and silhouette can take between 30 s and about 2 min for each image.

We evaluate the detection using both components of the MSD criterion: the
mean closest distance of predictions to GT and the mean closest distance of GT to
predictions, whose mean is the MSD. We compute the topological skeleton of the
predictions to form 1-pixel thick contours. We compute adapted sensitivity and pre-
cision, which are not well defined for thin regions. The adapted versions use dilated
labels with disc radii of 15 and 30 px. The GT contours are dilated for precision
computation, while the predicted ones are dilated to compute sensitivity.

We use an end-to-end U-Net [6] with input image size of 256 × 256. We tested
the state-of-the-art loss functions for thin regions and imbalanced classes described
in section 2. In short, the best results for thin outputs are obtained for the compound
CE+Tversky loss, with respective weights of 5 and 1 for the CE and Tversky losses
as well as 0.05 and 0.95 for the FP and FN components of the Tversky loss. Figures
2(c) and 2(d) illustrate results on test images. It performs well for the silhouette while
missing parts for the ridge and the ligament.

Table 2: Detection accuracy for a U-Net trained with a CE+Tversky loss in an
LOOCV manner on 68 patients combining 1415 images. Mean, median and max of
MSD components and adapted sensitivity and precision are computed across patients
(left-out test sets) for the landmarks and silhouette with single and split ridges.

Distances (px)
predicted from

GT - Mean/
Median/Max

Distances (px)
GT from

predicted -
Mean/

Median/Max

Sensitivity -
Mean/

Median/Min (%)
15 and 30 px

tolerance radius

Precision -
Mean/

Median/Min (%)
15 and 30 px

tolerance radius

Silhouette
from split 35/22/181 51/30/332

80/83/8
85/88/12

84/89/6
87/91/11

Silhouette
from single 39/23/224 56/33/383

81/85/09
86/89/13

83/88/05
87/91/11

Ligament
from split 77/56/368 53/22/358

55/50/15
66/66/18

76/81/07
84/91/12

Ligament
from single 58/33/238 37/15/295

58/60/10
70/72/20

76/83/05
88/92/09

Merged Ridge
from split 140/102/532 97/55/485

42/41/4
51/50/7

66/65/17
80/87/23

Ridge
from single 79/64/296 88/64/362

50/53/05
61/66/09

61/64/05
72/76/07
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Table 2 summarises the results. For both the single and split ridge models, the sil-
houette brings the error close to the manual annotation interoperator variability, of 30
and 20 px for the mean and median MSD. Over 85% of the predicted points are within
30 px of GT and over 85% of the GT points are predicted within 30 px. This confirms
that the method handles the silhouette very well. For the ligament, the error is slightly
over. However, about 30% of the GT points are missed with a 30 px tolerance, from
the single ridge model. The error is larger from the split one, suggesting that the lig-
ament can be mistaken for ridge subparts. The ridge, whether split or not, obtains
larger errors though using the single one allows fewer misdetection. The detection
method thus slightly outperforms with the single ridge model. The variability is large:
some patients have very large errors, which is explained by the high deformations
induced by tools, creating misdetection, partial views and blurry images. Modifying
the loss function and adding geometric or colour data augmentation did not improve
the overall results.

4.4 Automatic Registration Initialisation
The pose estimation method is first evaluated on the phantom dataset from [15]. A
preoperative model subject to 10 non-rigid synthetic deformations was 3D printed for
each deformation. 10 views were captured for each, along with the camera parame-
ters, and the optimal poses were computed. The surface GT mesh is thus known for
each image. We use the Mean Absolute distance Error (MAE) between the vector sets
of 3D GT surface node positions U and of the estimated ones Û as evaluation metric

MAE(U , Û)← 1
N

N∑
i=1

‖ui−ûi‖. The orientation error angle θ ← arccos Tr (RR̂T )−1
2

is computed from the optimal and estimated pose rotation matrices R, R̂ ∈ SO(3).
The landmarks and silhouette are manually annotated for each image and the model.
The method is then evaluated on a clinical dataset from [16]. GT tumour profiles were
obtained from an ultrasound probe in 4 laparascopic procedures, each dealing with
tens of images. We compute the Target Registration Error (TRE) between each GT
tumour profile and the predicted tumour volume as [16]. We use the annotations and
manual initialisations that were provided in this dataset. For both datasets, we use
a baseline deformable registration algorithm that reproduces [17], without the point
cloud term. This becomes an energy-based optimisation based on a landmark and sil-
houette data term and a model’s internal energy term, with respective weights 0.1 and
1. We use Saint-Venant Kirchhoff deformation modelling and dimension reduction
by Locally Linear Embedding [18], keeping 100 then 200 components in a stiff-to-
flexible strategy. T is composed of 6 threshold values between 0.05% and 25% of the
image diagonal (1-500 px in 1080p images).

Tables 3 and 4 summarise the results obtained on both datasets. For the phantom
dataset, we first compute MAE between GT and both optimal and predicted poses.
The predicted pose for the proposed split ridge model obtains mean and median errors
of respectively 15.9 mm and 11.6 mm in comparison to the 7.7 mm and 7.4 mm ones
of the optimal pose. The single ridge model performs substantially worse due to the
wrong correspondences in fronto-lateral views. We can see that each refinement step
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Table 3: Pose estimation accuracy on a phantom dataset. MAE statistics are estimated
across images between predicted pose from a) split and b) single ridge models and GT
for each algorithm step. Optimal pose and registration initialised from both poses are
also evaluated. The rotation angle between predicted and optimal poses is computed.

GT vs
optimal

pose

GT vs predicted pose
a) split ridge model
b) single ridge model

Optimal vs
predicted
pose a)

Registration
from optimal
pose vs GT

Registration from
automatic

initialisation a)
vs GT

Error MAE
(mm)

MAE (mm)
Steps 1©/ 2©/ 3©

θ ()
1©/ 2©/ 3© MAE (mm) MAE (mm)

Mean 7.7±0.7 a)68.8/36.8/15.9±2.9

b)178.5/109.8/95±28.6
29/20/11 8.1±0.7 13.1±2.8

Median 7.4 a)51.0/24.0/11.6
b)108.3/66.9/19.7

23/14/8 7.3 10.0

η.90 13.5 a)112.2/69.5/27.1
b)359.5/291.1/338.1

45/39/17 13.3 19.8

improves the previous result. This is also the case for the orientation which gets pro-
gressively closer to the optimal one. The largest errors are obtained for side views
where very few landmarks are visible, and should not be considered in actual liver
laparoscopy. This demonstrates the relevance of our proposed automatic initialisation
method, only based on single image landmarks and silhouette. Using the baseline reg-
istration method, the final errors starting from the optimal and predicted poses have
about 5 mm mean difference. This last comparison should be considered cautiously
as it depends on the registration method and parameters. However, 90% of the views
have an MAE lower than 2 cm after registration, which is promising.

Pose estimation performance is confirmed in the clinical dataset [16], where our
automatic pose leads to a tumour TRE lower than or equal to the manual initialisa-
tion and always lower than 2.3 cm. Deformable registration from these initialisations
further reduces the error. Figure 4 illustrates the results for all patients. Automatic
initialisation only fails for Patient 2 (e.g. figure 4(b))), owing to a strong non-rigid
deformation induced by the ultrasound probe and the narrowness of the views in
this procedure, making the PnP problem ill-posed. The fully automatic initialisation
process takes between 10 and 40 seconds.

5 Conclusion
We have proposed methods to achieve fully automatic registration of a preoperative
3D liver model to a laparoscopic image. We bring the new largest manually annotated
surgical liver dataset, an analysis of the landmarks, a landmark and silhouette detec-
tor and an extended robust pose estimator capable to estimate its own inlier cut-off
threshold. Our experimental results show that these methods work well on clinical
cases, reducing tumour TRE compared to the current manual methods. This resolves
a major limitation of current methods requiring surgeon attention, which is not feasi-
ble in clinical practice. We have planned to improve automatic curvilinear landmark
detection by expanding our dataset, using semi-synthetic data, exploring thicker land-
mark models and subdividing the ridge after detection. This will allow the evaluation
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Table 4: Pose estimation accuracy on a clinical dataset. TRE is evaluated for both
estimated initialisations, i.e. manual and automatic, and their following registrations.

Error for
Patients

1/3/4
(mm)

Between manual
pose and GT

Between
automatic

estimated pose
and GT

Between
registration result

from manual
pose and GT

Between registration
result from automatic
estimated pose and

GT
TRE 15.1/30.5/16.3 14.8/22.4/7.2 13.4/28.9/16.0 12.5/20.8/6.9

and clinical validation of the full pipeline to be conducted, including the comparison
of several baseline deformable registration methods. We will extend the pipeline to
multiple image registration and use our methods to tackle the next fundamental step
of real time liver tracking.
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