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Abstract

We present a Non-Rigid Structure-from-Motion (NRSf M) method to reconstruct an object whose topology is

known. We represent the topology by a 3D shape that weakly resembles the object, which we call a Topological

Template (ToTem). The ToTem has two main differences with the template used in Shape-from-Template (Sf T).

First, the shape in the ToTem is not necessarily feasible for the object, whereas it must be in the Sf T template.

Second, the ToTem only models shape, excluding the classical texturemap representing colour in the Sf T template.

These two differences greatly alleviate the practical difficulty of constructing a template. However, they make

the reconstruction problem challenging, as they preclude the use of strong deformation constraints between the

template shape and the reconstruction and the possibility of directly establishing correspondences between the

template and the images. Our method uses an isometric deformation prior and proceeds in four steps. First,

it reconstructs point clouds from the images. Second, it aligns the ToTem to the point clouds. Third, it creates a

coherent surface parameterisation. Fourth, it performs a global refinement, posed as a Bundle Adjustment (BA). We

show experimentally that our method outperforms the existing methods for its isolated steps and NRSf M methods

overall, in terms of 3D accuracy, ability to reconstruct the object’s visible surface and ability to approximate the

object’s invisible surface.

https://github.com/agnivsen/ToTem-NRSfM
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1 INTRODUCTION

NRSf M is the problem of reconstructing the time-varying shape of a deforming scene as a set of point clouds, from

image point correspondences [Bregler et al., 2000]. This is a difficult problem, as the number of unknown parameters

is larger than the number of reprojection constraints, thus requiring priors, even when reconstructing a single object.

The earliest prior used in NRSf M is the low-rank shape model [Bregler et al., 2000; Torresani et al., 2008]. It was

followed by physics-based deformation priors, with isometry as the most successful one [Chhatkuli et al., 2014]. In

spite of many advanced solution methods, NRSf M has had limited success due to insufficient accuracy in many cases.

This is in sharp contrast to the rigid Structure-from-Motion (Sf M) methods, as many sub-problems of the rigid case are

considered solved [Faugeras and Luong, 2001; Hartley and Zisserman, 2004]. This is because rigidity is a strong prior,

exerting important constraints on the reconstruction process. One important reason for the low accuracy of NRSf M

is the lack of sufficiently strong priors. In contrast, Sf T is a related method for deformable reconstruction which uses

an object template as prior, comprising the object geometry, texturemap and deformation model [Bartoli et al., 2015;

Perriollat et al., 2011; Salzmann and Fua, 2010]. Other classical methods such as Shape-from-Shading (Sf S) and

photometric stereo use additional priors related to the scene’s lighting and the object’s reflectance [Barron and Malik,

2014; Horn, 1975]. NRSf M is an attractive reconstruction method because it makes reasonable assumptions on the

input data. A research challenge is thus to find new NRSf M priors with wide applicability and sufficient strength. We

propose such a new prior in the form of the ToTem for object-wise NRSf M. The ToTem can be easily specified from

basic knowledge about the object, yet is powerful enough to improve NRSf M. Its general definition is as follows.

Definition 1 (Topological Template). The ToTem is a shape prior in the form of a connected surface which has the

observable object’s topology. It is typically represented by an algebraic shape such as a sphere or by a triangular

mesh.

The ToTem shape may resemble the object shape, but this is not a hard requirement, for two reasons. First, the pro-

posed reconstruction pipeline includes a final step depending only on the ToTem topology. This opens the possibility

for the user to select a predefined ToTem, such as a sphere to reconstruct an inflated balloon. This makes the creation

of a ToTem straightforward. Second, the notion of observability is important and refers to what can be seen of the

object in the images, independently of its overall shape. For instance, imagine the camera is sufficiently close to the

balloon, all it can observe is a topologically planar patch, making it desirable to use a plane as the ToTem, instead

of a sphere. In most cases, the desired object’s topology is minimal and easy to specify information for the user, as

illustrated in figures 1 and 2.

We examine how the ToTem fits within the landscape of non-rigid 3D reconstruction methods including NRSf M

and Sf T in table 1. Existing NRSf M methods do not use a template. However, the use of a template in non-rigid 3D
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reconstruction is not new, forming the basis of Sf T. The Sf T template is made of a shape model and an appearance

model. The shape model is, as in the proposed ToTem, an algebraic shape or a triangular mesh; and the appearance

model is a texturemap. Sf T then makes two strong assumptions. First, that the object shape can be reproduced by an

isometric deformation of the template. Isometry is the distance-preserving property of deformations; it is the strongest

and most popular mathematical deformation model in the context of 3D reconstruction, both in Sf T [Perriollat et al.,

2011; Salzmann and Fua, 2010] and NRSf M [Chhatkuli et al., 2017; Ji et al., 2017; Parashar et al., 2019]. Second,

that the texturemap is matchable to the input images, which means that it must be of sufficient quality. Acquiring an

Sf T template may be impractical or infeasible in some applications, such as medical applications where patient and

pathology-specific modifications to texture may not be available a priori, and automated food processing applications,

where each object has a unique shape and texture. The proposed ToTem entirely resolves this issue. It however makes

the 3D reconstruction problem different from and much more challenging than Sf T.

We propose ToTem NRSf M, a novel formulation of NRSf M to exploit the topological prior. This formulation

represents the reconstruction by coherently parameterised surfaces, which is the essential possibility brought by the

knowledge of the object topology to the reconstruction process. The parameterisation is defined by a 2D space,

called uv-space, and embedding functions, mapping points from the uv-space to the reconstructed 3D surfaces. The

coherence is obtained by having each input point correspondence parameterised by a single point in uv-space. Con-

cretely, for n images and m point correspondences, we estimate n 2D to 3D embedding functions and m 2D points in

uv-space. The uv-space is classically used in computer graphics in order to texturemap a 3D mesh model, where the

uv-space is aligned with texture images, and its mapping to the object mesh is obtained by means of local coordinates,

typically barycentric coordinates drawn on the mesh’s local triangles. The proposed representation can be regarded

as a generative model of the observed point correspondences, with continuous surface extrapolation capability. This

benefits NRSf M in three main ways. First, it facilitates the reconstruction of the object as a time-varying surface,

as opposed to point clouds in standard NRSf M. One thus obtains a richer object representation for the downstream

applications. Second, it improves the reconstruction accuracy, thanks to surface regularisation. Third, it provides

hints on the shape of invisible object parts, which are not seen in any image and not reconstructed by existing NRSf M

methods. Invisible parts are very common in images of volumetric objects; obtaining a hint about the shape of these

parts would benefit applications in robotics and surgical image analysis, to name a few. To sum up, ToTem NRSf M

is appealing, as it allows one to reconstruct full dense object models from a very light prior, without requiring model

training and thus free of training data. An example of ToTem NRSf M in action is provided in figure 1, highlighting

its full-surface reconstruction capability, including invisible parts, and the capability to leverage object topology to

guide the reconstruction, as opposed to simple point-wise 3D reconstruction from the existing literature.

In developing ToTem NRSf M, the main difficulty is to relate the untextured and approximate shape prior to the
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Figure 1: Two example reconstructions with comparisons. The top two rows show a deforming t-shirt; while our
point-based NRSf M is already ahead of all existing approaches, the planar ToTem enables a very accurate dense
reconstruction as well as smooth surface extrapolation to areas outside the boundary of the point correspondences.
The bottom two rows show a legging being stretched, i.e., a non-isometric case; by using the cylindrical ToTem, not
only do we arrive at an accurate reconstruction, but we also generate a hypothesis for the unobserved surface of the
leg, something beyond the capabilities of any existing method. The reported error metric is the 3D error, the red points
are groundtruth and the black points are reconstructions; a deeper analysis is given in our experiments in section 8.
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Figure 2: Two examples demonstrating the flexibility of ToTem NRSf M. (a) while the cylinder is an accurate ToTem
for reconstructing this Pringles can, a planar ToTem does the job of dense surface reconstruction; the ability to
reconstruct the unseen surface is however only available for the cylinder. (b) for reconstructing a deforming liver, a
preoperative mesh model leads to an accurate reconstruction; in the absence of such a model, the knowledge that the
human liver weakly resembles a sphere still allows our method to reconstruct the entire surface.

image point correspondences. This has connections with surface parameterisation, a problem for which there exist

a substantial body of approaches. We propose an NRSf M method following an advanced pipeline with four main

steps. The first three steps initialise the reconstruction model in a bottom-up manner and the last step performs a

global refinement in a top-down manner. This pipeline is complex but rests on well-understood building blocks, for

which efficient solution methods exist or are proposed. Step 1) computes an initial standard NRSf M reconstruction.

Step 2) computes an initial individual alignment of the ToTem to each reconstructed point cloud. Step 3) computes an

initial parameterised surface for each point cloud with independent embeddings and uv-space points. It then enforces

coherence by computing common uv-space points. Step 4) refines the uv-space points and the embeddings in a BA

manner.

We implement the proposed method under the common assumption of isometric object deformation. We study

four possibilities for the ToTem: three algebraic shapes, namely the plane, the cylinder and the sphere, and general

shapes. We have chosen these three algebraic shapes as their topology is commonly found in real-world objects. The

proposed solution pipeline is extensible to other topologies. We assume without loss of generality that a uv-space

has been computed for the ToTem, along with a flattening function, mapping points from the prior 3D shape to the

uv-space. There often exist several such 2D parameterisations; for algebraic shapes such as a sphere, this comes

in closed-form, while for general meshes, this may be obtained by conformal flattening [Sheffer et al., 2005]. We

represent functions by polyharmonic splines, generalising the well-known Thin-Plate Spline (TPS) to higher dimen-

sions. We model isometry as the approximate preservation of local inter-point distances. Along with the concurrent

estimation of the inter-point distances with the reconstruction, this introduces flexibility and allows the model to

cope with real deformations that do not strictly follow the isometric model. In addition to the proposed generative

dense reconstruction model and the above pipeline, we bring four technical contributions required to implement the
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Strong priors −−−−→ Weak priors
METHOD SfT Proposed method NRSfM

Template: Sf T ToTem None
Texture Required — —
Shape Feasible Topological —

Deformation model Required Required Required

Reconstruction Full† Full† Partial‡

Table 1: Classification of non-rigid 3D reconstruction hypotheses and meth-
ods. Sf T and NRSf M are two approaches lying at the extrema of the possible
hypotheses: Sf T uses strong hypotheses and NRSf M weak ones. We propose
ToTem, an intermediate hypothesis to improve NRSf M when the strongest Sf T
template is unavailable.

† The reconstruction recovers the entire structure of the object, even those
parts that are occluded from the camera

‡ Only the visible parts of the object are reconstructed

method’s steps. First, we propose a method for isometric NRSf M, used in step 1). We use an alternation scheme

embedding the Maximum Depth Heuristic (MDH) principle to resolve the local convex-concave ambiguities using a

novel automatic hyperparameter tuning scheme. In contrast, previous work solves a convex inextensible relaxation of

this problem [Chhatkuli et al., 2017; Ji et al., 2017]. Second, we propose alignment methods for the cylinder and the

sphere to a point cloud, used in step 2), using multi-step non-iterative optimisation, where each step is solved by a

globally optimal method. Third, we propose a coherent parameterisation method for multiple 3D point clouds, used in

step 3). Fourth, we propose a non-rigid surface-based adaptation of BA, used in step 4). This optimises all the model

parameters and uses all the constraints with closed-form Jacobian matrices and sparsity aware accelerations, ensuring

rapid convergence [Granshaw, 1980; Triggs et al., 1999].

We experimentally validate our method on various synthetic and real datasets, both quantitatively and qualitatively.

The datasets cover all four types of ToTem shapes, namely the three algebraic shapes and general shapes. The choice

of which ToTem to use for a given object with known topology is straightforward: if shape information is available,

as in the surgical dataset, one should use this shape to form a general shape ToTem; otherwise, one should use the

algebraic shape ToTem whose topology matches the object’s.

2 RELATED WORK

We split our related work review into two parts: image-based non-rigid 3D reconstruction, with classical NRSf M and

neural approaches, and parameterised surface fitting to point clouds.
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2.1 Image-based Non-rigid 3D Reconstruction

We first discuss the classical NRSf M approach and then the neural approach.

2.1.1 The Non-Rigid Structure-from-Motion Approach

Research related to NRSf M started in the 00’s, primarily using the low-rank shape model [Bregler et al., 2000; Dai

et al., 2014; Kumar and Van Gool, 2022; Torresani and Bregler, 2002; Torresani et al., 2001]. This model is mainly

effective at modelling mild deformations, explainable by a linear model. Physics-based deformation models then

resolved this issue. In particular, the isometric model is widely applicable and yet provides sufficient constraints for

reconstruction.

The isometric deformation model. The isometric deformation model has been widely used in Isometric NRSf M

(Iso-NRSf M) [Chhatkuli et al., 2014] but also in related approaches including rigid Sf M [Sabzevari et al., 2012], Sf T

[Chhatkuli et al., 2016; Östlund et al., 2012; Parashar et al., 2015; Salzmann and Urtasun, 2012] and for object shape

reconstruction outside computer vision, for instance in molecular conformation [Biswas et al., 2008]. However, the

isometric constraint suffers from two well-known drawbacks. The first drawback is that it does generally not uniquely

resolve the surface but rather leads to a solution set [Dubrovina and Kimmel, 2011], containing multiple surfaces all

obeying the constraints. In 3D reconstruction, this translates to convex-concave ambiguities. The second drawback

is that the isometry constraint is an approximation, albeit generally a good one, as the surface of real objects do not

exactly follow isometry, owing to the object’s thickness.

The Maximum Depth Heuristic. In order to remedy the first drawback, a widely used heuristic is to reconstruct

the deforming surface while simultaneously maximising the depth of the reconstructed surface from some reference

point. The formulation has a unique solution, which is in general a plausible surface. This heuristic has been termed

MDH [Perriollat et al., 2011; Salzmann and Fua, 2010] and Maximum-Leg Heuristics (MLH) [Ji et al., 2017]. We

use MDH as a general name for both implementations. Maximum Depth Heuristic NRSf M (MDH-NRSf M) has been

proven to be generally effective [Chhatkuli et al., 2017; Ji et al., 2017]. An explanation for this effectiveness is that it

chooses the furthest solution surface from the camera, which is also the flattest surface.

Approximating isometry. In order to remedy the second drawback, approximate isometry constraints are com-

monly used. The way these constraints are formulated is intertwined with the mathematical framework. Specifi-

cally, two frameworks are found. The first framework, which we call ‘algebraic’, uses the point correspondences di-

rectly [Salzmann and Urtasun, 2012; Varol et al., 2009]. The second framework, which we call ‘differential’, uses the

derivatives of the optic flow at the correspondences, at first-order [Chhatkuli et al., 2014] or at second-order [Parashar
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et al., 2017]. For both frameworks, isometry is approximated using a cost function attempting to minimise the vari-

ance of the distances across time in the reconstruction. The algebraic framework is simpler and more appealing in

this respect. However, as it models the reconstruction by point clouds, one thus has to approximate the geodesic dis-

tance by a Euclidean one, introducing an extra approximation level. The algebraic framework does not lead to convex

formulations and requires one to reconstruct the complete point set at once. In contrast, the differential framework is

more complex, mainly owing to the computation of the optic flow. However, it allows one to resolve the normal at

each correspondence individually in closed-form.

The convex inextensible relaxation. Convex relaxations are common for rigid scenes, specifically for camera

pose, homography, and epipolar geometry estimation [Kahl and Henrion, 2007] and also for second-order differential

NRSf M [Probst et al., 2019]. The inextensible relaxation of isometry, introduced for algebraic NRSf M in [Chhatkuli

et al., 2017], constrains the inter-point Euclidean distances to remain lower or equal to the geodesic distances. This

leads to the methods of inextensible Iso-NRSf M, where the constraints are inequalities of quadratic terms that can be

posed as a convex Second-Order Cone Programming (SOCP). The inequalities were then modified to pose the prob-

lem as a convex Semi-Definite Programming (SDP), resulting in a tighter relaxation than SOCP [Ji et al., 2017], which

is however substantially slower. Completed with the MDH, this results in an elegant convex solution method, coping

with the first aforementioned drawback. The inextensible Iso-NRSf M methods however have limitations. First, they

may have low accuracy, owing to the inextensible relaxation of the original isometric constraints. Second, they have a

high error for data that depart from isometric deformations, producing an infeasible solution from the relaxed feasible

set, a well-known drawback of convex relaxations [Kahl and Henrion, 2007; Li et al., 2015b]. This points to the

necessity of a refinement technique exploiting the original isometric constraints.

2.1.2 The Neural Approach

The neural approach estimates depth from a single or a stream of monocular images using deep learning. A Convo-

lutional Neural Network (CNN) is used in [Liu et al., 2015] to estimate the depth of general scenes, while a CNN is

used along with Conditional Random Fields (CRF) to estimate the depth and surface normals in [Li et al., 2015a].

In contrast, a fully convolutional neural network is used in [Cao et al., 2017] to estimate depth ranges, essentially

treating the problem as the classification of image pixels into bins of depth. Takmaz et al. [2020] recover the depth of

a deforming scene using dense correspondences as input features by training a CNN using an As-Rigid-As-Possible

(ARAP) hypothesis. Kong and Lucey [2019] cast NRSfM as a multi-layer block-sparse dictionary learning problem

and demonstrate its equivalence with feed-forward DNN auto-encoders. Novotny et al. [2019] extract a 3D model

from monocular images by learning a reconstruction function along with a canonicalisation function that enforces

pose consistency. Recent detailed reviews of the Deep Convolutional Neural Network (DCNN) approach are given
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in [Bhoi, 2019; Khan et al., 2020]. An important drawback of the DCNN approach is the well-known lack of domain

adaptation. To date, there are no publicly available neural models for NRSf M.

2.2 Surface Fitting to Point Clouds

The problem of parameterised surface fitting to a single point cloud has been largely studied. A vast body of methods

is available in computer graphics and computational geometry for the closely related problem of surface reconstruction

from a point cloud [Berger et al., 2017]. These methods however require high point density and quality, which are not

met by the point clouds obtained by NRSf M. Within the applicable methods, we distinguish the rigid and the non-rigid

cases. In the rigid case, the problem boils down to estimating the rigid-body motion between a template shape and a

sparse point cloud. The base solution technique is Iterative Closest Point (ICP) [Besl and McKay, 1992; Castellani

and Bartoli, 2020; Liu et al., 2020]. The problem is typically solved via non-convex optimisation [Bellekens et al.,

2014], but there also exists techniques leading to the global minima [Low, 2004; Yang et al., 2015]. In the non-rigid

case, the rigid-body motion is replaced by a deformation model. The amount of existing work is more restricted than

in the rigid case and each method is generally specific to a deformation model and to a representation of the template

shape. The problem is posed as non-linear optimisation with spatial constraints [Bernard et al., 2017; Russell et al.,

2011]. However, [Russell et al., 2011] assumes the object is planar, and [Bernard et al., 2017] requires an RGB-D

sensor. The case of Sf T with a volumetric template is addressed in [Parashar et al., 2015], which however requires

a template with a feasible shape and textural information. More recently, [Golyanik et al., 2020] has proposed a

dynamic shape prior for NRSf M. This prior is represented by a low-rank shape basis constructed from an NRSf M

reconstruction over a batch of images in an ‘acquisition’ step. It is then used to explain the deformation and pose

for new images. The prior is however not updated and remains expressed in the form of point clouds. To sum up,

the problem of computing surface parameterisation from a single point cloud and the computation of a point cloud

model from multiple point clouds have been well-studied. However, the computation of a coherent parameterisation

for multiple point clouds is still in need of solutions, both for simple algebraic and for complex non-parametric shape

template priors.

3 MODEL AND METHOD OVERVIEW

We give the proposed surface-based model of ToTem NRSf M model, using figure 3 as an illustration. We first review

the standard point-based model of NRSf M, which serves as basis. In ToTem NRSf M, each surface is obtained by a

non-rigid transformation of the ToTem shape. We thus augment the standard model by introducing models for the

ToTem and for the unknown surfaces, and their computational representation by polyharmonic splines. We finally

present the pipeline of the proposed solution method.
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Figure 3: The proposed model of ToTem NRSf M is shown for n = 2 (a pair of views), where each deformed surface
is defined as a composition of the R2 7→ R3 ToTem embedding ∆ and an R3 7→ R3 non-rigid transformation ψi
modelling object deformation and camera pose for all i ∈ [1, n]. Four examples of ToTem shapes are shown. The
known transformations are represented by bold curves and the unknown ones are represented by dashed curves.

3.1 Standard Point-based Model

We consider m point correspondences between n images as inputs. For the i-th image Ii, the j-th image point

qi,j =
(
ui,j vi,j

)⊤ ∈ R2 is related to the unknown 3D point Qi,j =
(
Xi,j Yi,j Zi,j

)⊤ ∈ R3 by the standard perspective

projection function Π such that qi,j = Π(Qi,j) [Hartley and Zisserman, 2004]. The camera intrinsics are known,

including the focal length (fx, fy) and principal point (cx, cy), in pixel units. Correspondences may or may not be

visible across all images, which we model by a visibility matrix V whose (i, j)-th element Vi,j is 1 if qi,j is visible

and 0 otherwise. The unknown depth of a 3D point is denoted δi,j = ∥Qi,j∥, which represents its distance from the

camera centre along the sightline. The homogeneous coordinates for any point such as P are denoted as P̃. Each

point qi,j and Qi,j are connected to their neighbours qi,q and Qi,q through a Nearest-Neighborhood Graph (NNG),

represented by N , derived using the strategy of [Chhatkuli et al., 2017] such that q ∈ N (j). The standard NRSf M

setup is devoid of a representation of the object’s surface, which we introduce next with the notion of ToTem and the

deformation model.
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Definition of ∆ and ∆−1 Coordinates in T Properties of ∆ Shape properties Orientation w.r.t. R3 Freedoms

Plane
∆(x, y) =

(
x y 0

)
,

∆−1(X,Y, Z) = (X,Y )
x ∈ [−1, 1], y ∈ [−1, 1]

Isometric,
∆ ∈ C∞

Doubly ruled,
non-compact The plane of z = 0

Translation along
z = 0, reflection

along any plane ⊥ to
z = 0, rotation along
axis ⊥ to z = 0, π
rotation about any

point on z = 0

Cylinder
∆(r, θ) =

(
sin θ r cos θ

)
,

∆−1(X,Y, Z) =

(
Y, tan−1

(
Z
X

)) r ∈ (0, L], θ ∈ (−π, π], where L
= length of cylinder

Isometric,
∆ ∈ C∞ Ruled, non-compact The cylinder axis is

(x, z) = 0

Translation and
rotation along

(x, z) = 0, reflection
along any plane ⊥ to
(x, z) = 0, π rotation
along (x, y) = 0 and
(y, z) = 0, reflection
along x = 0, y = 0

or z = 0

Sphere

∆(θ1, θ2) =(
− cos θ1 cos θ2 − sin θ1 − cos θ1 sin θ2

)
,

∆−1(X,Y, Z) =

(
sin−1(−Y ), tan−1

(
X
Z

)) θ1 ∈ [−π
2
, π
2
], θ2 ∈ (−π, π] Conformal,

∆ ∈ C∞ Compact Centred at the origin
Reflection along
x = 0, y = 0 or
z = 0, any rotation

Table 2: Summary of the embedding ∆ and the flattening ∆−1 for the three considered algebraic shapes.

3.2 ToTem Shape Model and Representation

The ToTem is a 3D shape denoted U ⊂ R3. It is represented by a uv-space denoted T ⊂ R2 and an embedding

∆ : T 7→ U which maps a point p ∈ T to ∆(p) ∈ U . The embedding is almost everywhere smooth and regular.

It is derived from the knowledge of the ToTem and then kept fixed for the rest of the reconstruction process. Each

ToTem is represented in a canonical known pose. The ToTem with symmetries have freedoms in the canonical

pose; for instance, the sphere does not define a canonical orientation. We ensure that these unconstrained degrees of

freedom do not affect our reconstruction method. We elaborate on the derivation of the uv-space and ∆ for algebraic

and general shapes below. For points restricted to the ToTem shape, the embedding is invertible. It is denoted as

∆−1 : U 7→ T for simplicity and named the flattening transformation.

Algebraic shapes. We consider three frequent shapes, the plane, the cylinder and the sphere [Hilbert and Cohn-

Vossen, 2021]. The plane has a straightforward embedding whereas the cylinder and sphere require cylindrical and

spherical coordinates respectively. For completeness, we give the expressions of ∆ and ∆−1 and some relevant

properties in table 2. The price to pay for parameterising the cylinder and sphere with a single chart is to admit

singularities, where ∆ is multi-valued on the surface of these ToTems. These singularities lie at θ = π for the

cylinder and θ2 = π for the sphere. We propose a singularity avoidance method in section 6.1.2.

General shapes. We consider that a general shape is given as a general triangular 3D mesh. We use conformal

flattening [Sheffer et al., 2005] to obtain the uv-space T , which returns the coordinates of each mesh vertex in uv-

space. The mesh vertices thus form 2D-3D point correspondences, from which we can define an implementation for

the embedding ∆ and the flattening transformation ∆−1. The flattening ∆−1 is used to compute the initial shape

parameterisation in step 3) of our method. This step does not require differentiability and we thus implement ∆−1

using standard barycentric coordinates. In other words, for a point Q ∈ U on some triangle of the ToTem shape, we
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find its barycentric coordinates with respect to its containing triangle and deduce its image p ∈ T by applying the

barycentric coordinates to the corresponding vertices in uv-space. The embedding ∆ is used to perform BA in step

4) of our method. This step requires differentiability and we thus implement ∆ by smooth interpolation of the 2D-3D

vertex correspondences by a TPS [Bookstein, 1989].

3.3 Unknown Surface Set Model

Our prior is that the unknown surface Si for image i can be obtained by a non-rigid transformation ψi : R3 7→ R3

of the ToTem, deforming it so that point ∆(p) ∈ U is mapped to ψi
(
∆(p)

)
∈ Si. In order to take advantage

of the uv-space provided by the ToTem prior, we introduce an embedding to represent the unknown surface Si as

φi(p) = ψi
(
∆(p)

)
∈ Si. The embedding φi = ψi ◦ ∆ is the composition of two smooth maps and is thus also

smooth. Therefore, we obtain the tangent vectors as φi,u = ∂φi

∂u and φi,v = ∂φi

∂v and the surface normal from the

normal operator η[φi] =
φi,u×φi,v

∥φi,u×φi,v∥ [Kreyszig, 2013]. For any point p = (u, v) ∈ T , the corresponding surface

normal is η[φi](p). Extending these differential properties of the embedding φi, we arrive at the Gaussian curvature

and the geodesic distance between points along the surface Si. A compendium of such properties relevant to the

proposed method is given in appendix A. We consider ψi : R3 7→ R3 for i = 1, . . . , n as reconstruction unknowns,

for which the next section gives a computational representation.

3.4 Non-rigid Transformation Representation

We require a computational representation of the functions representing non-rigid transformations. This includes the

ToTem embedding ∆ : T 7→ R3, the non-rigid 3D transformations ψi : R3 7→ R3 and the deformable Generalized

Procrustes Analysis (GPA) transformations ϖi : R2 7→ R2. For all these transformations, we use polyharmonic

splines [Iske, 2004], which defines smooth, C∞ functions, from an arbitrary source space dimension ds ∈ {2, 3}

and an arbitrary target space dimension dt ∈ {2, 3}. This representation can model the 3D deformation of arbitrary

shapes and, hence can be used with any ToTem shape. It extends the well-known TPS [Bookstein, 1989], which is

restricted to a 2D source space dimension, to arbitrary dimensions, and retains the desirable properties of the Radial

Basis Function (RBF). We drop the image index i in the remainder of this section for clarity and define a general

transformation ψ, which is later instantiated to represent the set of all n transformations {ψi} and the other relevant

transformations. For a 3D point P = (X Y Z )⊤, the map ψ is defined as:

ψ(P) = P̃⊤a+ ρ(P,D)w, (1)

where {Dk} ∈ R3 for all k ∈ [1, l] are the source control points. ψ in equation (1) is divided into an affine part

a ∈ R4×3 representing the behaviour of ψ at infinity and a weighted sum over the RBF ρ ∈ Rl representing the non-
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affine component [Bookstein, 1989], where w ∈ Rl×3 are the weights. We use the formulation ρ(P,Dk) = ∥P−Dk∥

for the basis function of the k-th control points [Hu et al., 2009]. The conventional strategy for estimating the warp

parameters (a,w) involves defining target vertices C which the surface produced by ψ must contain [Bartoli et al.,

2010], such that:

w̌
ǎ

 =

Kλ D̃⊤

D̃ 04×4


−1

︸ ︷︷ ︸
D−1

C̃
0

 = ελ

C̃
0

 where
(
Kλ

)
k,k′

=


λ if k = k′

ρ
(
Dk,Dk′

)
otherwise,

(2)

where a and w are obtained by truncating the fourth column of the 4 × 4 affine transformation matrix ǎ and the

l × 4 warping coefficient matrix for the nonaffine deformation w̌. Matrices D̃ ∈ R4×l, C̃ ∈ Rl×4 contain the

homogeneous coordinates of the control points and target vertices respectively and D is termed as the design matrix.

The transformation ψ can therefore be represented as:

ψ(P) =

[
ρ(P,D) P̃⊤

]
ελ

C̃
0

 (3)

Interestingly, ψ, although non-linear w.r.t. P and D, remains linear w.r.t. C in equation (3).

3.5 Solution Method Overview

The proposed solution method integrates the surface-based model introduced in the above sections. The inputs are

the image points {qi,j} and their visibility {Vi,j} for i ∈ [1, n], j ∈ [1,m], as in standard NRSf M, the uv-space

T and the ToTem embedding ∆ : T 7→ R3, computed following section 3.2. We use a neighbourhood structure N

that connects points to define the deformation constraints. This structure is provided by an NNG obtained from the

correspondences, following the strategy of [Chhatkuli et al., 2017]. We denote q ∈ N (j) to specify that the j-th and

q-th points are connected. The proposed method follows a pipeline with four essential steps:

1. Initial NRSfM reconstruction. We use isometry, which we model as the least-squares preservation of the

Euclidean distance between the unknown 3D points, to recover the depth of each input 2D point. This depends

on a neighbourhood structure defining which point-pairs are considered. We use the MDH principle to guarantee

that the formulation has a unique solution.

Inputs: keypoint correspondences {qi,j ∈ R2} and visibility {Vi,j ∈ {0, 1}} for all i ∈ [1, n], j ∈ [1,m],

neighbourhood structure N .

Outputs: point-clouds {Qi,j ∈ R3} for all i ∈ [1, n], j ∈ [1,m].
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2. Initial individual alignment of the ToTem to the reconstructed point-clouds. We compute a rigid alignment

of the ToTem to each reconstructed point-cloud. We provide an ad hoc solution method for each of the three

algebraic shapes, consisting of sequential optimal solution steps, and a general solution method for general

shapes.

Inputs: point-clouds {Qi,j ,∈ R3}, visibility {Vi,j ∈ {0, 1}} for all i ∈ [1, n], j ∈ [1,m], ToTem shape prior,

neighbourhood structure N .

Outputs: rigid transformations {fP,i} for all i ∈ [1, n].

3. Initial surface reconstruction and coherent parameterisation. We first compute independent uv-space co-

ordinates for all 3D point-clouds, for which we enforce coherence using deformable GPA in the 2D uv-space.

We then find the non-rigid 3D transformations ψi representing each of the unknown surfaces.

Inputs: point cloud {Qi,j ∈ R3}, visibility {Vi,j ∈ {0, 1}}, rigid transformations {fP,i} for all i ∈ [1, n] and

j ∈ [1,m], ToTem shape prior.

Outputs: non-rigid transformations {ψi} for all i ∈ [1, n].

4. Complete refinement by Bundle Adjustment. We refine the uv-space coordinates and the set of non-rigid

3D transformations ψi. We pose the problem as the minimisation of a combination of the reprojection error,

inextensibility and surface smoothing.

Inputs: keypoint correspondences {qi,j ∈ R2}, point cloud {Qi,j ∈ R3} and visibility {Vi,j ∈ {0, 1}} for all

i ∈ [1, n], j ∈ [1,m], neighbourhood structure N , ToTem shape prior.

Outputs: non-rigid transformations {ψ′
i} for all i ∈ [1, n].

Atypical of standard surface reconstruction methods, our method produces a set of parameterised surfaces as outputs,

instead of a triangular mesh. However, a triangular mesh can be easily obtained for each surface using standard

methods [Bernardini et al., 1999; Kazhdan and Hoppe, 2013], in a coherent manner, meaning that the mesh vertices

would be physically corresponding points, if desired.

Topology is a weak prior, making it difficult to exploit in practice. The proposed method is based on the user-

selected ToTem, which has a shape of the selected topology. It is thus important to understand how the ToTem

shape, beyond the ToTem topology, may influence the reconstruction. In the above reconstruction pipeline, step 1 is

independent of the ToTem, steps 2 and 3 are dependent on the ToTem shape and step 4 is dependent on the ToTem

topology but independent of the ToTem shape. We achieve this independence by minimising terms expressed only on

the differences between the reconstructed surfaces and refining the point parameterisation jointly. This theoretically

guarantees that the final reconstruction does not depend on the ToTem shape.
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4 ISOMETRIC NON-RIGID STRUCTURE-FROM-MOTION

Isometric NRSf M represents the first step of our reconstruction pipeline. We give the motivation for the proposed

method, the problem statement, and the proposed solution method.

4.1 Motivation

Isometric NRSf M was relaxed to inextensible NRSf M and solved elegantly in [Chhatkuli et al., 2017; Ji et al., 2017]

with convex relaxations. The inextensible and the convex relaxations involved in these formulations lead to a con-

vex second-order or Positive Semi-Definite (PSD) cone, which admits a feasible set larger than the original problem

formulation [d’Aspremont and Boyd, 2003]. The relaxed solution may thus be inaccurate, as confirmed by our

experiments on real cases. Therefore, there exists the theoretical and practical necessity of refining the solutions

from [Chhatkuli et al., 2017; Ji et al., 2017], based on the original isometric constraints. Isometric NRSf M is, un-

surprisingly, non-trivial as it involves non-convex constraints and is ill-posed. We propose a well-posed formulation

exploiting the true isometric constraints and the MDH.

4.2 Problem Statement

We begin the derivation of the proposed problem statement from the convex formulation of [Chhatkuli et al., 2017].

We assume full visibility of the points for the sake of simplicity throughout the derivation and introduce the visibility

indicator in our final formulation. By denoting q̂i,j as the unit vector directed towards Qi,j , we have:

min
{δi,j},{dj,q}

−
n∑
i=1

m∑
j=1

δi,j

s.t. ∥δi,jq̂i,j − δi,qq̂i,q∥ ≤ dj,q,
m∑
j′=1

∑
q′∈N (j′)

dj′,q′ = 1, δi,j ≥ 0, ∀i ∈ [1, n], j ∈ [1,m], q ∈ N (j).

(4)

Minimising −δi,j maximises depth, therefore imparts MDH; the first constraint upper bounds the Euclidean approx-

imation of geodesic distance ∥δi,jq̂i,j − δi,qq̂i,q∥ by the estimated geodesic distance dj,q and the second constraint

limits the scale of the reconstructed scene by mandating all geodesic distances to sum to one; these constraints al-

low the problem to be posed as SOCP. The problem formulation from [Ji et al., 2017] is an SDP reformulation of

[Chhatkuli et al., 2017], hence equivalent to formulation (4) with a slightly less relaxed solution set due to the switch

from SOCP to SDP. This reformulation replaces the inequality by its square, which is equivalent as both sides are

positive, but cancels the square root of the Euclidean norm. It also introduces the square in the scale normalisation

constraint.

Isometry can be introduced in formulation (4) by replacing the inequality constraint with equality, giving the
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following non-convex formulation, where we use the squared distance as in [Ji et al., 2017]:

min
{δi,j},{dj,q}

−
n∑
i=1

m∑
j=1

δi,j

s.t. ∥δi,jq̂i,j − δi,qq̂i,q∥2 = d2j,q,
m∑
j′=1

∑
q′∈N (j′)

d2j′,q′ = 1, δi,j ≥ 0, ∀i ∈ [1, n], j ∈ [1,m], q ∈ N (j).

(5)

This formulation is however not generally solvable as exactly satisfying all isometry constraints prevents the structure

from deforming, which is thus incompatible with the observed points. An interesting alternative is obtained by

replacing the individual isometry constraints with their sum of squares and formulating the Lagrangian, using ℓ as the

Lagrange multiplier:

min
{δi,j},{dj,q}

−
n∑
i=1

m∑
j=1

δi,j + ℓ
n∑
i=1

m∑
j=1

∑
q∈N (j)

(
∥δi,jq̂i,j − δi,qq̂i,q∥2 − d2j,q

)2
s.t.

m∑
j′=1

∑
q′∈N (j′)

d2j′,q′ = 1, δi,j ≥ 0, ∀i ∈ [1, n], j ∈ [1,m].

(6)

We observe that, by dropping the problematic isometry constraints, we thus obtain a maximally-isometric formulation,

where ℓ can then be used to control the influence of isometry over depth maximisation. The depth maximisation term

δi,j in equation (6) is linear but the isometry term
(
∥Qi,j −Qi,q∥2 − d2j,q

)2
is quartic.

Remark 1. Formulation (6) is a non-convex optimisation problem combining an MDH cost with a maximally-

isometric cost, which is derived as a simple reformulation of [Chhatkuli et al., 2017; Ji et al., 2017]. Solving

formulation (6) thus solves the formulation of [Chhatkuli et al., 2017; Ji et al., 2017] without the inextensible re-

laxation.

We arrive at the problem statement by expanding formulation (6), introducing the visibility indicators, and a

weight hyperparameter λ as:

min
{dj,q},{δi,j}

(
− λ

n∑
i=1

m∑
j=1

Vi,jδi,j +
n∑
i=1

m∑
j=1

∑
q∈N (j)

Vi,j Vi,q
(
δ2i,j + δ2i,q − d2j,q − 2δi,jδi,q⟨q̂i,j , q̂i,q⟩

)2)

s.t.
m∑
j′=1

∑
q′∈N (j′)

d2j′,q′ = 1, {dj,q}, {δi,j} ≥ 0, ∀i ∈ [1, n], j ∈ [1,m], q ∈ N (j).

(7)

The weight λ has an important role, as it weights the MDH term with respect to the isometric term. We have chosen

λ = 1/ℓ with λ ≥ 0, because it allows one to entirely deactivate the MDH term, whereas the ℓ based parameterisation

allows one to entirely deactivate the isometry term instead, which is not desirable as the formulation would degenerate

and lead to a solution δi,j = +∞ and dj,q unconstrained. In contrast, as λ→ +∞ the isometric term is given a lower
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influence, but is never deactivated. For λ = 0, only the isometric term is active, and the formulation is entirely

isometric. It is meaningful but likely to have multiple discrete solutions, being subject to the typical convex-concave

or ‘flip’ ambiguities of isometry. Therefore, choosing an appropriate value of λ is crucial in order to resolve the

ambiguities with a limited bias to the isometric term. Classically, λ would be user-defined. However, we propose a

method to choose it automatically, by following the principle that λ should be as small as possible but large enough

to resolve all ambiguities. This principle is implemented in the proposed solution method given in the next section.

4.3 Solution Method

We solve the non-convex formulation (7) by an alternation scheme, successively solving for the depths and the

geodesic distances. The method is given in algorithm 1.

4.3.1 Alternating Optimisation

We use the classical idea of Alternating Optimisation (AO) [Bezdek and Hathaway, 2002; Ortega and Rheinboldt,

2000]. Specifically, we use two rounds of AO in a nested manner. The first round, denoted AO1, splits the parameters

into geodesic distances {dj,q} and depths {δi,j}, alternatively solving for one of the two sets of parameters while

freezing the other. The second round, denote AO2, splits the depth set, solving for the depth of a single 3D point while

freezing the others. We denote the values at the r-th iteration of AO1 as (·)r and at the subsequent s-th iteration of

AO2 as (·)r,s ; we thus only use s during AO2. The initial estimate is thus denoted by {δ0i,j} and {d0j,q}.

4.3.2 Assumptions

Our method requires the following two assumptions.

Assumption 1. The angle between the sight-lines of neighbouring points, i.e., the angle between vectors q̂i,j and q̂i,q

for all q ∈ N (j), lies in the range (0, π2 ).

This assumption follows standard practice in NRSf M [Perriollat et al., 2011]. It ensures that the value of the inner

product ⟨q̂i,j , q̂i,q⟩ lies in (0, 1).

Assumption 2. The geodesic distance between neighbouring point-pairs is smaller than the depth of these points,

i.e., δ2i,j , δ
2
i,q ≥ d2j,q for all q ∈ N (j).

This assumption is less standard than the first one but forms a mild requirement. It is satisfied for the vast majority of

images of real-world objects with sufficient keypoint correspondences. We use it to guarantee that valid solutions are

found; we give details in lemma 2.
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4.3.3 Solving for the Geodesic Distances

We solve for the geodesic distances at iteration r while freezing the depths at their values at iteration r− 1. Formula-

tion (7) is thus rewritten as:

min
{drj,q}

(
− λ

n∑
i=1

m∑
j=1

Vi,jδr−1
i,j +

n∑
i=1

m∑
j=1

∑
q∈N (j)

Vi,j Vi,q
(
(δr−1
i,j )2 + (δr−1

i,q )2 − (drj,q)
2

−2δr−1
i,j δr−1

i,q ⟨q̂i,j , q̂i,q⟩
)2)

s.t.
m∑
j′=1

∑
q′∈N (j′)

(drj′,q′)
2 = 1, {drj,q} ≥ 0, ∀j ∈ [1,m], q ∈ N (j).

(8)

We make two key observations. First, that each cost term only depends on a single geodesic distance. Second,

the distances are only related to the normalisation constraint. However, a consequence of the AO scheme is that

this constraint can be temporarily ignored. This constraint is important in the general formulation because it keeps

the solution away from the trivial degenerate solution where all depths and distances would vanish. However, this

degeneracy does not manifest in each individual round of AO. This is because, at these rounds, the depths are kept

fixed and the distances cannot be set to zero without a cost increase. Therefore, the constraint can be safely ignored,

provided that the depths are simply renormalised once the iteration is complete. Renormalisation is important, as

it prevents the global reconstruction scale from drifting. It may increase the cost; this is normal, as the cost is

scale-covariant, which is the property causing the degeneracy in the first place: as one increases or decreases the

reconstruction scale, the cost also increases or decreases. This is a very common property of reconstruction problem

statements in Sf M and NRSf M. However, Sf T escapes this ambiguity, as its template prescribes the object’s geodesic

distances, fixing the reconstruction scale. The problem in equation (8) can thus be rewritten as a series of smaller

problems, one of which is to be solved for each geodesic distance, as:

min
drj,q

(
− λ

n∑
i=1

Vi,jδr−1
i,j +

n∑
i=1

Vi,j Vi,q
(
(δr−1
i,j )2 + (δr−1

i,q )2 − (drj,q)
2 − 2δr−1

i,j δr−1
i,q ⟨q̂i,j , q̂i,q⟩

)2)
s.t. drj,q ≥ 0.

(9)

We derive the solution to problem (9) by ignoring the inequality constraint and then show that the solution always

satisfies the constraint. Upon differentiating the cost with respect to drj,q and nullifying, we arrive at:

drj,q =

√√√√ 1

n

n∑
i=1

(
(δr−1
i,j )2 + (δr−1

i,q )2 − 2δr−1
i,j δr−1

i,q ⟨q̂i,j , q̂i,q⟩
)
. (10)

The properties of this solution are given by the next lemma.

Lemma 1. There always exists a unique, real, and positive solution to equation (9) given by equation (10).
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Proof. We need to show that the operand of the square root in solution (10) is positive. This operand is a sum and we

can thus show that each term of the sum is positive. This follows from:

(δr−1
i,j )2 + (δr−1

i,q )2 > 2δr−1
i,j δr−1

i,q ⟨q̂i,j , q̂i,q⟩ ⇔
δr−1
i,j

δr−1
i,q

+
δr−1
i,q

δr−1
i,j

> 2⟨q̂i,j , q̂i,q⟩

⇔
(δr−1
i,j + δr−1

i,q )

2
>
√
δr−1
i,j δr−1

i,q

√√√√(⟨q̂i,j , q̂i,q⟩+ 1
)

2
.

(11)

The left-hand-side in the second line of equation (11) is the arithmetic mean and the right-hand-side is the geometric

mean multiplied by the term
√

(⟨q̂i,j ,q̂i,q⟩+1)
2 . Due to assumption 1, ⟨q̂i,j , q̂i,q⟩ is within (0, 1), therefore the term√

(⟨q̂i,j ,q̂i,q⟩+1)
2 is within ( 1√

2
, 1), i.e. always lower than one and positive. The fact that the arithmetic mean is always

greater or equal to the geometric mean [Bhatia and Kittaneh, 2000] concludes the proof.

4.3.4 Solving for the Depths

We solve for the depths at iteration r while freezing the geodesic distances at their previous values, already available

for iteration r. Formulation (7) is thus rewritten as:

min
{δri,j}

(
− λ

n∑
i=1

m∑
j=1

Vi,jδri,j +
n∑
i=1

m∑
j=1

∑
q∈N (j)

Vi,j Vi,q
(
(δri,j)

2 + (δri,q)
2

−(drj,q)2 − 2δri,jδ
r
i,q⟨q̂i,j , q̂i,q⟩

)2)
s.t. {δri,j} ≥ 0, ∀i ∈ [1, n], j ∈ [1,m].

(12)

We observe that each cost term only depends on the depths from a single image. The problem is thus separable

image-wise and can be rewritten as a series of n smaller problems:

min
{δri,j}

(
− λ

m∑
j=1

Vi,jδri,j +
m∑
j=1

∑
q∈N (j)

Vi,j Vi,q
(
(δri,j)

2 + (δri,q)
2 − (drj,q)

2 − 2δri,jδ
r
i,q⟨q̂i,j , q̂i,q⟩

)2)

s.t. {δri,j} ≥ 0, ∀j ∈ [1,m].

(13)

The formulation remains non-convex, involving a quartic cost, and cannot be solved in closed-form. We use a second

round of AO, where we freeze all depths but one, using s as an iteration counter. We thus have:

min
δr,si,j

(
− λVi,jδr,si,j +

∑
q∈N (j)

Vi,j Vi,q
(
(δr,si,j )

2 + (δr,s−1
i,q )2 − (drj,q)

2 − 2δr,si,j δ
r,s−1
i,q ⟨q̂i,j , q̂i,q⟩

)2)

s.t. δr,si,j ≥ 0.

(14)
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Applying the first-order optimality condition, we obtain:

−λ+ 2
∑

q∈N (j)

(
2(δr,si,j )

3 − 6(δr,si,j )
2δr,s−1
i,q ⟨q̂i,j , q̂i,q⟩

+2δr,si,j

(
(δr,s−1
i,q )2(1 + 2(⟨q̂i,j , q̂i,q⟩)2)− (drj,q)

2
)
− 2δr,s−1

i,q ⟨q̂i,j , q̂i,q⟩
(
(δr,s−1
i,q )2 − (drj,q)

2
))

= 0.

(15)

This is a cubic in δr,si,j , whose properties are given in the next lemma.

Lemma 2. For λ ≥ 0 large enough, there is a unique, real, and positive solution to equation (15) for all points.

Proof. The proof has two parts. We consider only one point; the result trivially generalises to multiple points by

choosing the maximal value of λ over all points. First, we show that all the real solutions are positive. Second, we

show that there exists λ0 such that for any λ ≥ λ0 there is a unique real solution. We start with the first part by writing

the cubic (15) as:

c3(δ
r,s
i,j )

3 + c2(δ
r,s
i,j )

2 + c1δ
r,s
i,j + c0 = 0, (16)

where:

c3 = 4 |N (j)|, c2 = −12
N (j)∑
q=1

δr,s−1
i,q ⟨q̂i,j , q̂i,q⟩,

c1 = 4

N (j)∑
q=1

((
δr,s−1
i,q (1 + 2⟨q̂i,j , q̂i,q⟩)

)2
− (drj,q)

2

)
and

c0 = −4
N (j)∑
q=1

(
δr,s−1
i,q ⟨q̂i,j , q̂i,q⟩

(
(δr,s−1
i,q )2 − (drj,q)

2
))
− λ.

(17)

Recall that |N (j)| ∈ Z+ is the number of visible neighbours for point j. Using λ ≥ 0, δr,s−1
i,q > 0 and assumptions 1

and 2, we have c3 > 0, c2 < 0, c1 ≥ 0 and c0 < 0. The cubic has one or three real solutions, all positive. Indeed,

following Descartes’s rule of signs, as there are three sign changes across the ordered coefficients, there are exactly

one or three positive solutions, and as there are no sign changes when negating the first and third coefficients, there

cannot be negative solutions. In addition, because c0 ̸= 0, zero cannot be a solution.

We proceed with the second part of the proof. We observe that only c0 depends on λ. The cubic discriminant is

given by:

D = 18c3c2c1c0 − 4c32c0 + c22c
2
1 − 4c3c

3
1 − 27c23c

2
0. (18)

It forms a quadratic in λ whose leading term is −27c23λ2; as this leading coefficient is negative, the quadratic is

represented as an upward pointing parabola. Recall that the cubic has only one real solution if and only if D < 0.

We thus have two cases: either the parabola does not have a real root, in which case D < 0 for any value of λ, or the

parabola has one repeated or two distinct real roots λ− ≤ λ+, in which case D < 0 for λ > λ+.
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4.3.5 Convergence Criteria and Analysis

We introduce function F as a shorthand for the cost we minimise in equation (7), to be used below in convergence

analysis, given as:

F
(
{δr,si,j }, {d

r
j,q}
)
= −λ

n∑
i=1

m∑
j=1

Vi,jδr,si,j

+
n∑
i=1

m∑
j=1

∑
q∈N (j)

Vi,j Vi,q
(
(δr,si,j )

2 + (δr,si,q )
2 − (drj,q)

2 − 2δr,si,j δ
r,s
i,q ⟨q̂i,j , q̂i,q⟩

)2
.

(19)

The convergence criteria for AO1 and for AO2 are, respectively:

1

nm
|F
(
{δr,si,j }, {d

r
j,q}
)
− F

(
{δr−1,s
i,j }, {dr−1

j,q }
)
| ≤ ϵ, (20)

and:
1

nm
|F
(
{δr,si,j }, {d

r
j,q}
)
− F

(
{δr,s−1
i,j }, {drj,q}

)
| ≤ ϵ, (21)

where ϵ is a small constant. The following lemma states that the proposed method converges.

Lemma 3. For λ ≥ 0 large enough, the proposed two-round AO converges to a local solution of problem (7).

Proof. We use theorem 1 from [Hong et al., 2015], which we apply to AO1 and AO2. This is possible because 1) for

both AO1 and AO2, the original feasible set is R+, which is unbounded from above but can be simply compactified

by finding an upper-bound on the geodesic distance or depth from the isometric constraints, and 2) lemmas 1 and 2

show that for λ large enough both costs have a unique minimiser on the feasible set.

4.3.6 Pseudo-code Implementation

We summarise the proposed maximally isometric NRSf M method by giving pseudo-code in algorithm 1, for which

we explain the implementation details directly below.

The algorithm implements two main loops corresponding to the two rounds of AO. The outer loop from line 4

to line 19 implements AO1; the inner loop from line 11 to line 17 implements AO2. The geodesic distance solution

in line 7 is a simple closed-form. The depth solution in line 15 is the closed-form solution for the single real cubic

root [Kurosh, 2014]. We start with an initial MDH weight of zero in line 2 and increase it towards one as need be

in the inner iteration in line 15 to ensure the resolution of all isometric ambiguities as they manifest, implementing a

simple max operation with λ+. Specifically, λ+ is chosen as the largest real root of the quadratic discriminant (18)

or as 0 if it does not have real roots. We fix the convergence threshold ϵ ← 1e−12. The point clouds are eventually

retrieved from the computed depths in line 20.
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Algorithm 1: Isometric NRSf M
Data: Image correspondences {qi,j} and visibility indicators {Vi,j} for i ∈ [1, n], j ∈ [1,m], NNG N
Result: Point clouds {Qi,j} for i ∈ [1, n], j ∈ [1,m]

1 Initialise the depths: {δ0,0i,j } for all i ∈ [1, n], j ∈ [1,m] from e.g. [Chhatkuli et al., 2017]
2 Set the MDH weight: λ← 0
3 Set AO1 iteration counter: r ← 0
4 do
5 Increase AO1 iteration counter: r ← r + 1
6 for j ∈ [1,m], q ∈ N (j) do
7 Solve for drj,q from equation (10)
8 end
9 for i ∈ [1, n] do

10 Set AO2 iteration counter: s← 0
11 do
12 Increase AO2 iteration counter: s← s+ 1
13 for j ∈ [1,m] do
14 Increase MDH weight if required: λ← max(λ, λ+)
15 Solve δr,si,j from problem (14)
16 end
17 while |F

(
{δr,si,j }, {drj,q}

)
− F

(
{δr,s−1
i,j }, {drj,q}

)
| ≤ nmϵ;

18 end
19 while |F

(
{δr,si,j }, {drj,q}

)
− F

(
{δr−1,s
i,j }, {dr−1

j,q }
)
| ≤ nmϵ;

20 Retrieve the point clouds: ∥Qi,j∥ ← δr,si,j q̃i,j/∥q̃i,j∥ for all i ∈ [1, n], j ∈ [1,m]

5 ToTem TO POINT CLOUD ALIGNMENT

Aligning the ToTem shape to the reconstructed point-clouds forms the second step of our reconstruction pipeline. We

start by giving our strategy and the general problem statement, then adapt it to the three algebraic shapes, and finally

to the general shapes, giving a solution method in each case. In particular, we present new methods consisting of

multiple global optimal sub-steps to deal with the cylindrical and spherical ToTem cases.

5.1 Strategy and General Problem Statement

We compute the alignment of the ToTem shape to each point cloud independently. Theoretically, the alignment

function is the deformation denoted ψi. Directly computing ψi, which has many degrees of freedom, would be

very unstable because the point-clouds, resulting from NRSf M, are usually sparse and noisy. We thus need a more

constrained model with as few degrees of freedom as possible. The similarity model is a scaled rigid model and thus

has only 7 relevant degrees of freedom at most. It accounts for the global orientation with its rotational component,

for the global position with its translational component, and for the global change in size by its scaling component.

The similarity model is used to robustly initiate the parameterisation process and bootstraps the estimation of ψi in

section 6.
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We define the alignment problem for point-cloud Qi = [Qi,1, . . . ,Qi,m]
⊤ ∈ Rm×3 with i ∈ [1, n]. We assume

without loss of generality that all points are visible. The alignment function is denoted fi with fi(Qi) = siRiQ
⊤
i +ti,

where si > 0 is the scale factor, Ri ∈ SO3 is a rotation matrix and ti ∈ R3 is the translation vector. Function fi acts

on the points of the ToTem shape U to produce an aligned shape fi(U). We define a cost function EP that measures

a fitting error between the point-cloud and the aligned shape as EP
(
fi(U),Qi

)
. We thus state the general alignment

problem as:

min
si,Ri,Ti

EP
(
fi(U),Qi

)
. (22)

The cost function may for instance be the sum of squared distances between the points and the aligned shape, in which

case a general solution is provided by the ICP approach. However, we choose the cost function on a case-by-case

basis to facilitate the derivation of closed-form solutions for the three algebraic shapes. The key idea is that fi(U) is a

shape of the same nature as U for the three algebraic shapes, so we reformulate the problem as a shape-fitting problem,

from which we extract the si,Ri, ti parameters. For instance, a plane is transformed to a plane by the similarity fi,

so we fit the aligned plane directly, from which we extract the similarity parameters. A benefit of this approach is that

it allows one to directly figure out which degrees of freedom of the similarity are not constrained by the fitted shape.

For instance, plane fitting does not constrain the rotation around the plane normal.

5.2 Planar ToTem Alignment

Planar alignment is trivial, as it consists in fitting a plane to the point-cloud. We only have 3 degrees of freedom to

resolve, namely 2 rotational and 1 translational. This is because the scale is irrelevant, as are the rotation about the

plane normal and the in-plane translation. These 3 degrees of freedom are consistent with the 3 degrees of freedom of

a plane in the 3D space.

We parameterise the aligned plane by its homogeneous coefficients hi = (n⊤
i di)

⊤ where ni, with ∥ni∥ = 1, is

the normal vector and |di| is some scalar. The classical point-to-plane distance minimisation problem is written as:

min
ni,di
∥Qini + di1m×1∥22 s.t. ∥ni∥2 = 1. (23)

Differentiating equation (23) w.r.t. di and nullifying yields di =
(Qini)

⊤1m×1

m . As the centroid of Qi is given by

Ci,pln =
Q⊤

i 1m×1

m , we thus have that translating the coordinate frame by centring the point-cloud cancels di but

leaves the normal vector unchanged. Therefore, the standard method of finding the singular vector associated with

the smallest singular value by a Singular Value Decomposition (SVD) of the centred point-cloud matrix Qi −C⊤
i,pln

directly gives ni. We then recover the parameters of fi as follows. We set si = 1. The uv-space is a plane with normal

Z = [0, 0, 1]⊤. Hence, from ni = RiZ, we know that the third column of Ri is ni. We thus find Ri by orthonormal
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completion, using the first factor U from an SVD of ni. The translation is then simply given by Ti = diZ.

5.3 Cylindrical ToTem Alignment

We propose a two-step closed-form solution to cylindrical alignment. We represent the cylinder by its axis and its

radius, hence 5 degrees of freedom. Recall that a 3D line has 4 degrees of freedom. We only have 5 degrees of

freedom to resolve, namely 1 scaling, 2 rotational, and 2 translational. This is because the rotation about the cylinder

axis is irrelevant, as is the along-axis translation. These 5 degrees of freedom are consistent with the 5 degrees of

freedom of a 3D cylinder.

We break down the cylinder axis into an orientation and a base point. We start with step 1), where we compute

the axis’ orientation and deduce the similarity’s rotation. Fitting a cylinder to a point-cloud is a naturally ambiguous

problem, should the point-cloud not possess a dominant direction. The worst case is trivially made of approximately

isotropic point-clouds, where any cylinder orientation would fit equally well to a fair extent. These degenerate cases

are however rare; we rule them out with the following widely applicable assumption.

Assumption 3. The cylindrical shape is thin, meaning that the radius of the cylinder resembling the point cloud is

smaller than its length.

We can thus use the dominant point-cloud direction as cylinder axis orientation, denoted Λi. A simple way to find it is

by using the singular vector corresponding to the dominant singular value of Qi from an SVD. The cylindrical ToTem

is defined with an orientation along the positive Y -axis, given by vector Y = [0, 1, 0]⊤. We proceed similarly to the

planar case to retrieve Ri, using Λi = RiY and an SVD of Λi to perform orthonormal completion. One could avoid

requiring assumption 3 by testing the three main directions in turn and simply keeping the one yielding the lowest

final fitting residual.

We proceed with step 2), where we compute the radius and axis’ base point, and deduce the similarity’s scale and

translation. We rotate the point-cloud to align it to the ToTem in terms of orientation, defining Q′
i = R⊤

i Qi. Should

it be perfectly cylindrical, the rotated point-cloud Q′
i would lie normal to the XZ-plane. The idea for determining the

radius and base point is to orthogonally project the rotated point-cloud to the XZ-plane, giving points q′
i. We then fit

a base circle, representing the cylinder’s profile, with radius ri ≥ 0 and centre Ci = [Cx, Cy]
⊤ ∈ R2. For a point to

be on the circle, its distance to the centre must be equal to the radius. We turn this constraint into a cost function, by

minimising the sum of squared differences of the squared radius and point to centre distance, as:

min
ri,Ci

m∑
j=1

(
r2i − ∥q′

i,j − Ci∥22
)2
. (24)

As the cost is quartic, the problem cannot be directly solved in closed-form with standard methods. We propose to
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substitute the variable ϱi = r2i − ∥Ci∥22, obtaining:

min
ϱi,Ci

m∑
j=1

((
ϱi + 2(q′

i,j)
⊤Ci

)
− ∥q′

i,j∥22
)2

s.t. ϱi + ∥Ci∥22 ≥ 0. (25)

The additional constraint stems from the change of variable implying ϱ2i + ∥Ci∥22 = r2i ≥ 0. The cost is now in the

form of linear least-squares and can be expressed in matrix form as:

∥∥∥∥∥∥∥∥∥∥


1 2(q′

i,1)
⊤

...
...

1 2(q′
i,m)

⊤


ϱi
Ci

−

∥q′

i,1∥22
...

∥q′
i,m∥22


∥∥∥∥∥∥∥∥∥∥

2

2

. (26)

The constraint can be safely ignored; as the cost is convex, either the unconstrained global minimum is within the

feasible set, and thus matches the constrained global minimum, or it is outside the feasible set, in which case the

constrained global minimum is on the feasible set’s boundary. This would be a degenerate case with ri = 0, reducing

the circle to a single point. Our implementation handles it, though we have not met the case in practice. We eventually

solve the unconstrained problem with the matrix pseudo-inverse technique to recover ϱi and Ci, from which the radius

is extracted as ri =
√
max(0, ϱi + ∥Ci∥22). Recall that the ToTem cylinder has radius 1 and an axis parallel to axis Y

passing by the origin. We thus set si = 1/ri and ti = Ri [Cx, 0, Cy]
⊤.

5.4 Spherical ToTem Alignment

We represent the sphere by its centre and its radius, hence 4 degrees of freedom. We only have 4 degrees of freedom

to resolve, namely 1 scaling and 3 translational. This is because the rotation is irrelevant. These 4 degrees of freedom

as consistent with the 4 degrees of freedom of a sphere. We denote the radius as ri ≥ 0 and the centre as Ci ∈ R3. We

formulate the problem similarly to the base circle fitting formulation (24) and solve it with the same change of variable

and constraint handling method. Recall that the ToTem sphere is zero-centred and of unit radius. We thus eventually

set the parameters of fi as si = 1/ri, Ri = I where I is the identity matrix of appropriate size, and ti = Ci.

5.5 General Shape ToTem Alignment

The general case holds when the ToTem shape is not an algebraic shape but a general shape represented by a triangu-

lar mesh. The alignment with a point-cloud is part of a long-standing and extremely difficult problem. The problem

is particularly difficult in the case at hand, owing to the point-cloud being a deformed (hence, non-rigid) version of

the ToTem shape, and being subject to reconstruction error arising from the input data artefacts, including inaccurate

correspondences, surface stretching violating isometry significantly and NRSf M ambiguities. There does not exist
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a universally agreed method to solve for the alignment under these conditions. In most practical applications, how-

ever, additional constraints are available to pre-align the ToTem shape and the point-cloud. Specifically, we use two

types of constraints, whose specific uses are explained on a case-by-case basis in the experiments. The first type of

constraints are the known correspondences between the ToTem shape and the images, which are naturally extended

to correspondences with the point-clouds. This is the most common type of constraint, which exists for instance in

surgical augmented reality applications in the form of anatomical landmarks. For instance, we perform an experiment

with laparoscopic liver images where the ToTem shape is provided by a CT scan, and a few corresponding curves are

identified by the physician [Rabbani et al., 2022]. These corresponding curves can be used to compute a pre-alignment

which can then be refined by means of standard ICP [Besl and McKay, 1992] and its modern implementations such

as the branch-and-bound method [Yang et al., 2015]. The second type of constraints is the assumption of small defor-

mation. This typically occurs for stiff objects or objects undergoing strong environmental constraints. The alignment

can be computed by means of ICP directly from a canonical identity initialisation.

6 PARAMETERISATION

Computing the parameterisation of the reconstructed point-clouds forms the third step of our reconstruction pipeline.

The objective of parameterisation is to find, for each reconstructed point correspondence with index j ∈ [1,m], a 2D

point pj ∈ T in uv-space. This means that a consensus between the point-clouds must be found, which is challeng-

ing because, owing to the natural parameterisation freedom, there exist multiple equivalent parameterisations. For

instance, the rotation is arbitrary for the spherical ToTem. We thus proceed in two steps, which parameterise each

point-cloud and then resolve the parameterisation discrepancies. The first step computes an independent parameter-

isation for the point-cloud of each image, resulting in the 2D points {ri,j ∈ T } with i ∈ [1, n], j ∈ [1,m]. The

independent parameterisations are incoherent, which means that corresponding points across the point-clouds may

have different uv-space coordinates. Beyond parameterisation freedom, this owes to several reasons, which we study

in detail below, including the differences that exist between the ToTem shape and the actual object shape as recon-

structed in the point-clouds. The second step unifies these independent parameterisations in a coherent manner, so

that corresponding points have the same uv-coordinates, regardless of the considered image, resulting in the 2D points

{pj ∈ T } with j ∈ [1,m]. These two steps are described in the next two sections,

6.1 Independent Image-wise Parameterisation

We compute an image-wise parameterisation by treating each point-cloud independently. In the next three sections,

we give the general principle, the initialisation method, and the refinement method.
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6.1.1 General Principle

By definition of the embedding ∆ and the aligning similarity fi, the uv-coordinates ri,j must satisfy:

fi (∆ (ri,j)) = Qi,j +Ei,j , (27)

where Ei,j ∈ R3 is an unknown vector which models reconstruction noise and object deformation. Inverting this

equation to find ri,j requires one to handle the fact that ∆−1 is only defined for 3D points on the ToTem shape U . The

key idea is to transfer the point-cloud Qi to the ToTem shape in canonical pose using the inverse aligning similarity

transformation f−1
i as Qa

i,j = f−1
i (Qi,j), find their closest point on the ToTem shape as Qp

i,j = P(Qa
i,j), where P is

the closest point operator, and compute the uv-space coordinates by the flattening transformation ∆−1 : U 7→ T . The

uv-space coordinates are thus obtained as:

ri,j = ∆−1
(
P
(
f−1
i (Qi,j)

))
. (28)

We instantiate this general procedure for each of the three algebraic shapes and the general shapes in turn.

6.1.2 Initialisation Method

Our initialisation method uses equation (28). Specifically, the aligning similarity fi is computed as described in

section 5 and the flattening transformation ∆ is implemented as described in section 3.2, which is a closed-form for

the algebraic shapes and exploits standard barycentric coordinates for the general shapes. Therefore, it only remains

to define the closest point operator P , for each of the algebraic shapes and the general shapes.

Algebraic shapes. The closest point operator is given by selecting the closest orthogonal projection. For the planar

ToTem, the canonical plane is the XY -plane. The projection is thus:

Qp
i,j = [Xp

i,j , Y
p
i,j , Z

p
i,j ]

⊤ = [Xa
i,j , Y

a
i,j , 0]

⊤. (29)

For the cylindrical ToTem, the canonical cylinder axis is the Y -axis of the coordinate frame and its radius is 1. The

projection is thus:

Qp
i,j = [Xp

i,j , Y
p
i,j , Z

p
i,j ]

⊤ = [αXa
i,j , Y

a
i,j , αZ

a
i,j ]

⊤ with α =
1√

(Xa
i,j)

2 + (Zai,j)
2
. (30)
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For the spherical ToTem, the canonical sphere is zero centred and its radius is 1. The projection is thus:

Qp
i,j = αQa

i,j with α =
1

∥Qa
i,j∥2

. (31)

Singularity avoidance. For the cylindrical and spherical ToTems, some of the orthogonally projected points in

{P
(
f−1
i (Qi,j)

)
} from equations (30) and (31) may lie on or close to the singularity of these shape parameterisations,

which, from table 2, lie at θ = π and θ2 = π for the cylinder and sphere respectively. We propose a singularity

avoidance correction, based on the fact that the reconstructed points {Qi,j} are sparse. From this sparsity, there

must exist empty spaces in the vicinity of the points where the singular strip or patch can be safely placed without

points lying within a small distance ϵs. Unless the reconstructed points are dense, which they are certainly not, the

existence of such ‘empty spaces’ is guaranteed. The cylindrical and spherical ToTems come equipped with redundant

rotational degrees of freedom that allow us to search for such an empty region without affecting the overall problem

setup, as shown in the last column of table 2. This is practically implemented by a simple line-search along θ or θ2

for the cylinder and sphere respectively. The line-search terminates when no points in {P
(
f−1
i (Qi,j)

)
} lie within

an ϵs distance from the singularity. This line-search generates a small corrective rotational transformation gi. The

rigid alignment, orthogonal projection, and singularity avoidance correction can be written as gi
(
P
(
f−1
i (Qi,j)

))
=

P
(
gi
(
f−1
i (Qi,j)

))
, since these transformations commute. With a slight abuse of notation, we denote the composition

of transformations gi ◦ f−1
i simply as f−1

i in the sequel.

General shapes. The general shape ToTem uses a triangular mesh representation. We compute the distance between

the point Qa
i,j and each triangle to select the closest triangle, in which we compute the closest point. Our method uses

the triangle’s supporting planeA. It first computes the distance between Qa
i,j andA, which provides a lower-bound on

the distance to the triangle, and uses it as a means to quickly eliminate the triangle from the search. For a triangle that

passes this initial test, the method then projects Qa
i,j on A. If the projection falls inside the triangle, then it keeps it as

the closest point; if it falls outside the triangle, then this means that the closest point must lie on one of the triangle’s

edges. In this case, the method projects Qa
i,j to the lines supporting the edges and performs a similar test as for the

supporting plane: if the projection falls within at least one edge, then the closest in-edge projection is kept as closest

point; if it falls outside all edges, then this means that the closest point must be one of the triangle’s vertices, and the

closest vertex is chosen. This procedure is extremely fast and efficient.

Although the definition of general shapes does not involve singularities, the nature of conformal flattening requires

an open patch, sometimes called a ‘seam’, that acts as the boundary of the flattened mesh. This open patch is a pseudo-

singularity around which ∆ remains undefined. This is handled in our approach by placing the open patch away from

the viewing direction of the camera, ensuring that none of the reconstructed points fall close to the pseudo-singularity.
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6.1.3 Refinement Method

Refining the image-wise parameterisation is done by leaving the similarity approximation fi and returning to the

original deformation function ψi. With this model, one can introduce more advanced priors to better constrain the

parameterisation. This is conceptually simple but complex to realise, for two main reasons. First, an ambiguity

exists between the parameterisation and the deformation. In other words, to some extent, a point can be moved in

the uv-space and the 3D deformation adapted to produce a similar prediction in the NRSf M reconstruction space.

This ambiguity can be resolved by using strong priors. Second, the priors must be specifically designed: as our

goal is to refine the parameterisation, the priors should be essentially placed to constrain the deformation and not the

parameterisation. However, the isometric deformation prior is not applicable in the image-wise case. We deal with

these two challenges by a specific data term and two deformation regularisation priors. We thus evolve equation (27)

to:

ψi (∆ (ri,j)) = Qi,j +E′
i,j , (32)

where E′
i,j ∈ R3 is an unknown vector which models only reconstruction noise, whilst object deformation is now

covered by ψi. We thus introduce a cost function g to refine the parameterisation and estimate ψi jointly as follows:

min
{ri,j},Ci

g({ri,j},Ci) with g({ri,j},Ci) = gdata({ri,j},Ci) + κ0 gdef0({ri,j},Ci) + κ1 gdef1({ri,j},Ci), (33)

where κ0, κ1 > 0 are hyperparameters and Ci represents the target control points of ψi, following the polyharmonic

model of section 3.4. The cost function has three terms, which we explain one by one. The data term gdata measures

the closeness of the points ψ(∆(ri,j)) predicted by the model and the points Qi,j from the NRSf M point-cloud. In

order to preserve flexibility, we project the error vector to the surface normal, as in the standard ICP cost, as:

gdata ({ri,j},Ci) =
m∑
j=1

(
(ψi (∆ (ri,j))−Qi,j)

⊤ η[ψi ◦∆] (ri,j)
)2
. (34)

Recall that η is the normal operator, giving the surface normal at the point ψi(∆(ri,j)). The two other terms are

regularisation terms, which constrain the deformation to remain small, by penalising deviation from the dominant

similarity transformation fi. The first regularisation term acts at the zeroth differential order, directly on the point

position, as:

gdef0 ({ri,j},Ci) =
m∑
j=1

∥ψi (∆ (ri,j))− fi (∆ (ri,j))∥22 . (35)
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The second regularisation term acts at the first differential order, on the normals, as:

gdef1 ({ri,j},Ci) =
m∑
j=1

∥η[ψi ◦∆] (ri,j)− η[fi ◦∆] (ri,j)∥22 . (36)

The cost function g is a sum of squares and the problem is thus a nonlinear least-squares minimisation. We set the

hyperparameters in the range κ0 ∈ (0, 0.1) and κ1 ∈ (0.1, 0.25). We use the Levenberg-Marquardt (LM) algorithm

with fi as the initial solution, using the property that a polyharmonic spline can exactly reproduce a similarity trans-

formation. We achieve this initialisation by setting the target control points by transferring the fixed source control

points as Ci = fi(Di).

6.2 Coherent Multi-image Parameterisation

In an ideal setting, the independent parameterisations {ri,j ∈ T } should perfectly match, satisfying r1,j = · · · = rn,j ,

for j ∈ [1,m]. In other words, a point from the j-th correspondence should have the same parameterisation regardless

of the point-cloud i ∈ [1, n] from which this parameterisation is computed. If this property held, we could simply

combine the independent parameterisations to retrieve the coherent parameters {pj ∈ T }, for instance using averaging

or robust averaging to handle noise. In practice however, this property does not hold and it is of key importance to

understand the reasons why, in order to devise a correct method to compute the coherent parameterisation. The

first reason is noise, which manifests itself in the reconstructed point-clouds and may have a strong impact in the

parameters as it propagates through the independent parameterisation process. The second reason is the unresolved

degrees of freedom in the alignment process. This mainly occurs for the algebraic ToTem shapes, which we analyse in

detail in the previous section. For instance, the sphere rotation is arbitrary, which may cause strong parameter offsets

across the images. The third reason is the deformation. As the alignment is rigid, it does not perfectly match the

ToTem shape to the point-cloud, resulting in parameterisations with dependencies on the actual deformation state of

the point-cloud, which varies across the images.

The main consequence of these three reasons is that the independent parameterisations must be unified by means

of registration with a deformable transformation model. Concretely, we have the n independent parameterisations

{ri,j} in uv-space, each represented by a point-cloud of size m, and we search for a coherent parameterisation {pj}

representative of these point-clouds. We propose to minimise the distance between the coherent parameterisation {pj}

and each of the independent parameterisations {ri,j} up to unknown deformable transformations, accounting for the

above explained discrepancies. We identify this problem as an instance of the deformable GPA problem, to which a

practical closed-form solution was recently given [Bai and Bartoli, 2022], where the transformations are represented

by TPS.
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7 SURFACE-BASED NON-RIGID BUNDLE ADJUSTMENT

The surface-based global refinement in a bundle adjustment manner forms the fourth step of our reconstruction

pipeline. We first give the motivation and problem statement, then an efficient optimisation scheme.

7.1 Motivation and Problem Statement

The goal of bundle adjustment is to minimise a cost modelling the data and the priors in a principled manner. We

propose a formulation adapted to deformable objects with known topology, which uses and refines the coherent

parameterisation achieved by the previous steps. The key difference with the previous step, which already refines the

parameterisation, is that bundle adjustment does it coherently for the whole set of images, allowing one to use the

reprojection error and to re-introduce the isometric deformation prior and surface smoothing whilst taking advantage

of the proposed embedding and deformation framework.

We start from 3D point prediction obtained from the model of section 3 as:

Qi,j = ψi(∆(pj)). (37)

By combining with the camera projection function Π, we obtain the prediction of the j-th point in the i-th image qi,j

as:

q̂i,j = Π(ψi(∆(pj))). (38)

In this model, the unknowns are the parameterisation {pj} and the deformation function {ψi}; in analogy to classical

rigid BA, these are respectively the structure and the motion. We thus formulate surface-based BA as a minimisation

problem over the point parameterisation in uv-space {pj}, j ∈ [1,m] and the 3D deformation function parameters

{Ci}, i ∈ [1, n], as:

min
{pj},Ci

h({pj},Ci), (39)

where h is a compound cost function, where we use three terms with hyperparameters ν0, ν1 > 0, as:

h({pi},Ci) = hrep({pj},Ci) + ν0 hiso({pj},Ci) + ν1 hsmooth({pj},Ci). (40)

The first cost term hrep is the data term, which relates the model to the data, using the standard reprojection error, as:

hrep({pj},Ci) =

n∑
i=1

m∑
j=1

∥∥∥∥qi,j −Π
(
ψi
(
∆(pj)

))∥∥∥∥2. (41)

The second cost term hiso represents the isometric deformation prior. We follow the standard way of penalising the
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deviation of inter-point Euclidean distances from the geodesic distances. In our formulation, however, the geodesic

distances are estimated indirectly, as the effect of optimising the parameterisation, causing the points to move on the

surface of U . For a point-pair (j, q), the geodesic distance between ∆(pj) and ∆(pq) is thus obtained by a function of

the parameters as g(pj ,pq). This allows us to define the isometric cost by the least-squares difference of inter-point

distances as:

hiso({pj},Ci) =

n∑
i=1

m∑
j=1

∑
q∈N (j)

(√
∥ψi (∆ (pj))− ψi (∆ (pq)) ∥2 + ϵ−

√
g(pj ,pq)2 + ϵ

)2

. (42)

We use ϵ as a small constant, whose effect is to smooth the cost function, which we consistently choose as ϵ = 10−2.

For the planar and cylindrical ToTem, g(pj ,pq) is trivially the Euclidean distance in the uv-space while for the

spherical ToTem it is the standard great circle length [Pressley, 2010], check appendix A for details. For the general

ToTem shapes, there does not exist a closed-form for the geodesic distance. We thus compute it numerically from the

shortest path found by the A∗ algorithm, using a standard efficient method [Calla et al., 2019].

The first cost term hsmooth represents the surface smoothness prior. It acts as a regulariser, designed to smooth the

reconstructed surfaces. We use the classical Gaussian smoothing approach [Horn and Weldon, 1986]. We implement

it by densely sampling the surface by b points, using b = 104 points. We choose these points in uv-space with

parameterisation {pr}, r ∈ [1, b] by uniformly sampling the convex-hull of {pj} in R2. As for the NNG, we use N ′

to denote the neighbouring points operator, where s ∈ N ′(r) means that p′
r and p′

s are neighbours. This leads to the

following smoothing term:

hsmooth({pj},Ci) =

n∑
i=1

b∑
r=1

∑
s∈N ′(r)

∥ψi(∆(p′
r))− ψi(∆(p′

s))∥2. (43)

Gaussian smoothing is simple and effective but has a known downside, which is the uncontrolled shrinkage of the

surface. This is trivially avoided in the compound cost, thanks to the other two cost terms which do not share this side

effect.

7.2 An Efficient Separable Implementation

The proposed formulation (39) is a non-linear least-squares problem, which, as usual in BA, can be handled by means

of the LM method [Triggs et al., 1999]. This iterative method is guaranteed to converge to a local minimum, is

generally fast, and handles the problem parameterisation ambiguities by damping. In theory, an off-the-shelf LM

implementation [Kelley, 1999] would be sufficient. This would, however, be highly inefficient in terms of numerical

stability and computation cost, as discussed below. We describe the structure of the LM update and then the proposed

adaptation to surface-based non-rigid BA.
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Structure of the LM update. We define the parameter vector as ξ ∈ R2m+3nm with

ξ =
(
p⊤
1 , . . . ,p

⊤
m, vec(C1)

⊤, . . . , vec(Cn)
⊤
)⊤

(44)

where vec is matrix vectorisation. We define the residual vector EBA ∈ RN as the stacking of the residuals from

the three cost terms hrep, hiso and hsmooth, such that E⊤
BAEBA = h({pj},Ci), where the total number of residuals

N = N1 +N2 +N3 is the sum of the number of residuals for each cost term. A typical LM update ξ′ is then given

by solving the augmented normal equations:

(H+ λLMI) ξ′ = J⊤EBA with H = J⊤J, (45)

where J ∈ RN×(2m+3nm) is the Jacobian matrix of EBA, H ∈ R(2m+3nm)×(2m+3nm) the Gauss-Newton approxima-

tion of the Hessian matrix and λLM the damping factor.

The main computational bottleneck of standard LM is solving the normal equations (45). For the standard solver,

this computation is prohibitive when the number of images or keypoints are large, requiring hours or days for n ∼ 50

and m ∼ 100 on a modern desktop computer. We present an adapted method following the classical BA strategies

to exploit the sparsity pattern of the Hessian matrix [Triggs et al., 1999] and specific approximations of the non-rigid

transformations.

Block structure of the Jacobian and Hessian matrices. The Jacobian and Hessian matrices possess strong block

structures. The Jacobian matrix has six blocks arising out of the partial derivatives of the three cost terms with

respect to the point parameterisation {pj} and to the control points of ψi, {Ci}. We denote these blocks as ∗-†, with

∗ ∈ {rep, iso, smooth} and † ∈ {pj , ψi}. For instance, the top-left hand corner block is rep-pj . The Hessian has

four blocks arising out of the interactions between the parameters. We denote these blocks are †-†. For instance, the

top-left hand corner block is pj-pj . These blocks can be shown pictorially as:

J =



rep-pj ∈ RN1×2m rep-ψi ∈ RN1×3nm

iso-pj ∈ RN2×2m iso-ψi ∈ RN2×3nm

smooth-pj ∈ RN3×2m smooth-ψi ∈ RN3×3nm


, H =


pj-pj ∈ R2m×2m pj-ψi ∈ R2m×3nm

ψi-pj ∈ R3nm×2m ψi-ψi ∈ R3nm×3nm

,

where the darker background indicates denser blocks, the lighter background indicates sparser blocks and the blue

outline indicates an all-zero block, arising because hsmooth is independent of {pj} in equation (43).
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First approximation: fixing the points’ basis coefficients in the polyharmonic spline. The first main expensive

operation in the problem setup that significantly slows down the solution method is the computation of ψi(∆(pj)).

This computation is expensive because it must be repeated mn times for a single cost evaluation and because the

polyharmonic spline ψi is applied to a moving source point ∆(pj), implying that the polyharmonic spline’s basis

coefficients cannot be precomputed. We propose to fix the source point to Rj = ∆(p0
j ), where {p0

j} is the initial

estimate so that the basis coefficients become constant. We thus define new transformations ϑi parameterised by m′

control points C′
i such that ϑi(Rj) ≈ ψi(∆(pj)). Therefore, the surface-based non-rigid BA formulation (39) is

reformulated to:

min
{pj},C′

i

h({pj},Cϑ,i), (46)

and ψi(∆(pj)) in equations (41) and (42) are replaced by ϑi(Rj). The new transformations are initialised such that

ϑi(Rj) = ψi(∆(p0
j )). Throughout the optimisation, {Rj} remains unmodified, since it is now dissociated from

∆(pj). However, ∆(pj) is still used to determine the geodesic distances and the reprojection error. The proposed

approximation has two beneficial side-effects: it allows one to control the number of control points m′, which we

reduce compared to the number of correspondences m, and it sparsifies the Jacobian and Hessian matrices, as it

zeroes the iso-pj block.

Second approximation: using the Euclidean approximation of geodesic distances. The second main expensive

operation in the problem setup is, for the general ToTem shapes, the computation of the geodesic distances by numeri-

cal methods. While stable, this is costly and prevents the analytic computation of the Jacobian matrix’ entries. We thus

propose to approximate the geodesic distance by the Euclidean distance, simply using g(pj ,pq) = ∥∆(pj)−∆(pq)∥

for general ToTem shapes.

Sparsity-aware solution of the normal equations. With the proposed approximations, the new sparsity structure

of the Jacobian and Hessian matrices becomes:

Jϑ =



rep-pj ∈ RN1×2m rep-ϑi ∈ RN1×3nm′

iso-pj ∈ RN2×2m iso-ϑi ∈ RN2×3nm′

smooth-pj ∈ RN3×2m smooth-ϑi ∈ RN3×3nm′


,Hϑ =


pj-pj ∈ R2m×2m pj-ϑi ∈ R2m×3nm′

ϑi-pj ∈ R3nm′×2m ϑi-ϑi ∈ R3nm′×3nm′

 ,

The dense iso-pj is zeroed, owing to the use of the new transformations {ϑi}, independent of the parameterisation

{pj}. Although this does not completely nullify any of the four blocks of the Hessian matrix, it significantly reduces

the computation time. The efficient solution method is obtained by means of the Schur complement [Triggs et al.,
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1999], observing that the ϑi-ϑi block is block-diagonal. By naming its individual diagonal blocks as ϑ1-ϑ1 to ϑn-ϑn,

the structure is refined as:

Hϑ =



pj-pj ∈ R2m×2m pj-ϑ1 ∈ R2m×3m′
. . . pj-ϑn ∈ R2m×3m′

ϑ1-pj ∈ R3m′×2m ϑ1-ϑ1 ∈ R3m′×3m′

...
. . .

ϑn-pj ∈ R3m′×2m ϑn-ϑn ∈ R3m′×3m′


=

Hϑ,1,1 Hϑ,1,2

H⊤
ϑ,1,2 Hϑ,2,2

 .

As the ϑ1-ϑ1 to ϑn-ϑn blocks may be ill-conditioned owing to the parameterisation freedom, we use the generalised

Schur complement [Carlson et al., 1974] based on with pseudo-inverses, leading to:

(Hϑ)
−1 =

Hϑ,2,2 Hϑ,1,2

H⊤
ϑ,1,2 Hϑ,1,1


−1

=

(
H†

ϑ,2,2 +H†
ϑ,2,2Hϑ,1,2(Hϑ,1,1 −H⊤

ϑ,1,2H
†
ϑ,2,2Hϑ,1,2)

−1H⊤
ϑ,1,2H

†
ϑ,2,2 −H†

ϑ,2,2Hϑ,1,2(Hϑ,1,1 −H⊤
ϑ,1,2H

†
ϑ,2,2Hϑ,1,2)

−1

−(Hϑ,1,1 −H⊤
ϑ,1,2H

†
ϑ,2,2Hϑ,1,2)

−1H⊤
ϑ,1,2H

†
ϑ,2,2 (Hϑ,1,1 −H⊤

ϑ,1,2H
†
ϑ,2,2Hϑ,1,2)

−1

)
,

(47)

where H†
ϑ,2,2 is computed efficiently by pseudo-inverting each of its diagonal blocks; the leading cost is thus the

inversion of n matrices of size 3m′ × 3m′.

8 EXPERIMENTAL RESULTS

We present the results of the proposed NRSf M approach for object-wise reconstruction of deformable objects with

ToTem. We evaluate the different steps of the proposed pipeline individually and the complete proposed pipeline.

First, we evaluate the point-based NRSf M results obtained using the method from section 4, which is the first step of

the pipeline. Second, we evaluate the similarity-based alignment results obtained using the methods from section 5,

which is the second step of the pipeline. Third, we evaluate the independent parameterisation results obtained using

the methods from section 6.1, which is the initial part of the third step of the pipeline. Fourth, we perform an ablation

study to evaluate the importance of BA from section 7, which is the fourth step of the pipeline. Fifth, we evaluate the

complete pipeline thoroughly.
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8.1 Point-based NRSfM

We validate the proposed point-based NRSf M method from section 4 by comparing it to representative methods from

the literature. The proposed point-based NRSf M method is denoted uNRSf M-x, where x refers to the initialisation

method. We use the following monikers for the baseline and initialisation methods (hence substituting x): MDH-

SOCP for [Chhatkuli et al., 2017], MLH-SDP for [Ji et al., 2017], IsoH for [Chhatkuli et al., 2014], IsoSf M-InfP

and IsoSf M-G for the infinitesimal planarity and general methods of [Parashar et al., 2017], PriorFree-K for [Dai

et al., 2014], LowRank-K for [Gotardo and Martinez, 2011] and Learning-K-rIK and Learning-K-aIK for the rotation

invariant kernel and affine Sf M kernel methods from [Hamsici et al., 2012].

Benchmark real datasets. We test uNRSf M on standard benchmark datasets: the Hulk and White Cartoon T-shirt

(WCT) datasets from [Chhatkuli et al., 2014], Kinect Paper (KP) dataset from [Varol et al., 2009], and the cushion

dataset from [Chhatkuli et al., 2016]. We compare all three datasets with all available baseline methods. We present

two versions of uNRSf M: one initialised from MDH-SOCP giving uNRSf M-MDH-SOCP and one initialised from

MLH-SDP giving uNRSf M-MLH-SDP. The results are summarised in table 3, where we report the accuracy in terms

of two metrics, Root Mean Square Error (RµSE) and Mean Euclidean Error (µEC), with all values in mm. All

four methods, namely MDH-SOCP, MLH-SDP, uNRSf M-MDH-SOCP and uNRSf M-MLH-SDP, use the notion of

NNG to decide nearest neighbours, as described in section 4; therefore the number of neighbours nK is an important

parameter for the result. We repeat the experiments for all nK up to about 40 and report the best accuracy; the nK

corresponding to the best accuracy is mentioned (in brackets) throughout table 3.

We observe that uNRSf M-MDH-SOCP and uNRSf M-MLH-SDP clearly dominate the results for the Hulk and

WCT datasets. For the Hulk dataset, uNRSf M-MDH-SOCP and uNRSf M-MLH-SDP beat the best-performing

baseline method, MLH-SDP, by 1.5% and 0.69%. For the WCT dataset, uNRSf M-MLH-SDP surpasses the best-

performing baseline method, MLH-SDP, by 13.49% and 14.14% in terms of RµSE and µEC respectively. For the KP

dataset, uNRSf M-MDH-SOCP lags behind MLH-SDP by 1.23% in terms of RµSE, but leads by 1.04% in terms of

µEC. The cushion dataset has few views, with just four images. The reconstruction accuracy is generally lower than

for the other three datasets. IsoSf M-G, PriorFree-K, and LowRank-K fail on this dataset. uNRSf M-MLH-SDP is the

best-performing method, leading MLH-SDP by a relatively small 1.38% accuracy in terms of RµSE, but 5.07% in

terms of µEC.

Simulated data. We additionally validate the effect of uNRSf M using an isometric data simulator based on the

developable surface generator from [Perriollat and Bartoli, 2013]. We generate 12 images with 42 keypoints on a

7 × 6 grid on a developable surface with random rulings and deformation, subject these surfaces to random roto-

translation in the camera view and project them to the image plane with random intrinsics. Additionally, we add



8 EXPERIMENTAL RESULTS 39

uNRSfM-MDH-SOCP uNRSfM-MLH-SDP MDH-SOCP MLH-SDP IsoH IsoSfM-InfP IsoSfM-G PriorFree-K LowRank-K Learning-K-rIK Learning-K-aIK

Hulk RµSE ↓ 1.861 (10) 1.876 (10) 2.374 (11) 1.889 (11) 17.279 11.100 11.252 16.587 34.608 27.272 19.336
µEC ↓ 1.434 1.365 1.676 1.479 15.441 9.644 9.813 14.995 32.179 25.297 18.328

WCT RµSE↓ 7.72 (18) 5.04 (16) 9.64 (18) 5.72 (17) 26.400 21.454 21.541 25.70 106.89 74.41 66.28
µEC ↓ 6.28 3.96 7.78 4.52 23.3 18.69 18.78 22.91 95.24 69.58 62.78

KP RµSE↓ 3.756 (21) 3.758 (21) 4.578 (23) 3.710 (21) 14.275 11.305 11.343 13.40 30.612 12.480 13.257
µEC ↓ 3.349 3.367 4.067 3.384 12.514 10.129 10.149 12.125 28.406 11.291 11.872

Cushion RµSE↓ 24.398 (35) 22.299 (35) 25.669 (41) 22.607 (40) 26.517 36.023 x x x 30.255 30.790
µEC ↓ 15.886 13.806 17.172 14.507 20.346 29.062 x x x 23.529 24.14

Table 3: Results on the Hulk, WCT, KP, and cushion datasets, compared across the baseline methods. Darker cells
indicate better accuracy with the best accuracy in a row marked in bold. All values are in mm. For uNRSf M-MDH-
SOCP, uNRSf M-MLH-SDP, MDH-SOCP, and MLH-SDP, the number in brackets indicates the optimal number of
neighbours, cells with ‘x’ indicate failure to produce results.

a point-wise random translation, added to each 3D keypoint on the simulated surface, with a standard deviation σ.

Therefore, with increasing σ, the generated surface shows increasingly random deviation from isometry. We increase

σ in 20 steps from 0 to 0.02 Arbitrary Units (au), where the largest diagonal of the generated surface is 0.5 au, and

repeat the experiment at each noise step 60 times. For comparison, we chose MDH-SOCP and MLH-SDP as baseline

methods, since they represent the two best methods from the baseline on the benchmark datasets in table 3. The results

are shown in figure 4. We observe that uNRSf M-MLH-SDP is consistently the best-performing method. Interestingly,

uNRSf M-MDH-SOCP and MLH-SDP produce similar results but the improvement of uNRSf M-MDH-SOCP over

MDH-SOCP is clear and significant.

8.2 Similarity-based Alignment

We validate the proposed similarity-based alignment methods from section 5 by comparing them to the existing shape

alignment method of [Torr and Zisserman, 2000]. We randomly generate between 10 and 200 3D points on a plane,

a cylinder, and a sphere. The plane has a largest diagonal of 4 au, the cylinder has a random radius lower than 1 au

and the sphere is of unit radius. To these 3D points, we add a random noise of standard deviation 0.1 au for the plane

and 1 au for the cylinder and sphere, since a large noise on planar points creates a random blob point-cloud for which
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Figure 4: Comparison of uNRSf M-MLH-SDP and uNRSf M-MDH-SOCP with MLH-SDP and MDH-SOCP on syn-
thetic isometric data, where σ denotes the measure of deviation from isometry. All values are in au.
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plane fitting holds no physical meaning. We randomly roto-translate the noisy data into random locations in R3.

Finally, to evaluate the accuracy, we inverse transform the noisy point-clouds to the origin using the estimated fi

and compute an alignment error. This alignment error metric has three variants. For the plane, the alignment error

metric is the Mean Point-to-Plane Error (µP2P) distance between the re-aligned point-cloud and the groundtruth. For

the cylinder, we define some random test points along the axis of the noisy, cylindrical point-cloud. We use f−1
i

to bring these test points on the axis to align to the groundtruth. We eliminate the translation along y = 0 line by

centring this line along the Y-axis. There cannot be any reflection or rotation by π, since the roto-translations we

used to perturb the simulated data are small. Finally, we define the alignment error metric as the RµSE between these

aligned points on the axis and the groundtruth. For the sphere, the alignment error metric is the RµSE between the

re-aligned sphere with f−1
i and the groundtruth centroid.

We repeat the experiments 104 times for each algebraic shape. The results are shown in figure 5. The proposed

methods are ahead of [Torr and Zisserman, 2000] for all three algebraic shapes. The error is approximately doubled

for [Torr and Zisserman, 2000] compared to the proposed methods for the plane and cylinder, and has a factor of about

eight for the sphere.

8.3 Independent Shape Parameterisation

We validate the proposed independent shape parameterisation methods from section 6.1, highlighting the benefits

of using the ToTem for surface reconstruction as opposed to generic surface reconstruction methods. We name the

proposed methods ToTemFit followed by ‘P’, ‘C’, or ‘S’ for the three algebraic shapes. We do not evaluate the method

for the general ToTem shapes, as it is formed of standard methods depending on the context of the application. We

proceed by generating an aligned point-cloud corresponding to {f−1
i (Qi,j)}. We randomly draw points on a plane,

cylinder, and sphere and split the points into training and testing batches. We add random noise with standard deviation

σ, fit the ToTem to the training point-cloud and reconstruct the surface. We then evaluate the reconstruction accuracy

on the testing point-cloud, using µP2P as metric. As a baseline, we use standard surface reconstruction techniques:

the Ball-Pivot algorithm (BP) [Bernardini et al., 1999] and Poisson Surface Reconstruction (PSR) [Kazhdan et al.,

2006]. The results are shown in figure 6a and sample qualitative results are shown in figures 6b, 6c, and 6d. For clean

Point-to-plane distance Axis alignment error Centroid alignment error

Figure 5: Comparison of the proposed similarity alignment methods with MLESAC [Torr and Zisserman, 2000]. The
x-axis of the histograms are: (a), (b) the µP2P between re-aligned point-cloud and the groundtruth plane, (c), (d)
alignment error defined on the axis of the cylinder, and (e), (f) RµSE between the centroid of the aligned cylinder and
the groundtruth. All the values are in au.
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Figure 6: Comparison of the proposed parameterisation methods ToTemFit-P, ToTemFit-C, and ToTemFit-S with
generic surface reconstruction methods BP and PSR. (a) quantitative results, all the values in au. (b), (c), and (d)
sample qualitative results, with the training point-clouds in blue and the testing point-clouds in red. The normals are
shown for visualisation on the results of ToTemFit-P, ToTemFit-C, and ToTemFit-S.

data with very low σ, both ToTemFit-P and ToTemFit-S have a consistent advantage over PSR while BP remains

a distant third. As σ → 1, the advantage is lost because the point-cloud becomes too noisy to distinctly benefit

from the ToTem, therefore ToTemFit devolves to accuracies comparable with generic surface fitting through PSR. For

ToTemFit-C however, the advantage over PSR and BP is distinctive, even for high σ.

We show a second set of validation, this time using ToTemFit-G, to show that the resemblance of the ToTem to the

object’s shape does not affect the reconstruction accuracy significantly in the visible parts of the object surrounding

the observed keypoints. We use a real dataset from [Casillas-Perez et al., 2019], which is a balloon being squeezed

across 8 images with 29 sparse keypoints correspondences; we term it the Squeezed Balloon (SB) dataset, whose

sample input images are shown in figures 17 and 18. The general mesh used for this reconstruction is a triangulated

sphere differing from the algebraic spherical ToTem. We deform it using free-form deformations over ten steps into

a dumbbell-shaped object by randomly squeezing the equator of the sphere, as shown in figure 7(b). Therefore, the

object is spherical while this set of general ToTems starts from a perfect sphere and gradually drifts away from the

true shape. Upon reconstructing the shape with ToTemFit-G starting from uNRSf M-MDH-SOCP and uNRSf M-

MLH-SDP, we observe that the drift away from sphericity does not significantly affect the RµSE evaluated on the

visible surface of the balloon, see figure 7(a). The variance of accuracy due to the change of ToTem shape is lower

than ±2.5 mm. The minor differences in accuracy observable in figure 7a as one sweeps across the ten deformed

configurations of this general ToTem stem both from the difference in the rigid alignment of the deformed shapes and

the effect of the ToTem itself. To further highlight the resilience of accuracy to the ToTem shape, we perform another

repeated randomised test by bootstrapping ToTemFit-G from the groundtruth 3D keypoints with additive random noise

from a uniform distribution U(−10
√
3, 10
√
3) mm. Each experiment is repeated over ten times. The final results,

overlaid on figure 7(a), show an almost horizontal mean curve and very similar standard deviation across the ToTem

shapes. Qualitative results for a sample image frame of SB are given in the last row of figure 7(b).
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Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 Shape 7 Shape 8 Shape 9 Shape 10

(a)

(b)

Figure 7: Results with ToTemFit-G, starting from a triangulated mesh model resembling the spherical ToTem and
being gradually deformed by squeezing the centre into a dumbbell-shaped mesh. All values are in mm; the mesh
deformation is done over ten steps, Shapes 1 through 10, as shown in the first row of (b). The tests were done on
a spherical object, a balloon being squeezed in the SB dataset from [Casillas-Perez et al., 2019]. (a) We initialise
ToTemFit-G from uNRSf M-MDH-SOCP and uNRSf M-MLH-SDP and report the reconstruction accuracy of the
visible points. We also show randomised tests obtained by adding a uniform noise to ground-truth and initialising
ToTemFit-G from these noisy 3D points. The bottom row of (b) shows the reconstructed and visible keypoints on the
surface of the reconstructed ToTem w.r.t. the groundtruth for the sample frame 3 of SB for the results from uNRSf M-
MLH-SDP.

8.4 Bundle Adjustment Ablation

We validate the importance of the BA method from section 7 by an ablation study. We measure the 3D reconstruction

accuracy as RµSE, the reprojection error, and the reconstructed to groundtruth model distance µP2P. We use four syn-

thetic object mesh models, representing a deforming plane, a flower vase, a human face, and a liver to demonstrate the

planar, cylindrical, spherical, and general shapes respectively, as shown in figure 8. Each model is synthetically de-

formed into 11 distinct configurations using the method of [Joshi et al., 2007]. These deformed configurations are split

into training and testing regions. Importantly, the testing region involves the entire surface, including parts completely

invisible in the training region. We randomly sample 6 point-clouds with 100 points each from the training set and per-

form reconstruction, following the pipeline without and with BA, termed ToTem NRSf M no BA (T-NRSf M-noBA)

and ToTem NRSf M (T-NRSf M), respectively. We repeat the experiment 500 times for each ToTem and evaluate

RµSE and reprojection error on the training samples and µP2P on the testing samples. The quantitative results are

shown in figure 9. We observe a reduction of µP2P from T-NRSf M-noBA to T-NRSf M, showing an improvement in
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accuracy brought by BA, for the planar and cylindrical shapes. In contrast, µP2P remains practically unchanged for

the spherical shape and slightly degrades for the general shape. For the algebraic shapes, this result is not surprising,

as the deviation of the simulated plane and deforming flower vase from the planar and cylindrical ToTem are mild,

while this is not the case for the deforming human face, the sphere to face transformation is significantly stronger.

For the general shape, the effect of the slight degrading in µP2P can be qualitatively verified in figure 13. The 3D

RµSE follows a similar pattern as µP2P. Importantly, the BA improves the reprojection accuracy significantly for all

ToTems. We observe that µP2P remains significantly better without and with BA than the baseline method PSR in all

cases. Sample qualitative results for the 11 deformed configurations are shown in figures 10, 11, 12, and 13 for the

planar, cylindrical, spherical and general shapes respectively.

8.5 ToTem NRSfM on Real Data

Planar topology. Our first batch of results on real data are obtained from the previously used benchmark datasets

of Hulk, KP, and WCT using the planar ToTem. In the absence of fully dense groundtruth, we use the distance of the

groundtruth points from the dense surface reconstruction with T-NRSf M-P as an indirect indicator of the accuracy of

the entire surface reconstruction, and qualitative visualisation, as shown in figure 14.

Non-planar topologies. We now focus on objects with a non-planar topology. We define a Dense Mean Point-

to-Plane Error (d-µP2P) metric for evaluating the accuracy of our dense surface reconstruction on objects with self-

occlusion, which are all the non-planar objects in our experiments. As baseline methods, we consider the NRSf M

methods with PSR as the state-of-the-art for dense reconstruction. We then measure the µP2P distance between the

mesh obtained from PSR and the groundtruth sparse 3D points, re-aligned with each other. For T-NRSf M, we already

have the densely sampled points from {ψi}, we apply PSR on these points and proceed exactly in the same manner as

for the baseline methods. Importantly, we compare against all baseline methods, the ones that have been left out are

the ones that failed to produce any result.

The next two reconstruction results are from the dataset proposed in [Casillas-Perez et al., 2019]. The first dataset

is reconstructed with the cylindrical ToTem, as it shows a legging being stretched across 8 images with 71 keypoints

correspondences; we term it the Stretched Leggings (SL) dataset. The data clearly violates isometry, therefore forms

an important validation of the efficacy of our proposed ToTem NRSf M on data not following isometry. We show

some sample reconstruction results for two frames in figure 16 while a qualitative comparison across all the baseline

methods for these two frames is given in figure 18(a). Importantly, figure 20(a) shows the quantitative results across

all frames, where the proposed T-NRSf M-C outperforms all baseline methods in the highly stretched configuration,

thanks to the cylindrical ToTem. In terms of d-µP2P, the closest baseline method is PriorFree-K, but T-NRSf M-C is

ahead by 8.22% of accuracy.
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The second dataset is SB. This dataset also clearly violates isometry. We show sample reconstruction results for

two frames in figure 17 while a qualitative comparison across all the baseline methods for these two frames is given in

figure 18(b). Importantly, figure 20(b) shows the quantitative results across all frames, where T-NRSf M-S outperforms

the baseline methods on all frames thanks to the spherical ToTem to recover the shape sphericity, something which has

been clearly missed by all baseline methods. T-NRSf M-S beats the closest baseline method, MLH-SDP, by 97.43%

accuracy in terms of d-µP2P, showing the efficacy of spherical ToTem in this case.

Our validation for general ToTem shapes is done on the cushion dataset from [Chhatkuli et al., 2016]. This dataset

has four images with 80 correspondences. We utilise a coarse triangulated mesh as ToTem, obtained by triangulating

and downsampling a mesh from the groundtruth of the first image frame. The ToTem thus obtained has just 138

vertices. Given the shape of the cushion, the rigid alignment problem, as discussed in section 5.5, is solved by

utilising standard rigid ICP. We show the qualitative output of T-NRSf M-G in figure 19. The mesh model allows

us to capture the curvature of the cushion much better than possible with any of the existing methods, as verified

quantitatively in figure 20(c). The closest baseline method, in terms of d-µP2P, is MLH-SDP, but T-NRSf M-G is

ahead by 39.55%, a significant lead.

Endomapper dataset. As a validation of T-NRSf M on a challenging use-case, we use the Endomapper dataset from

[Azagra et al., 2022]. This dataset consists of real colonoscopic image sequences with camera calibration. However,

this dataset does not have feature correspondences, so we pick a sample subset also used in [Sengupta and Bartoli,

2021] and add correspondences to 10 images, ending up with 84 keypoints tracked across these images. The dataset

does not have groundtruth and we can thus only report qualitative results. We first run T-NRSf M-P, whose results are

shown in figure 15. We observe that the reconstructed structure is overly flat and not appropriate for any further usage.

We then run T-NRSf M-C. As the colon segment visible in this image sequence ends up in a constricted region with

restricted visible depth, it breaks assumption 3. In other words, the observed ‘cylinder’ is wider than its depth and we

thus chose the right axis in the cylinder fitting step. We observe that the reconstructed structure forms a qualitatively

appropriate approximation of the true shape and could be used in downstream applications such as navigation.

9 CONCLUSION

We have presented ToTem NRSf M, an NRSf M method that exploits a topological template. As a result, it can

reconstruct the surface, as opposed to point clouds in classical NRSf M, of a deforming object, for its observed and

invisible parts. This forms the first NRSf M method to exploit a topological prior, forming an important intermediate

between Sf T methods using a strong prior model and NRSf M methods using primarily a deformation prior. The

topological prior is available for a wide variety of real-life objects, whose topology is known but whose exact shape,
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required for the Sf T template, is unknown. Our experimental results show the strength of our method in reconstructing

challenging shapes, outperforming existing methods in accuracy and in the ability to approximate the invisible object

parts.

We plan to explore three prominent directions for future work. The first direction is to generalise the notion of

topological template, which we simply defined as a shape which shares its genus with the observed object. The genus

thus acts as a shape invariant. We plan to define a series of templates by using different invariants to unify the existing

approaches and discover new ones. In particular, Sf T’s invariant is the geodesic length and classical rigid pose’s

invariant is the Euclidean length. The second direction is to refine the use of MDH in resolving isometric convex-

concave ambiguities. In the proposed method, this is done by a weight applied to the MDH term, encompassing the

depth of all points. We plan to use a per-point weight, which would activate depth maximisation as and when needed

only to resolve the ambiguities. The third direction is to extend the method to multi-object reconstruction. The lead

idea is to perform the first step, point-based NRSf M, and search for shapes using a predefined collection of ToTems,

then running the remaining steps of the pipeline for each identified cluster. Lastly, the proposed concept of ToTem

NRSf M could be implemented in different ways, obtained by designing alternative solution pipelines.
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Figure 8: Experimental setup for the bundle adjustment ablation study. Each input mesh is split into a training
and a testing region. The testing surface clearly includes parts of the mesh occluded in the training surface. The
reconstruction process uses only the training samples. We give the number of keypoints m and the number of faces
mf for each mesh.
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Figure 9: Quantitative results for the BA ablation study, shown for the planar, cylindrical, spherical, and general
shapes in (a), (b), (c), and (d) respectively, with all values in au. In the results following T-NRSf M, the mean of the
histograms from T-NRSf M-noBA and T-NRSf M are displayed in bold and dashed red lines respectively, while the
p-value for the null hypothesis between the T-NRSf M-noBA and T-NRSf M distributions is shown between the two
rows of histograms.
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Figure 10: Results for the planar ToTem. The first row shows the sampled keypoints, the second row shows the
reconstruction using PSR, the third row shows our reconstruction with T-NRSf M-noBA-P, and the fourth row shows
our reconstruction with T-NRSf M-P. The µP2P evaluated on the testing regions are given below each reconstructed
surface, with all values in au.
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Figure 11: Results for the cylindrical ToTem. The first row shows the sampled keypoints, the second row shows the
reconstruction using PSR, the third row shows our reconstruction with T-NRSf M-noBA-C, and the fourth row shows
our reconstruction with T-NRSf M-C. The µP2P evaluated on the testing regions are given below each reconstructed
surface, with all values in au.
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Figure 12: Results for the spherical ToTem. The first row shows the sampled keypoints, the second row shows the
reconstruction using PSR, the third row shows our reconstruction with T-NRSf M-noBA-S, and the fourth row shows
our reconstruction with T-NRSf M-S. The µP2P evaluated on the testing regions are given below each reconstructed
surface, with all values in au.
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Figure 13: Results for the general shapes ToTem. The first row shows the sampled keypoints, the second row shows the
reconstruction using PSR, the third row shows our reconstruction with T-NRSf M-noBA-G, and the fourth row shows
our reconstruction with T-NRSf M-G. The µP2P evaluated on the testing regions are given below each reconstructed
surface, with all values in au.
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Input correspondences uNRSf M-MDH-SOCP T-NRSf M-noBA-P T-NRSf M-P

Figure 14: Results from reconstruction of the benchmark datasets Hulk, WCT and KP with planar ToTem. The first
column shows the input correspondences overlaid on the images, the second column shows our 3D reconstruction with
uNRSf M, groundtruth keypoints are in black while our reconstruction output is colour coded according to Euclidean
distance from groundtruth (all values in mm), the third column shows dense reconstruction result from T-NRSf M-
noBA-P, the surface normals evaluated on the keypoints are shown, the fourth column shows the dense reconstruction
result with T-NRSf M-P with the surface texture overlaid on the reconstructed surface, the fifth column shows the
colour coded distance between the groundtruth of the sparse keypoints and the densely sampled, reconstructed surface
from T-NRSf M-P, the approximate region of interest on the surface around the matched keypoints is highlighted in
red.
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Figure 15: Qualitative reconstruction results of the colonic surface from the colonoscopy dataset [Azagra et al.,
2022] using T-NRSf M-P (top row) and T-NRSf M-C (bottom row). The T-NRSf M-C results, although clearly a mere
approximation of the true shape, form a significantly more usable output than the T-NRSf M-P results.
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Input correspondences uNRSf M T-NRSf M-noBA-C T-NRSf M-C

Figure 16: We present two representative samples of our reconstruction for the SL dataset, the first column shows the
input correspondences, the second and third columns show uNRSf M-MLH-SDP and uNRSf M-MDH-SOCP respec-
tively, the fourth column shows T-NRSf M-noBA-C and the fifth column show T-NRSf M-C, all values in mm.

Input correspondences uNRSf M T-NRSf M-noBA-S T-NRSf M-S

Figure 17: We present two representative samples of our reconstruction for the SB dataset; the first column shows the
input correspondences, the second and third column show uNRSf M-MLH-SDP and uNRSf M-MDH-SOCP respec-
tively, the fourth column shows T-NRSf M-noBA-S and the fifth column shows T-NRSf M-S, all values in mm. While
the second frame (n = 8) slightly over-estimates the curvature of the ball, this still remains a better reconstruction
than all baseline methods, as verifiable in figure 18.



9 CONCLUSION 51

(a) (b)

n = 3

MDH-SOCP MLH-SDP PriorFree-K IsoSf M-G IsoSf M-InfP

Learning-K-rIK
Learning-K-aIK

LowRank-K IsoH T-NRSfM-BA-C

n = 7

MDH-SOCP MLH-SDP PriorFree-K IsoSf M-G IsoSf M-InfP

Learning-K-rIK
Learning-K-aIK

LowRank-K IsoH T-NRSfM-C

MDH-SOCP MLH-SDP PriorFree-K

Learning-K-rIK Learning-K-aIK T-NRSfM-S

n = 1

MDH-SOCP MLH-SDP PriorFree-K

Learning-K-rIK Learning-K-aIK T-NRSfM-S

n = 8

Figure 18: Qualitative comparison of the results from T-NRSf M-C and T-NRSf M-S with surface reconstructed by
using PSR on baseline methods for the two frames, each of (a) SL, and (b) SB, datasets shown in figures 16 and
17. Being challenging datasets with strong stretching/shearing, all baseline methods produce surfaces that are either
nearly planar or curved in a completely wrong direction.
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Figure 19: The four image frames of the cushion dataset, visualised together. The first image for each frame is the
groundtruth shape, the second image is the texture-mapped result of T-NRSf M-G, the third image is the alignment
error, obtained by densely sampling the groudtruth and the reconstructed surface from T-NRSf M-G and computing
the distance between the nearest points on the aligned point-clouds, all values in mm.
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Figure 20: We show the d-µP2P metric across all the frames in the three non-planar datasets: (a) SL reconstruction
accuracy, for all the baseline methods, deteriorates as the stretching increases in frames 6, 7, and 8, but with cylindrical
ToTem, T-NRSf M-C manages to mitigate the accuracy degradation, (b) for the SB dataset, T-NRSf M-S, due to its
spherical prior, manages to outperform other methods by a significant margin, and (c) in the cushion dataset, T-
NRSf M-G outperforms the compared methods in estimating the curvature of the cushion. All values in mm.
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APPENDICES

A Geometry of the Topological Templates

We describe some basic geometric properties of the parametric shapes in the following paragraphs.

A.1 Planar

We denote the 2D template with p = (x, y) ∈ R2. Therefore the map ∆ : R2 7→ R3 is trivial and given in table 2.

The next warp ψ is defined as:

ψi(P) =

(
X Y Z 1

)
a

4×3
+ ρ(P,D)

1×l
w
l×3
, (48)

and the combined warp is:

φi(x, y) = ψi ◦∆ = ∆(x, y)a+ ρ
(
∆(x, y),D

)
w. (49)

Therefore, the derivatives of the warps are:

φx(x, y) =

(
1 0 0 1

)
a+

∂

∂x

(
ρ
(
∆(x, y),D

))
w

φy(x, y) =

(
0 1 0 1

)
a+

∂

∂y

(
ρ
(
∆(x, y),D

))
w,

(50)

where for the l-th element of ρ we have:

∂

∂x

(
ρl
(
∆(x, y),D

))
=

X −DX
l

ρl
(
∆(x, y),D

) and
∂

∂y

(
ρl
(
∆(x, y),D

))
=

Y −DY
l

ρl
(
∆(x, y),D

) . (51)

Proceeding similarly, the second derivatives of the warps are given by:

φlxx(x, y) =

(
ρl
(
∆(x, y),D

))2
−
(
X −DX

l

)2(
ρl
(
∆(x, y),D

))2 w φlyy(x, y) =

(
ρl
(
∆(x, y),D

))2
−
(
Y −DY

l

)2(
ρl
(
∆(x, y),D

))2 w

φlxy(x, y) = φlyx(x, y) =

(
ρl
(
∆(x, y),D

))2
−
((
X −DX

l

)
+
(
Y −DY

l

))2
(
ρl
(
∆(x, y),D

))2 w.

(52)
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A.2 Cylindrical

Following the definition of ∆ from table 2, we obtain ψ as:

ψi(P) =

(
X Y Z 1

)
a

4×3
+ ρ(P,D)

1×l
w
l×3
. (53)

φ(r, θ) =

(
sin θ r cos θ 1

)
a+ ρ

(
∆(r, θ),D

)
w (54)

For the case of cylindrical surfaces, we elaborate the computation of the tangent vectors and surface normal of ψi with

some verbosity. Assuming:

ǎ =



α1 α5 α9 α13

α2 α6 α10 α14

α3 α7 α11 α15

α4 α8 α12 α16


and w̌ =


β11 . . . β14

...
. . .

...

βl1 . . . βl4

 , (55)

we can compute:

φ̃r =
∂φ

∂r
=

(
α2 α6 α10 α14

)
+

(
r−DY

1
ρ1(∆(r,θ),D)

. . . r−DY
l

ρl(∆(r,θ),D)

)
w̌, (56)

and ignoring α14 from equation (56), we obtain:

φ⊤
r =

(
α2 α6 α10

)
+

(
λr1 λr2 λr3

)
, (57)

where the assumption that the fourth column of ǎ and w̌ are all zeros gives us a and w respectively. Similarly:

φ⊤
θ =

(
(α1 cos θ− α3 sin θ) (α5 cos θ− α7 sin θ) (α9 cos θ− α11 sin θ)

)
+

(
λθ1 λθ2 λθ3

)
, (58)

where: (
λθ1 λθ2 λθ3

)
=

(
DZ

1 sin θ−DX
1 cos θ

ρ1(∆(r,θ),D)
. . . DZ

l sin θ−DX
l cos θ

ρl(∆(r,θ),D)

)
w̌, (59)

since α13 and α15 are zeros. Given that N =

(
NX NY NZ

)
= φr × φθ, we have:

NX = (α6 + λr2)(α9 cos θ− α11 sin θ+ λθ3)− (α10 + λr3)(α5 cos θ− α7 sin θ+ λθ2) (60)

NY = −(α2 + λr1)(α9 cos θ− α11 sin θ+ λθ3) + (α10 + λr3)(α1 cos θ− α3 sin θ+ λθ1) (61)
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NZ = (α2 + λr1)(α5 cos θ− α7 sin θ+ λθ2)− (α6 + λr2)(α1 cos θ− α3 sin θ+ λθ1), (62)

where N is the un-normalized vector along the direction of the surface normal, evaluated at (r, θ). Consequently,

the unit normal is expressed as N̂ = φr×φθ

∥φr×φθ∥ . We denote the function for unit normal computation as Ni(·) , which

takes the j-th coordinate from the flattened template (rj , θj) and computes the unit normal, given by Ni(rj , θj) =(
N̂X
i,j N̂Y

i,j N̂Z
i,j 1

)
for the i-th image frame.

A.3 Spherical

For spherical objects, beginning from the initial mapping ∆ described in table 2, the maps ψ and φ are obtained

following the same form as equations (1) and (54) respectively. The normals to the spherical surface, which are the

equivalent of equations (56) to (62), are summarised below. The derivatives of φ are given as:

φ̃θ1 =

(
sin θ1 cos θ2 − cos θ1 sin θ1 sin θ2

)
a+

∂ρ
(
∆(θ1, θ2),D

)
∂θ1

w (63)

φ̃θ2 =

(
cos θ1 sin θ2 0 − cos θ1 cos θ2

)
a+

∂ρ
(
∆(θ1, θ2),D

)
∂θ2

w, (64)

where the l-th element of
∂ρ
(
∆(r,θ),D

)
∂θ1

and
∂ρ
(
∆(r,θ),D

)
∂θ2

are given respectively as:

∂ρl
(
∆(θ1, θ2),D

)
∂θ1

=

(
∆(θ1, θ2)−Dl

)⊤
∆θ1

ρl
(
∆(θ1, θ2),D

) and
∂ρl
(
∆(θ1, θ2),D

)
∂θ2

=

(
∆(θ1, θ2)−Dl

)⊤
∆θ2

ρl
(
∆(θ1, θ2),D

) , (65)

where ∆θ1 = ∂∆
∂θ1

and ∆θ2 = ∂∆
∂θ2

following standard convention. Similar to section A.2, the unit normals can be

obtained as N̂ =
φθ1

×φθ2
∥φθ1

×φθ2
∥ . From equation (65), the second derivatives of the warps can be computed as:

φ̃θ1θ1 =

(
cos θ1 cos θ2 sin θ1 cos θ1 sin θ2

)
a+

∂2ρ
(
∆(θ1, θ2),D

)
∂θ21

w

φ̃θ2θ2 =

(
cos θ1 cos θ2 0 cos θ1 sin θ2

)
a+

∂2ρ
(
∆(θ1, θ2),D

)
∂θ22

w

φ̃θ1θ2 = φ̃θ2θ1 =

(
− sin θ1 sin θ2 0 sin θ1 cos θ2

)
a+

∂

∂θ1

(∂ρ(∆(θ1, θ2),D
)

∂θ2

)
w,

(66)
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where:

∂2ρl
(
∆(θ1, θ2),D

)
∂θ21

=

(
ρl
(
∆(θ1, θ2),D

))2(
(∆(θ1, θ2)−Dl)

⊤∆θ1θ1 +∆⊤
θ1
∆θ1

)
− (∆(θ1, θ2)−Dl)

⊤∆θ1(
ρl
(
∆(θ1, θ2),D

))3
∂2ρl

(
∆(θ1, θ2),D

)
∂θ22

=

(
ρl
(
∆(θ1, θ2),D

))2(
(∆(θ1, θ2)−Dl)

⊤∆θ2θ2 +∆⊤
θ2
∆θ2

)
− (∆(θ1, θ2)−Dl)

⊤∆θ2(
ρl
(
∆(θ1, θ2),D

))3
∂

∂θ1

(∂ρl(∆(θ2),D
)

∂θ2

)
=

∂

∂θ2

(∂ρl(∆(θ1),D
)

∂θ2

)
=(

ρl
(
∆(θ1, θ2),D

))2(
(∆(θ1, θ2)−Dl)

⊤∆θ1θ2 +∆⊤
θ1
∆θ2

)
− (∆(θ1, θ2)−Dl)

⊤(∆(θ1, θ2)−Dl)∆
⊤
θ1
∆θ2(

ρl
(
∆(θ1, θ2),D

))3 .

(67)

A.4 General Shapes

We have a combination of two warps, the first one being:

∆(x, y) =

(
x y 0 1

)
a∆ + ρ(p,D)w∆ =

(
X Y Z

)
= P, (68)

where the pre-defined warp parameters (a∆,w∆) are obtained using conformal flattening of some mesh using the

method of [Sheffer and de Sturler, 2001; Sheffer et al., 2005]. The variables (a∆,w∆) are computed offline and only

once per object model. This is followed by the second warp for deformation of the canonical model, given by:

ψi(P) =

(
X Y Z 1

)
a

4×3
+ ρ(P,D)

1×l
w
l×3

and φi(x, y) = ψi ◦∆. (69)

We are interested in the derivatives of the warps:

φx =

(
∂P
∂x 0

)
+
∂ρ(P,D)

∂x
w φy =

(
∂P
∂y 0

)
+
∂ρ(P,D)

∂y
w. (70)

Thereafter, we have:

∂P
∂x

∂P
∂y

 =


(
1 0 0 0

)
a∆ + ∂ρ(p,D)

∂x w∆(
0 1 0 0

)
a∆ + ∂ρ(p,D)

∂y w∆

 =

∂X
∂x

∂Y
∂x

∂Z
∂x

∂X
∂y

∂Y
∂y

∂Z
∂y

 ,

∂ρl(p,D)
∂x

∂ρl(p,D)
∂x

 =

 x−DX
l

ρl(p,D)

y−DY
l

ρl(p,D)

 ∀l ∈ [1, n],

(71)
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and: ∂ρl(P,D)
∂x

∂ρl(P,D)
∂y

 =

 (X−DX
l ) ∂X

∂x
+(Y−DY

l ) ∂Y
∂x

+(Z−DZ
l ) ∂Z

∂x

ρl(P,D)
(X−DX

l ) ∂X
∂y

+(Y−DY
l ) ∂Y

∂y
+(Z−DZ

l ) ∂Z
∂y

ρl(P,D)

 ∀l ∈ [1, n]. (72)

Following similar geometric properties, the next frame describes an example of the computation of length along

geodesic, specifically for the spherical template:

Geodesic distances for spherical topology

The distance along the surface of the sphere is computed as follows. For two arbitrary, neighbouring points

pj = (θ1,j , θ2,j) and pq = (θ1,q, θ2,q), we define a unit vector from pj to pq as nj,q =
pj−pq

dp
=

nθ1
nθ2


where dp = ∥pj−pq∥ and describe a line connecting pj and pq as p(t) = pj+nj,qt. Thereafter, the geodesic

distance on the surface of a sphere is given as:

dj,q =

∫ dp

0

√
E∆

( d
dt

(
pθ1(t)

))2
+ 2F∆

d

dt

(
pθ1(t)

) d
dt

(
pθ2(t)

)
+ G∆

( d
dt

(
pθ2(t)

))2
, (73)

where E∆, F∆ and G∆ are obtained from the first fundamental form of ∆ and evaluates to E∆ = 1, F∆ = 0

and G∆ = cos2 θ1 for our choice of ∆ for spherical topology. This leads to the following outcome for the

value of dj,q:

dj,q = dp

√
n2θ1 + cos2 θ1n2θ2 . (74)

B Jacobian Matrices

We now describe the derivation of analytic Jacobian matrices for all cost functions used in sections 6.2 and 7.

B.1 Initial Parameterised Reconstruction

The minimisation of equation (33) is done analytically and the Jacobian matrix relating the change of gdata, gdef0 and

gdef1 w.r.t. ξI ∈ R1×3l, the stacked optimisation parameters, are expressed by the terms:

JP =
∂gdata
∂ξI

, JN =
∂gdef1
∂ξI

and JB =
∂gdef0
∂ξI

. (75)
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Expanding the Jacobian matrices for the j-th row of the matrices JP and JN (corresponding to the j-th row of the

error vectors), we obtain the following expressions:

JP,j︸︷︷︸
1×3l

=
∂

∂ξI

((
φ(pj)−Qj

)
· η
(
φ(pj)

))

=
∂

∂ξI

( µj︷ ︸︸ ︷([
ρ
(
∆(rj , θj),D

)
P̃j

]
D−1

C̃
0


︸ ︷︷ ︸

1×4

− Q̃j︸︷︷︸
1×4

) N̂j︷ ︸︸ ︷[
N̂X
j N̂Y

j N̂Z
j 1

]
︸ ︷︷ ︸

4×1

⊤
)

=
∂

∂ξI
(µjN̂j) =

∂µj
∂ξI︸︷︷︸
1×12l

(N̂j ⊗ 13l)︸ ︷︷ ︸
12l×3l

+ µj︸︷︷︸
1×4

∂N̂j

∂ξI︸ ︷︷ ︸
4×3l

,

(76)

where:

∂µj
∂ξI︸︷︷︸
1×12l

=
∂

∂ξI

([
ρ
(
∆(rj , θj),D

)
P̃j

]
D−1

C̃
0

− Q̃j

)

=

[
ρ
(
∆(rj , θj),D

)
P̃j

]
︸ ︷︷ ︸

1×(l+4)

D−1︸︷︷︸
(l+4)×(l+4)

1l 0l×3l 1l 0l×3l 1l 0l×3l

04×12l


︸ ︷︷ ︸

(l+4)×12l

,

(77)

and ∂N̂j

∂ξI
can be obtained from:

∂N̂j

∂ξI︸ ︷︷ ︸
4×3l

=
∂

∂ξI

[
N̂X
j N̂Y

j N̂Z
j 1

]⊤

=
1

∥Ñj∥

[
∂NX

j

∂ξI

∂NY
j

∂ξI

∂NZ
j

∂ξI
0

]⊤
−

[
NX
j NY

j NZ
j 1

]⊤ (
NX
j

∂NX
j

∂ξI
+NY

j

∂NY
j

∂ξI
+NZ

j

∂NZ
j

∂ξI

)
(∥Ñj∥)3

.

(78)

Thereafter, we are left with the terms
∂NX

j

∂ξI
,
∂NY

j

∂ξI
and

∂NZ
j

∂ξI
which are obtained from equations (56) and (58) by

differentiating the expression for the un-normalised normal vector:

∂

∂ξI

([
NX
j NY

j NZ
j

])
=

∂

∂ξI

(
φr × φθ

)
=

∂

∂ξI

(
[φr]×φθ

)
=

∂

∂ξI

(
[φr]×

)(
φθ ⊗ 13l

)
+ [φr]×

∂φθ

∂ξI

=


0 −∂φr,3

∂ξI

∂φr,2

∂ξI

∂φr,3

∂ξI
0 −∂φr,1

∂ξI

−∂φr,2

∂ξI

∂φr,1

∂ξI
0

(φθ ⊗ 13l

)
+ [φr]×


∂φθ,1

∂ξI

∂φθ,2

∂ξI

∂φθ,3

∂ξI

 .
(79)



B Jacobian Matrices 59

From equation (56), we have:

∂φ̃r
∂ξI

=
∂

∂ξI

([
α2 α6 α10 α14

])
+

∂

∂ξI

([
r−DY

1
ρ1(∆(r,θ),D)

. . . r−DY
l

ρl(∆(r,θ),D)

]
ε̄λC̃

)
=

∂

∂ξI

([
α2 α6 α10 α14

])
+

[
r−DY

1
ρ1(∆(r,θ),D)

. . . r−DY
l

ρl(∆(r,θ),D)

]
ε̄λ

[
1l 0l×3l 1l 0l×3l 1l 0l×3l.

]
(80)

Similarly:

∂φ̃θ

∂ξI
=

∂

∂ξI

(


(α1 cos θ− α3 sin θ)

(α5 cos θ− α7 sin θ)

(α9 cos θ− α11 sin θ)

(α13 cos θ− α15 sin θ)



⊤

)
+


DZ

1 sin θ−DX
1 cos θ

ρ1(∆(r,θ),D)
...

DZ
l sin θ−DX

l cos θ
ρl(∆(r,θ),D)


⊤

ε̄λ

[
1l 0l×3l 1l 0l×3l 1l 0l×3l

]

=

 cos θ

− sin θ

 ∂

∂ξI

(α1 α5 α9 α13

α3 α7 α11 α15

)+


DZ

1 sin θ−DX
1 cos θ

ρ1(∆(r,θ),D)
...

DZ
l sin θ−DX

l cos θ
ρl(∆(r,θ),D)


⊤

ε̄λ

[
1l 0l×3l 1l 0l×3l 1l 0l×3l

]
.

(81)

Equations (80) and (81) leave us with some more unknown terms in the form of ∂α1
∂ξI

, . . . , ∂α15
∂ξI

. However, these values

can be easily obtained by differentiating equation (55) as:

∂ǎ

∂ξI
=

∂

∂ξI

(


α1 α5 α9 α13

α2 α6 α10 α14

α3 α7 α11 α15

α4 α8 α12 α16


)

=
(
D̃K−1

λ D̃⊤
)−1

D̃K−1
λ

[
1l 0l×3l 1l 0l×3l 1l 0l×3l

]
. (82)

Going back to equation (75), the Jacobian matrix JN can be expressed as:

JN,j︸︷︷︸
1×3l

=

(
N̂X
j − ηX

(
∆(pj)

))∂N̂X
j

∂ξI
+
(
N̂Y
j − ηY

(
∆(pj)

))∂N̂Y
j

∂ξI
+
(
N̂Z
j − ηZ

(
∆(pj)

))∂N̂Z
j

∂ξI

∥η
(
φ(pj)

)
− η
(
∆(pj)

)
∥

. (83)

The second Jacobian matrix from equation (75), JB , is a straightforward partial differentiation of equation (35).

B.2 Global Refinement

We now discuss the details of the Jacobian matrices involved in the global refinement process from equation (40), the

Jacobian matrices are given for the original problem, not the efficient one, since the accelerated solutions are easy to

derive from the full expanded ones. A single row of the first Jacobian matrix relating the change of hrep to ξ is given
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by:

JR,g︸︷︷︸
1×(2m+3nl)

=
∂hrep
∂ξ

=
∂

∂ξ

(
∥qi,j −Π

(
φi(pj)

)
∥
)
=

[
∂hrep
∂κ

∂hrep
∂ω1

. . .
∂hrep
∂ωn

]
, (84)

where κ and ω are vectorised uv-coordinates and control handles respectively. Considering the first term and the

second set of terms separately, we start with the first term of equation (39):

∂hrep
∂κ

=
∂

∂κ

(
∥qi,j −Π

(
φi(pj)

)
∥
)
=

−1
∥qi,j −Π

(
φi(pj)

)
∥

(((
(qj)x −Π

(
φi(pj)

)
x

) ∂
∂κ

(
Π
(
φi(pj)

)
x

))

+

((
(qj)y −Π

(
φi(pj)

)
y

) ∂
∂κ

(
Π
(
φi(pj)

)
y

)))
,

(85)

assuming the suffix (·)x or (·)y gives the x or y coordinate of the 2D point. Given that Qi,j = φi(pj) and its

homogeneous coordinates are given as Q̃i,j , we differentiate both sides of the perspective projection equation w.r.t. κ

to obtain:

∂

∂κ

(
Π
(
φi(pj)

))
︸ ︷︷ ︸

2×2m

=
∂

∂κ

(Π(φi(pj))x
Π
(
φi(pj)

)
y

) =
∂

∂κ

( fx
(Qi,j)Z

0 0 cx

0
fy

(Qi,j)Z
0 cy

 f−1
i Q̃i,j

)

=
∂

∂κ

( fx
(Qi,j)Z

0 0 cx

0
fy

(Qi,j)Z
0 cy

)
︸ ︷︷ ︸

2×8m

(
f−1
i Q̃i,j ⊗ 12m

)︸ ︷︷ ︸
8m×2m

+
( fx

(Qi,j)Z
0 0 cx

0
fy

(Qi,j)Z
0 cy


︸ ︷︷ ︸

[2×4]

f−1
i︸︷︷︸
4×4

∂Q̃i,j

∂κ︸ ︷︷ ︸
4×2m

)
.

(86)

Given that ∂
∂κ(

fx
(Qi,j)Z

) = − fx
(Qi,j)2Z

∂(Qi,j)Z
∂κ , to compute equation (86), we need the expression for the term ∂(Qi,j)Z

∂κ ,

which can be obtained from:

∂Q̃⊤
i,j

∂κ︸ ︷︷ ︸
1×8m

=

[
∂(Qi,j)X

∂κ
∂(Qi,j)Y

∂κ
∂(Qi,j)Z

∂κ 01×2m

]
=

∂

∂κ

(ρ(∆(rj , θj),D
)︸ ︷︷ ︸

[1×l]

Q̃⊤
i,j

 ελ,i
C̃i

0

)

=

[
∂
∂κ

(
ρ
(
∆(rj , θj),D

)) ∂ sin θj
∂κ

∂rj
∂κ

∂ cos θj
∂κ 0

]
︸ ︷︷ ︸

1×2m(l+4)

((
ελ,i

C̃j

0

)⊗ 12m

)
︸ ︷︷ ︸

2m(l+4)×8m

,

(87)

and the four terms inside the first 1× 2m(l+ 4) matrix of equation (87), for the k-th element of the source points D,

is given by the expressions in the frames below.
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For planar topology

This is the simplest case where ∂
∂κ

(
ρ
(
∆(xj , yj),Dk

))
is given by equation (51) and ∂(Qi,j)

∂κ is trivial, simply

obtained by populating ones and zeros in the right sequence.

For cylindrical topology

∂

∂κ

(
ρ
(
∆(rj , θj),Dk

))
=

−1

ρ
(
∆(rj , θj),Dk

) [
0

[1×(j−1)]

(
rj −DY

k

)
0

[1×(m−1)]

(
DZ

k sin θj −DX
k cos θj

)
0

[1×(m−j)]

]
(88)

and
∂ sin θj
∂κ

=

[
0

1×(m+j−1)
cos θj 0

1×(m−j)

]
∂rj
∂κ

=

[
0

1×(j−1)
1 0

1×(2m−j)

]
∂ cos θj
∂κ

= −
[

0
1×(m+j−1)

sin θj 0
1×(m−j)

]
.

(89)

For spherical topology

Equation (87) is repurposed as:

∂Q̃⊤
i,j

∂κ
=

[
∂
∂κ

(
ρ
(
∆(θ1,j , θ2,j),D

))
∂
∂κ

(
− cos θ1,j cos θ2,j

)
∂
∂κ

(
− sin θ1,j

)
∂
∂κ

(
− cos θ1,j sin θ2,j

)
0

]
︸ ︷︷ ︸

1×2m(l+4)

K ε,

(90)

where K ε is the 2m(l + 4)× 8m sized matrix on the right of equation (87). Expanding the terms for the k-th

element of the source point D:

∂

∂κ

(
ρ
(
∆(θ1,j , θ2,j),Dk

))
=

−1
ρ
(
∆(θ1,j , θ2,j),Dk

) [. . . (
∂Qi,j

∂θ1,j

)⊤
Dk . . .

(
∂Qi,j

∂θ2,j

)⊤
Dk . . .

]
, (91)

where:

[
∂Qi,j

∂θ1,j

∂Qi,j

∂θ2,j

]
=

[
∆θ1,j ∆θ2,j

]
=


sin θ1,j cos θ2,j cos θ1,j sin θ2,j

− cos θ1,j 0

sin θ1,j sin θ2,j − cos θ1,j cos θ2,j

 , (92)

and the other three partial derivatives of equation (90) are trivial.
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Moving to the second set of terms in equation 84:

∂hrep
∂ωi

=
∂

∂ωi

(
∥qi,j −Π

(
φi(pj)

)
∥
)
=

−1
∥qi,j −Π

(
φi(pj)

)
∥

(((
(qj)x −Π

(
φi(pj)

)
x

) ∂

∂ωi

(
Π
(
φi(pj)

)
x

))

+

((
(qj)y −Π

(
φi(pj)

)
y

) ∂

∂ωi

(
Π
(
φi(pj)

)
y

)))
,

(93)

where:

∂

∂ωi

(
Π
(
φi(pj)

))
=

∂

∂ωi

( fx
(Qi,j)Z

0 0 cx

0
fy

(Qi,j)Z
0 cy

)(f−1
i Q̃i,j ⊗ 13l

)
+
( fx

(Qi,j)Z
0 0 cx

0
fy

(Qi,j)Z
0 cy

 f−1
i

∂Q̃i,j

∂ωi

)
.

(94)

Once again, to compute equation (94), we need the expression for the term ∂(Qi,j)Z
∂ωi

, which can be obtained from:

∂Q̃⊤
i,j

∂ωi︸ ︷︷ ︸
1×12l

=

[
∂(Qi,j)X
∂ωi

∂(Qi,j)Y
∂ωi

∂(Qi,j)Z
∂ωi

01×3l

]

=

[
ρ
(
∆(rj , θj),D

)︸ ︷︷ ︸
1×l

sin θj rj cos θj 1
]
ελ,i

1l 0l×3l 1l 0l×3l 1l 0l×3l

04×12l


︸ ︷︷ ︸

(l+4)×12l

.

(95)

Obviously, when the indices of Q̃ and ω do not match, the rows of the Jacobian matrix are all zeroes, i.e.
∂Q̃⊤

i1,j

∂ωi2
=

01×12l when i1 ̸= i2. Our next objective is to compute the Jacobian matrix relating the change of hiso to ξ, providing

us with:

JI,g =
∂hiso
∂ξ

=

[
∂hiso
∂κ

∂hiso
∂ω

]
. (96)

The two terms on the right most matrix of equation (96) are expanded below:

∂hiso
∂κ

=
1

ζ1

((
(Qi,j)X − (Qi,q)X

)(∂(Qi,j)X
∂κ

− ∂(Qi,q)X
∂κ

)
+
(
(Qi,j)Y − (Qi,q)Y

)(∂(Qi,j)Y
∂κ

− ∂(Qi,q)Y
∂κ

)
+
(
(Qi,j)Z − (Qi,q)Z

)(∂(Qi,j)Z
∂κ

−∂(Qi,q)Z
∂κ

))
− 1

ζ2

∂d2j,q
∂κ

,

(97)

where:

∂d2j,q
∂κ

= 2

[
0 . . . (rj − rq) . . . −(rj − rq) . . . 0 . . . (θj − θq) . . . −(θj − θq) . . . 0

]
. (98)
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For planar topology

Using a similar expansion, it can be shown that for the planar topology, we have:

∂d2j,q
∂κ

= 2
[
0 . . . (x1,j − x1,q) . . . −(x1,j − x1,q) . . . 0 . . . (x2,j − x2,q) . . . −(x2,j − x2,q) . . . 0

]
.

(99)

For spherical topology

It can also be shown that for the spherical ToTem we have:

∂d2j,q
∂κ

= 2
[
0 . . . (θ1,j − θ1,q) . . . −(θ1,j − θ1,q) . . . 0 . . . (θ2,j − θ2,q) . . . −(θ2,j − θ2,q) . . . 0

]
.

(100)

The other term from equation (96) is:

∂hiso
∂ω

=
1

ζ1

((
(Qi,j)X − (Qi,q)X

)(∂(Qi,j)X
∂ω

− ∂(Qi,q)X
∂ω

)
+
(
(Qi,j)Y − (Qi,q)Y

)(∂(Qi,j)Y
∂ω

− ∂(Qi,q)Y
∂ω

)
+
(
(Qi,j)Z − (Qi,q)Z

)(∂(Qi,j)Z
∂ω

− ∂(Qi,q)Z
∂ω

))
.

(101)
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