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Abstract—Intra-operative imaging techniques for obtaining the
shape and morphology of soft-tissue surfaces in vivo are a key
enabling technology for advanced surgical systems. Different opti-
cal techniques for 3D surface reconstruction in laparoscopy have
been proposed, however, so far no quantitative and comparative
validation has been performed. Furthermore, robustness of the
methods to clinically important factors like smoke or bleeding
has not yet been assessed. To address these issues, we have formed
a joint international initiative with the aim of validating different
state-of-the-art passive and active reconstruction methods in
a comparative manner. In this comprehensive in vitro study,
we investigated reconstruction accuracy using different organs
with various shape and texture and also tested reconstruction
robustness with respect to a number of factors like the pose of
the endoscope as well as the amount of blood or smoke present
in the scene. The study suggests complementary advantages of
the different techniques with respect to accuracy, robustness,
point density, hardware complexity and computation time. While
reconstruction accuracy under ideal conditions was generally
high, robustness is a remaining issue to be addressed. Future
work should include sensor fusion and in vivo validation studies
in a specific clinical context. To trigger further research in
surface reconstruction, stereoscopic data of the study will be
made publically available at www.open-CAS.com upon publication
of the paper.
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I. INTRODUCTION

Laparoscopic surgery provides numerous advantages com-
pared to open surgery, including reduced surgical trauma,
earlier convalescence, better cosmetic results and shorter hos-
pitalization. However, due to the limited field of view (FoV),
the difficult hand-eye coordination as well as the loss of depth
perception and tactile feedback, laparoscopic interventions
generally require a lot of skill and experience to be performed
successfully. In particular, mental fusion of the partially vis-
ible anatomy with high-resolution pre-operative tomographic
images and/or surgical planning data in the presence of organ
motion is extremely challenging. Recent developments in
medical imaging, medical image computing and robotics, have
opened the way for computer-assisted interventions (CAI) in
which computer systems provide highly precise localization
information about the patient’s anatomy during the proce-
dure [1]. One of the main difficulties in soft-tissue CAI is
the accurate, fast and robust acquisition of the 3D structure of
the patient’s anatomy during surgery. To allow for augmented
reality (AR) visualization of subsurface anatomical detail, the
acquired 3D data is typically registered to 3D pre-procedural
planning images and models [2], [3], [4]. The modalities used
for intra-operative patient localization include ultrasound (US),
intra-operative computed tomography (CT) and interventional
magnetic resonance imaging (iMRI). However, these are often
not well-suited to real-time image acquisition in a surgical
theater with traditional instrumentation, provide poor image
quality or are associated with radiation exposure and high
costs.

In minimally-invasive surgery, an attractive approach in-
volves 3D reconstruction of soft-tissue surfaces using the
endoscope itself [5]. As the latter serves as a natural interface
between the surgeon and the patient, there is no need for
additional displays to visualize the computed anatomical infor-
mation. Optical techniques for 3D surface reconstruction can
be divided into two categories [5]: passive methods that only
require images, and active methods that require controlled light
to be projected into the environment. Passive methods include
stereoscopy, monocular Shape-from-X (SfX) and Simultane-
ous Localization and Mapping (SLAM) while the most well-
known active methods are based on structured light (SL) and
Time-of-Flight (ToF). Both active and passive technologies
have found successful applications in a wide spectrum of
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fields including domestic and industrial robotics, as well as
the film and games industries, but have only recently been
applied in minimally-invasive surgery. Reconstruction of the
patient anatomy, however, poses several specific challenges.
First, reconstruction algorithms face a dynamic and deformable
environment. Second, tissue may have homogeneous texture
making automatic salient feature detection and matching,
which is required by most passive techniques, difficult. Fi-
nally, reconstruction methods must prove to be robust despite
complex illumination featuring specular highlights, smoke
and blood as well as surgical instruments that occlude and
manipulate the patient anatomy.

So far, quantitative validation of the different reconstruc-
tion methods has typically been performed under (close to)
ideal conditions using simulated data [6], [7], [8] and phan-
tom models with known ground truth geometry and motion
characteristics [6], [9], [10], [11] or with ground truth data
obtained by scanning techniques [6], [8], [9], [10], [11], [12],
[13]. Although crucial for clinical application, robustness to
factors like smoke or bleeding, has not yet been assessed.
Furthermore, the different techniques and methods have gen-
erally been validated on different data, making comparison of
reconstruction results impossible. In response to this, we have
formed a joint international initiative with leading institutions
in the field to (1) assess the accuracy and robustness of state-
of-the-art surface reconstruction methods in a comparative
manner and (2) to provide a publically available data set
for assessing current and future reconstruction algorithms
according to a common protocol. Our focus is on single-shot
techniques, i.e. methods that do not require movement of the
endoscope, namely stereoscopy, SL and ToF. These techniques
were tested on the same objects under identical conditions with
CT data serving as reference. To characterize the strengths and
weaknesses of each technique, we investigated reconstruction
accuracy in a comprehensive in vitro study, involving different
organs with various shape and texture and also tested recon-
struction robustness with respect to the pose of the endoscope
and the amount of blood or smoke present in the scene. To
ensure reproducibility of our results, we applied a previously
published model for defining and reporting reference-based
validation protocols in medical image computing [14].

The remaining part of this paper is structured as follows:
Section II reviews all the surface reconstruction methods used
in this study. Section III describes the validation methodology
in detail. Next, the study results are presented in sec. IV,
followed by a discussion of our findings and perspectives on
future work in sec. V. Finally, sec. VI provides a conclusion.

II. 3D RECONSTRUCTION METHODS

This section briefly reviews the basic working principle of
the different 3D reconstruction methods investigated in this
study.

A. Stereoscopy

Stereo reconstruction is one of the most established optical
techniques for recovering the shape of an object. It can be
broken down into the following steps: (1) camera calibration

from images, (2) acquisition of two images of the scene, (3)
establishing stereo correspondences of points in the images
and (4) structure triangulation using the known geometric
properties of the cameras.

Based on a PubMed search and a recent review article
on optical surface reconstruction in surgery [5] we decided
to include stereo algorithms designed for laparoscopy and
published within the last four years.

Stereo-KIT: The first stereo reconstruction technique, devel-
oped at Karlsruhe Institute of Technology (KIT), is based on a
modified version [8] of the Hybrid Recursive Matching (HRM)
algorithm [15]. The method uses spatial and temporal infor-
mation to recursively generate a dense disparity map with
subpixel precision in real-time. As input, the rectified and
undistorted images from the calibrated stereo endoscope, the
disparity image from the previous time step and the already
calculated disparities from the current time step are required.
In a two-stage process, the block recursion and the pixel
recursion, a new disparity value is calculated for the current
pixel by evaluating potential correspondence candidates. While
the block recursion ensures a smooth disparity distribution
especially in textureless regions, the pixel recursion introduces
new values in regions of discontinuity. In a post-processing
step, disparity correction including specular highlights and
bilateral smoothing is performed. The disparity image is then
used to calculate the 3D coordinates of the image points with
a standard triangulation method. To achieve real-time, the
components of the workflow have been ported to the graphics
processing unit (GPU). A detailed description of the algorithm
can be found in [8].

Stereo-UCL: The second stereo reconstruction technique,
developed at University College London (UCL), is based
on seed propagation and was presented recently [13], [16].
The method initially recovers a sparse set of matches (seed
points) across the stereoscopic images using a feature-based
technique described in [17]. It applies commonly used image
features [18] implemented in the OpenCV library1 though
any detection and matching approach (cf. e.g. [19]) can be
used just as effectively. The seed points are then processed
to generate a semi-dense disparity map by exploiting the fact
that points in the neighborhood of an already assigned pixel
should correspond to a pixel close to that point’s corresponding
pixel. The propagation algorithm works using a priority queue
structure to populate the correspondence list on a best-first
basis ranked by the zero mean normalized cross correlation
(ZNCC) of a match. Uniqueness is enforced by keeping
the first valid match to each pixel and not permitting new
matches to that pixel in later iterations. Disparity continuity is
maintained locally by limiting the propagation window around
each match. The details of the algorithm are presented in [13],
[16], and the source code is available online2.

Stereo-IC: The third stereo reconstruction technique, devel-
oped at Imperial College London (IC), uses a 3D cost-volume
to combine local matching with global smoothness optimiza-
tion [20]. The 3D volume consists of n slices that have the

1http://opencv.org/
2http://www0.cs.ucl.ac.uk/staff/Dan.Stoyanov/software.html
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same dimensions as the stereoscopic images, where n is the
range of searching disparity. A global optimization follows
the cost-volume construction for achieving the smoothness
assumption of the reconstructed disparity and maintaining the
discontinuity at the same time. Since the global optimization
happens in continuous space, the reconstructed model can
reach sub-pixel accuracy without any post-processing. Details
of the technique can be found in [20].

B. Structured Light
SL techniques aim to recover the 3D surface information of

an object in a similar way to stereoscopy but using an artificial
pattern of light. The principle is based on parallax and the use
of the geometry of triangles and triangulation. In the case of
monocular camera detection, a simple trigonometric relation-
ship can be established between the projection system and a
single camera. In this case the line-of-sight rays projected from
the camera and the SL source intersect at the tissue surface.
Similarly to stereoscopy, SL requires knowledge of the camera
projection properties. A detailed review of SL in the context
of laparoscopic surgery can be found in [5].

The SL technique implemented in this paper is based on
the concept of active stereo [9], [21]. The SL pattern consists
of a circular randomized multispectral pattern of spots (cf.
Fig. 6(a)) generated by a dispersed supercontinuum laser
that is coupled into a 1.9 mm diameter optical fiber bundle
with a GRIN lens attachment at the tip. The hardware used
to generate this pattern, reported in [22], ensures that each
spot has a unique wavelength. The narrow spectral profile
of the spots means that their color is independent of the
optical properties of the surface they are being projected onto,
increasing the robustness of the system. Calibration of the
device is based on the pinhole camera model [23] and the
use of a planar calibration object printed with a grid pattern
of known size.

C. Time-of-Flight
The ToF technique is an active reconstruction method based

on measuring the run-time of light emitted from the camera
and reflected by the object under observation [24], [25]. This
enables the acquisition of corresponding distance (range) and
intensity images of the observed scene with video frame rates.
Typically, the scene is illuminated with intensity-modulated
near infrared light (NIR) emitted from one or more illumi-
nation units, and the phase difference φ between emitted and
reflected light is determined by an on-chip correlation of the
reflected signal with a reference signal. Based on the measured
phase difference φ, the distance in a pixel is then obtained by
d = c

4πfm
φ, where c is the speed of light and fm is the

modulation frequency of the emitted light.
In this study, we apply the first industrial prototype endo-

scope developed by the company Richard Wolf GmbH (Knitt-
lingen, Germany). It features both a white light source as
well as a ToF illumination unit and simultaneously generates
range images, corresponding gray-scale amplitude images and
standard definition RGB images at a framerate of about 30
frames/sec. It operates at a modulation frequency of up to 25
MHz with a lateral resolution of 50× 64.

Validation data sets 𝐷𝐼 Parameters 𝑃𝐼 

Hypothesis 𝐻 Clinical 
context 𝐶 

Computation of 
the method 𝐹𝑀 

Computation of 
the reference 𝐹𝑅𝑅𝑅 

Comparison 
function 𝐹𝐶 

Hypothesis 
verification 

Validation 
result 

Fig. 1. Main steps of reference-based validation procedures for medical
image processing according to Jannin et al. [14]. Copyright (c) 2010 IEEE

III. COMPARATIVE VALIDATION STUDY

Although the importance of validation in the con-
text of computer-assisted diagnosis and therapy is well-
established [26], standard terminology and methodology that
allow for reproducibility and comparability of results have
long been lacking. To address this issue, Jannin et al. [14]
proposed a framework for reporting reference-based validation
studies. The idea of reference-based validation is to compare
the result of a method with a reference (e.g. gold standard)
that is assumed to be very close or equal to the ideal expected
solution (ground truth). The principle of the validation process
is illustrated in Fig. 1. It is initiated with the specification
of the validation objective, which includes the clinical con-
text (C) in which the method is aimed to be applied, and the
specification of a hypothesis (H), relying on expected values
required within the considered clinical context. The validation
process then proposes an experiment to test the hypothesis.
This requires definition of the validation data sets DI and a set
of input parameters PI , which includes parameters related to
the validation data sets and to the method FM to be validated.
The result of FM on DI is then compared to the result
of a reference method FRef via a comparison function FC .
Finally, the comparison results are tested against the validation
hypothesis in order to provide the validation result.

The aim of our study was a comparative validation of the ac-
curacy and robustness of state-of-the-art surface reconstruction
methods in the context of laparoscopic surgery. The difference
to a conventional validation study was that we had multiple
methods to be validated. Our focus was the comparability of
results of different methods rather than the performance of a
specific method in a specific clinical procedure. Because the
clinical context is broad, we decided against the definition of
a hypothesis and used the protocol of Jannin et al. [14] mainly
for a comprehensive description of our study that would ensure
reproducibility of our work. The detailed validation process
is provided in Fig. 2. The following sections provide an
instantiation of the various components.

A. Validation data sets DM
I and DRef

I

In a clinical setting, high reconstruction accuracy must be
achieved for very different shapes and textures. Furthermore,
the methods applied should be robust with respect to pa-
rameters, such as the pose of the endoscope as well as the
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Fig. 2. Model of reference-based validation applied in this work and
adapted from Jannin et al. [14]. Different state-of-the-art laparoscopic surface
reconstruction methods FMi

are applied to a common set of validation
objects, from which endoscopic video images DM

I and CT reference data
Dref

I is extracted. Both, the methods to be validated as well as the reference
method Fref are applied with a fixed parameter set PIi and produce an
output R̂Mi

/ R̂ref associated with some error ÊMi
/ Êref . The output is

further processed via the normalization functions FNRMi
/ FNRref (e.g.,

transformed to a common coordinate system), and a comparison function FC

provides a quality measure ODi for each method FMi
. The latter can be

further processed via function FQI to provide a final quality index OQI to
be compared across techniques. Copyright (c) 2010 IEEE

amount of smoke and the amount of blood in the FoV. To
take these different aspects into account, a set of various
validation objects was prepared, comprising several porcine
livers, kidneys and hearts as well as fatty tissue (cf. Fig. 3(a)
and 4) in a commercially available laparoscopic trainer (Pelvi,
Karl Storz Endoscopy America, Culver City, CA). The organs
were purchased at a butcher’s (Fleischversorgungszentrum
Mannheim, Mannheim, Germany). To generate a variety of
different shapes, the tissue was deformed and manipulated
with surgical instruments. Different parts of the organs with
varying texture were imaged to vary the tissue appearance.
Fig. 4 shows the entire set of tissue parts. The validation data
sets DI comprised endoscopic images DM

I and corresponding
CT reference data DRef

I of the organ.
Prior to image acquisition a set of Teflon balls (Engineering

Laboratories, Inc.; www.plasticballs.com) with a diameter of
1.6 mm were attached to each organ piece such that they
enclosed a circular region on the tissue surface (cf. Fig. 4).

(a) (b)

Fig. 3. Experimental setup: Porcine organs in laparoscopic trainer (a) and
holding device (b) to ensure approximately identical poses of the different
endoscopes relative to the validation objects. Copyright (c) 2010 IEEE

Depending on the distance of the object to the camera (4 cm,
5.5 cm, 7 cm) the diameters of this circle were 3 cm, 4.5 cm
and 6 cm to ensure that the spheres were located approximately
at the boundaries of the endoscopic images. To allow for an
unambiguous registration with CT reference data, the markers
were arranged in a unique pattern as shown in Fig. 4. The
balls were painted with different colors (green and gold) to
enable registration even if only a subset of markers could be
detected in the video images.

All acquisitions were performed with the theater lights
turned off in an interventional radiology suite on the stretcher
of a CT scanner (Somatom Defintion Flash, Siemens, Erlan-
gen, Germany) as shown in Fig. 3. This minimized the risk of
causing changes in the shape of the validation objects during
our experiments. To ensure approximately identical poses of
all endoscopes relative to the objects under observation, a
holding device was affixed to the stretcher (cf. Fig. 3(b)). To
prevent the organs from drying out, they were kept in a box
with water and ice as long as possible, and the experiments
were performed in an air-conditioned room to keep the tem-
perature below 20◦C. Multiple CT scans of the same organ
were acquired to keep the time between endoscopic image
acquisition and reference CT acquisition under 30 min.

Using a high definition (HD) stereo endoscope, a standard
definition (SD) stereo endoscope, the SL endoscope presented
in sec. II-B and the ToF endoscope introduced in sec. II-C,
DM
I was acquired by engineers accustomed to operation of the

respective hardware. The poses of the endoscopes relative to
the validation objects were varied to cover a range of clinically
realistic settings. For validation of the reconstruction methods,
the following data sets were used:

D-Distance: The objects used to investigate reconstruction
accuracy as a function of distance are shown in Fig. 4 and
comprise five parts of a liver (flat, convex, with discontinuity,
with a hole, with fatty tissue), two parts of a kidney (homo-
geneous, with cut), two parts of a porcine heart (little texture,
high texture), and fatty tissue, each acquired with a direct view
of the endoscopes on the objects and reconstructed for two
different distances: 4 cm, and 7 cm. For each reconstruction
method, this yielded a total of n = 20 surfaces (10 for each



0278-0062 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMI.2014.2325607, IEEE Transactions on Medical Imaging

5

distance).
D-Angle: The validation objects used to investigate re-

construction accuracy as a function of the orientation of
the endoscope were the five different liver shapes as de-
scribed in D-Distance, each reconstructed for two different
distances (5.5 cm and 7 cm) and two orientations of the
endoscopes: Angles of 0◦ and 30◦ measured between the view
direction of the endoscope and the approximated mean surface
normal. For each reconstruction method, this yielded a total
of n = 20 surfaces (10 for each angle).

D-Smoke: The validation objects used for investigating the
robustness to smoke were again the five shapes of the liver
described in D-Distance (camera distance: 5.5 cm; angle: 30◦).
A surgical coagulator (Autocon II 400 electrosurgical unit,
Karl Storz GmbH & Co. KG, Tuttlingen, Germany) was used
to create smoke (at 40 Watts) using a part of the liver that was
located underneath the camera, as shown in Fig. 5. Note that
this procedure only allows one angled pose of the endoscope.
For each reconstruction method, this yielded a total of n = 10
surfaces (five with and five without smoke).

D-Blood: The validation objects used for investigating
the robustness to blood were a liver and a heart, each im-
aged without and with artificial blood (Kunstblut, Metamorph
GmbH, Berlin, Germany), as shown by means of example in
Fig. 15(a).

To speed up the acquisition process, we always prepared
several organs at a time (cf. Fig. 3(a)) and moved the CT
stretcher to image the organs sequentially while the hardware
remained at a fixed pose. To ensure comparability of results,
we recorded the different relative positions of the CT stretcher
for subsequent acquisitions with different devices.

To ensure that the markers cannot serve as features, we
manually detected them in all images. We then generated
binary masks representing pixels not to be considered during
correspondence search.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. (a)-(e): Different shapes of the liver: flat (a), convex (b), with
discontinuity (c), with hole (d), with fat (e). (f)-(j): Different shapes of the
heart (f/g), fatty tissue (h), and a kidney without (i) and with (j) cut. The circles
represent the region of interest, and the markers were used for registration with
computed tomography (CT) data. Copyright (c) 2010 IEEE

B. 3D reconstruction methods FMi

The specific hardware and settings PIi used for the differ-
ent 3D reconstruction methods FMi reviewed in sec. II are
described in the following paragraphs:

Fig. 5. Creation of smoke with a surgical coagulator. Copyright (c) 2010
IEEE

Stereoscopy: For stereo image acquisition, a commercial SD
stereo endoscope (resolution 720 × 576; baseline: ≈ 4 mm;
optics: 30◦) and a prototype HD stereo endoscope (resolution:
1920 × 1080; baseline: ≈ 3.5 mm; optics: 0◦), both from
the company Richard Wolf GmbH (Knittlingen, Germany),
were used. Images were captured with 25 frames/sec utilizing
two Blackmagic Intensity Pro cards. Synchronization of the
stereo channels was performed via timestamps. Prior to the
experiments, the stereo endoscopes were calibrated with a
checkerboard-based method [27], as detailed in Röhl et al. [8].
Randomized subsets of all recorded checkerboard patterns
were generated and a calibration evaluation based on 3D
reconstruction error and rectification error was used to select
the calibration with the highest accuracy. Calibrating the HD
stereo endoscope yielded a large rectification error, which may
partly be due to chromatic aberration, for example. Downsam-
pling the images to 960 × 540 reduced this error significantly.
It was therefore decided to only use the downsampled HD
images for validation, since the Stereo-KIT and the Stereo-IC
method requires rectified images for correspondence analysis.
During validation it was observed that the rectification error,
or y-offset, varied with time in the case of the HD images,
potentially due to jitter of the prototype stereoscope. To correct
for this variation, an automatic rectification correction using
Scale-invariant feature transform (SIFT) features [28] was
implemented. SIFT features were detected and matched in
each stereo image pair, and the average difference in y-values
of the matched points was then used to correct the y-offset of
the rectification. The stereo algorithms were then applied to
the masked original and rectified endoscopic images (cf. sec.
III-A).

The Stereo-KIT method was used as described in a pre-
vious publication [8], but using only one image frame and
without post-processing of the reconstructed surface. For
the Stereo-UCL method, the parameters for feature detec-
tion in the OpenCV cvGoodFeaturesToTrack function
with qualityLevel = 1e − 10 and minDistance
= 30 pixels and all other parameters left to their default
values. Initial matching was performed with Lucas-Kanade
(LK) [29] iterations in a pyramidal implementation using the
OpenCV calcOpticalFlowPyrLK function with parame-
ters winSize = Size(11,11) and maxLevel = 5 and
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all other parameters left to their default values. Parameters
for the propagation used a growing neighbourhood of 1 pixel
around seed matches, correlation minima of 0.5 for seed
matches and a windows size of 11. For the Stereo-IC method,
the ZNCC patch was set to 11×11, and the global optimization
was run for 1000 iterations. The setting for the parameters of
the primal-dual algorithm was the same as in Chang et al. [20].
The disparity range was from 10 to 120.

Fig. 6. Spot detection and tracking algorithm for the structured light
(SL) system. (a) RGB image of spot pattern. (b) Total intensity image. (c)
Total intensity convolved with 2D Gaussian kernel. (d) Centroids calculated
from local maxima. (e) Reference image showing spot labelled by its RGB
values and six surrounding triangles. (f) Possible match for reference spot in
subsequent image. (g) Labelling of triangles identified in (f) that match the
reference (e). Copyright (c) 2010 IEEE

SL: For this study, laser spot detection was performed as
follows (cf. Fig. 6): An integrated intensity image (b) was
formed from the red, green and blue color planes of the RGB
image (a), and background noise was eliminated using a low
threshold mask before convolving with a 2D Gaussian kernel
of 20 pixel diameter (c), which returns high values close to
each spot’s brightest part and allows the centroid of each spot
to be found (d). The normalized RGB values for each spot in
a 7 pixel radius region-of-interest around the centroids were
calculated. To define a unique label for each spot, a Delaunay
triangulation was performed and each spot was identified by
its surrounding triangles and the colors of their vertices (e).
Triangles in the test image were matched to corresponding
locations in a reference image based on a comparison of
their internal angles and the RGB values of the nodes. The
closest matching reference triangles to those surrounding a
particular test spot were then examined (f). The reference spot
that appeared (or was ’counted’) most often in the matched
triangles was selected as having the highest probability of
being the correct one, with a count value of 4 defined as
being a reliable match (g). However, some spots in the matched
reference triangles could receive an equally high count value
or a value less than 4. To decide on such ambiguous spots,
a labelling enhancement step was preformed. For a particular
matched reference triangle, following the steps above, the sum
of the count values on the three nodes (’group count’) was
calculated. If this exceeded a threshold value (group count
= 9) then the value of each node was increased by one. This
procedure was then repeated for neighbouring triangles. In this
way, areas of the projected pattern containing reliably matched
spots could be used to improve matching of spots with lower
count values and eliminate weak correspondences.

In our experiments, the prototype SL projector probe was
secured and mounted in a metal tube so that it could be
positioned separately to the laparoscope using a clamp. For
each set of tissue samples, the laparoscope was positioned
first according to the angles and working distances specified
in sec. III-A. The projector was then clamped beside the
laparoscope at an angle of approximately 30◦ and its working
distance adjusted so that the spot pattern occupied an area
that would cover as many of the CT markers as possible.
This position was then locked and the system was calibrated
as described in sec. II-B using 12 different poses. Both
white light and SL images were collected at each pose to
allow calibration of the camera intrinsic parameters and ray
propagation directions.

ToF: As mentioned in sec. II, the first prototype endoscope
developed by the company Richard Wolf GmbH (Knittlingen,
Germany) was used in this study. The endoscope was initially
calibrated with a checkerboard-based method similar to that
proposed by Zhang [27]. As the ToF amplitude images have a
very low resolution and limited quality, checkerboard corners
can be challenging to detect, especially when the whole
checkerboard needs to be in the FoV of the endoscope. In
an adapted approach proposed previously [30], checkerboard
fields are filled with unique patterns, such that an arbitrary
number of fields may be imaged by the endoscope. The
modulation frequency and the integration time were set to
maximum values of 25 MHz and 945 ms to obtain the best
possible SNR. Note that this was sensible because the scene
was static and no overexposed pixels occurred with these
settings. As the hardware was still premature and the images
feature a low SNR, temporal averaging of the pixel values was
performed on a sequence of n = 1000 consecutive distance
images. Furthermore, a bilateral filter [31] was applied as
edge-preserving smoothing filter (σdomain = 2, σrange = 20).
In the current prototype, the distance errors related to various
factors such as temperature, intensity, integration time are
still severe. As they even change over time (e.g. due to the
temperature-related error) a distance calibration prior to every
single image acquisition would be required, which, however,
was impossible to conduct due to the time restrictions for this
study. To obtain meaningful results despite these issues, an
individual offset value, to be subtracted from all pixels in the
range image, was determined for each acquired image. For this
purpose, the markers were detected in the amplitude image and
their 3D position was calculated with the corresponding dis-
tance values based on the camera intrinsics. We then computed
the offset that - when added to all distance values - minimized
the 3D fiducial registration error (FRE) between reconstructed
fiducials and the fiducials extracted from corresponding CT
images.

C. Error ÊMi
of 3D reconstruction methods

As shown in Fig. 2, the output of the reconstruction method
FMi , when applied to DI with parameters PIi is referred to
as R̂Mi

. The errors EMi
related to the different reconstruction

methods FMi
are complex, and a thorough description is

beyond the scope of this paper. However, the most important
sources of error are provided in the following:
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Stereoscopy: Errors in reconstruction from stereo images
result mainly from mismatches in the established correspon-
dences and inaccurate calibration. Correspondence search in
endoscopic images is extremely challenging due to a number
of different reasons, as discussed at length in a previous
paper [5]. Among others, homogeneous or periodic textures,
poor illumination and varying light conditions make salient
feature detection and matching difficult. Specular reflections
are view dependent and hence are not reliable image details for
matching. Occlusions due to the surgical instruments, as well
as smoke and areas covered with blood imped reconstruction
performance.

Even if corresponding pixels are found correctly, 3D re-
construction may be prone to error. As accuracy decreases
with a decreasing baseline length, it has been established that
subpixel accuracy in correspondence establishment is required
for acceptable results [32]. Without subpixel accuracy the so-
called staircase effect occurs, meaning that the reconstructed
3D points are located in discrete layers.

Another source of error is the calibration of the intrinsic
and extrinsic camera parameters. Wide angle lenses of stereo
endoscopes mean that barrel lens distortion is often present,
especially at the image edges. Jitter in the coupling between
the scope and the camera heads may occur, rendering a previ-
ously performed calibration less accurate. Jitter is especially
crucial if a stereo algorithm requires rectified images (here:
Stereo-KIT and Stereo-IC).

A direct estimation ÊMi
of the 3D reconstruction error was

not available, but the calibration error could be approximated
by determining the distance between the estimated checker-
board corner positions, obtained by reprojection, with the
computed feature positions.

SL: The main sources of error associated with the active
stereo implementation of the SL technique can be broadly
divided into those related to detection of the spot pattern and
those related to the pinhole camera model calibration. For
spots incident on a surface at a high angle, their shape may
be distorted and stretched beyond this average value resulting
in errors in centroid position. Similarly, errors in centroid
calculation may also arise when the reflectance properties
of the tissue within the spot are heterogeneous or when the
spot is partially occluded. High absorption of blue and green
light by hemoglobin decreases the visibility of these colors in
blood-rich tissue. When there is sufficient blood in the FoV
some of these spots will no longer be detectable. As well as
being regularly reflected from the tissue surface, light will also
penetrate and be scattered multiple times due to the turbid
nature of biological tissue. This has the effect of reducing
the contrast between the projected spots and the background
tissue surface between them. If the amount of diffuse light
between two adjacent spots is sufficient it can result in the
detection of a false centroid at the midpoint between the real
ones. Further sources of error are found in the estimation of
the camera’s intrinsic parameters arising from detection of
the corner features in the calibration object. This also leads
to uncertainties in the points which are used to calculate
the best-fit rays. Following the calibration routine there is a
final error associated with reprojection of the detected spot

onto the unknown tissue surface. Due to low density of the
reconstruction possible with the current system further errors
arise from the interpolation of the tissue surface between
projected spots.

ToF: ToF cameras in general, and the prototype ToF endo-
scope in particular, are subject to numerous systematic errors
and noise. The systematic error in a ToF pixel comprises a
pixel-specific offset as well as a scene-dependent error that
can be modelled as a function of the intensity measured,
the integration time used, the temperature and run-time of
the camera, and the measured distance itself. Such systematic
errors can theoretically be compensated for by a depth calibra-
tion [33], [34], but a practical approach for endoscopic data
has not yet been proposed. Due to the challenge in transmitting
enough light through the endoscope channel, noise is another
crucial issue in the context of ToF endoscopy [5]. In fact, the
inhomogeneous illumination with a radial attenuation of the
light leads to a particularly bad SNR at the boundaries of the
images. Further important errors in the context of laparoscopic
surgery arise from depth discontinuities, scattered light, multi-
path reflections and tissue penetration. Depth continuities
result in so-called flying pixels, which can be regarded as
outliers because they typically incorporate range data from
more than one object. The light scattering effect results from
multiple light reflections between the camera lens and its
sensor and causes a depth underestimation over the affected
pixels [33]. The amount of interference increases with a
decreasing distance to the objects under observation, which
makes this error extremely relevant in the context of laparo-
scopic surgery. Multi-path errors are caused by interference of
multiple light reflections captured at each sensor’s pixel [33].
As these errors occur mainly with concave objects, such as
surfaces from abdominal organs, they are also highly relevant
in the context of endoscopic applications. Finally, NIR light
may be absorbed by or penetrate into the tissue, which may
lead to an overestimation of depth.

D. Reference method FRef and associated error ÊRef
The true organ surface R is approximated by a reference

method FRef that can be expected to be more accurate
than FM and yields an estimate R̂Ref of the ideal surface.
In this study, surfaces extracted from high-resolution CT
data (0.6 mm slices, 0.2 mm overlap; Somatom Defintion
Flash) served as reference. The reference data set correspond-
ing to a particular endoscopic data set was defined to be
the one with the smallest difference in time between CT
acquisition and endoscopic data acquisition. As the organs
used were surrounded by air, a threshold filter (threshold
= 800 HU) was sufficient for segmenting the organs. The
corresponding surface was obtained by applying the marching
cubes algorithm to the segmented shapes and decimating the
resulting surface to obtain a number of vertices manageable
by our software.

Although the reference method has been chosen to be as
accurate as possible it does yield errors, represented by the
symbol ERef . In this particular case, these errors included
errors related to segmentation (partial volume effects, slice
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thickness, user interaction), surface generation and organ de-
formation, resulting from the fact that the endoscopic data
and the CT data were not acquired simultaneously. To obtain
a rough estimate of the error ÊRef of the reference for a par-
ticular tissue part, we computed a point-based registration of
the first and last CT that was acquired from the corresponding
organ based on the markers enclosing the region-of-interest
(cf. sec. III-A), and determined the corresponding FRE.

E. Normalization function for the reference FNRref and nor-
malized reference R̂NRef

To allow for a meaningful comparison between the reference
surfaces and the reconstructed surfaces, the former ones were
transferred into the camera coordinate systems. To compute
the normalized reference R̂NRef for a given endoscopic data
set, the following information I was extracted:
• Reference markers: The markers were manually located

in the CT image by setting a point onto that part of the
sphere that could be expected to correspond to the center
of the marker in the endoscopic video data.

• Reconstructed markers: Initially, the markers were
detected in the 2D endoscopic video images us-
ing either an automatic blob/circle detector, (OpenCV
MinEnclosingCircle) (when image quality al-
lowed) or a manual procedure. In the case of the stereo
algorithms, these manual reference correspondences were
refined by two methods: An LK search with radius
11 (SD) and 31 (HD) pixels and a search along the
epipolar line using the Stereo-KIT method. Next, the
reconstruction algorithm was applied to compute the 3D
marker positions relative to the camera coordinate system
for all methods. In the case of the stereo algorithms, this
was done for all variants (purely manual, manual refined
by LK search and manual refined by search along epipolar
line), and the method that provided the best FRE was
chosen to compute the reference registration (separately
for each image). Outliers resulting from a suboptimal
reconstruction were then manually removed from the
set, and corresponding markers were deleted from the
reference marker set. In this step, the SL method required
special treatment. Since the density of the spot pattern
was not high enough to ensure that each CT marker’s
3D position could be calculated directly an alternative
approach had to be employed. Firstly, the centroids of
each marker were found using white light images of
the same FoV. These coordinates were converted to
metric space from pixel space using an empirical relation
derived from the white light view and the x-y plane
of the reconstructed point cloud (since the camera axis
was aligned with the z-axis). The z-coordinate of the
markers was then calculated as the point of intersection
between the interpolated surface and a line parallel to
the z-axis that passes through the marker’s 2D centroid.
Furthermore, for some of the tissue images the spot
tracking algorithm failed due to occlusion of several spots
and had to be partially manually supervised. This was
particularly evident in the images where blood and smoke

occupied the FoV.
• Reference surface data: The reference method was ap-

plied to extract the reference surface that the recon-
structed surface was to be validated against. Next, the
method by Horn [35] was applied to the reference mark-
ers and the reconstructed markers to determine the rigid
transformation that minimized the FRE between corre-
sponding fiducials. The transformation was then used to
register the reference surface to the camera coordinate
system. To be able to validate the surface quality in the
interior of the sphere defined by the markers, a cylinder-
shaped bounding object was defined by manually fitting
a circle to the set of reference markers extracted from
the CT images. The intersection of the cylinder with
the reconstructed surface was then manually processed
in order to keep only the outer parts of the organ that
were facing the endoscopic camera (cf. Fig. 7).

Additional errors related to the reference that were not
included in ÊRef are the marker localization errors. As the
camera pose relative to the CT image is only known approxi-
mately, the point on the sphere surface that corresponds to the
center of the marker visible in the endoscopic image is only
known approximately. Furthermore, errors in the 2D marker
localization as well as errors related to the reconstruction
method lead to erroneous marker positions in the camera
coordinate system. As a consequence, the registration from
the CT coordinate system to the camera coordinate system(s)
is erroneous.

F. Normalization function for the reconstruction methods
FNRMi

and normalized output R̂NMi

The point clouds resulting from intersection of the cylinder-
shaped bounding objects described in sec. III-E with the
reconstructed point clouds served as reconstructions to be
validated (cf. Fig. 7).

(a) (b)

Fig. 7. Extraction of a sphere-shaped region (red) from the reference com-
puted tomography (CT) surface (a) and the reconstructed point cloud (yellow)
(b) using a cylinder as bounding object. Reconstructed markers are shown in
green. Copyright (c) 2010 IEEE

While this approach cannot introduce additional errors to
the reconstructed surface, it may - in theory - lead to cutting
out a wrong piece of the surface (i.e., not the interior of the
marker circle). Due to visual inspection of all reconstructed
surfaces, this issue is not of practical interest.

In the case of the stereo algorithms, wrong correspondences
may lead to severe outliers, as shown by means of example in
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Fig. 14. If not located in the interior of the cylinder, such points
would not be considered in our validation. To address this
issue, we applied an alternative approach to determine those
reconstructed points corresponding to the reference surface:
We projected the intersection of the reference surface with
the cylinder to the endoscopic images to generate masks that
determined which pixels to use for validation. In some cases,
manual correction was necessary to ensure that the masks were
fully contained in the sphere defined by the fiducials.

G. Validation criterion VC and comparison function FC
The information I , extracted from R̂NMi and R̂NRef was

processed to determine reconstruction accuracy, point density,
surface coverage and robustness as follows:

Accuracy: For each reconstructed surface point on all
reconstructed (transformed) surfaces, the closest point (cor-
responding point) on the (transformed) reference surface was
determined. Reconstruction accuracy, which is the result of
the comparison function OD = FC(R̂NMi

, R̂NRef ), was
defined as the root-mean square (RMS) distance between
corresponding points.

Point density: The total number of reconstructed points
within the circle of interest was determined. This is an
important criterion besides reconstruction accuracy because it
determines the resolution of the 3D surface reconstructed.

Surface coverage: Even when the number of reconstructed
points is high, only parts of the object under observation may
be covered, as shown by means of example in Fig. 12 (liver).
To address this, we generated a subset VCT (δ) of the set of
all CT vertices for each reference surface, such that the inter-
vertex distance was above a certain threshold δ = 3 mm.
CT vertices located closer than 5 mm to the cylinder were
also removed to compensate for the fact that the markers
were masked and hence, a certain region around each marker
could not be reconstructed by the stereo methods. For each
of the reconstructed points v ∈ VE for a given organ part
and reconstruction method, we determined the closest point in
VCT (δ):

v̂ = C(v, VCT (δ)) (1)
= argminṽ∈VCT (δ)

‖v − ṽ‖ (2)

The percentage of CT vertices, which served as a nearest
neighbor for any of the reconstructed points provides a mea-
sure for the surface coverage.

Cvg =

∣∣∣V̂CT (δ)

∣∣∣
|VCT |

(3)

V̂CT (δ) =
{
v̂ ∈ VCT (δ)|f(v̂) = true

}
(4)

f(v̂) = ∃v ∈ VE : (5)
(v̂ = C(v, VCT (δ)) ∧ ||v̂ − v|| < 1cm) (6)

Robustness: To investigate the robustness of the surface
reconstruction methods to clinically relevant changes in the
setting, we determined accuracy and point density as a function
of the distance to the object of interest, as well as the angle be-
tween the view direction of the camera and the surface normal

of the object of interest. We further compared reconstruction
accuracy for images with and without smoke or blood in the
scene.

Fig. 8. Illustration of the validation criterion surface coverage as defined
in sec. III-G. The reference mesh (small points) is divided into regions
represented by the green and red large points. Red points correspond to regions
that have not been reconstructed by the method. In the provided example, the
Stereo-IC method failed to fully reconstruct the cut in a kidney (gray surface)
despite a large number of points. Copyright (c) 2010 IEEE

H. Quality index OQI
The validation data sets described in sec. III-A were eval-

uated separately for the different reconstruction techniques
as follows: Descriptive statistics regarding the RMS surface
reconstruction error (as defined via the comparison function
VC) as well as the point density were determined for all
reconstructions...

D-Distance: ...corresponding to the same distance
D-Angle: ...corresponding to the same angle of the endo-

scope relative to the object surface
D-Smoke: ...with and without smoke
As we did not have a sufficient amount of reconstructions

with blood to allow for a meaningful quantitative comparison,
this data set was intended to be inspected visually.

In addition, the overall performance of each technique was
determined by computing descriptive statistics for the RMS
using all reconstructions without blood and smoke (n = 35).
The same data sets were used to check for statistically signif-
icant performance differences of the different techniques.

Finally, as we did not have a sufficient amount of recon-
structions for each shape/texture type to allow for a meaningful
quantitative comparison, we performed a visual inspection of
the reconstructed surfaces, color-coded with the distance to
the nearest point on the reference surface.

IV. RESULTS

The mean FRE for the point-based registration of the first
and last CT that was acquired for a certain tissue part based
on the markers enclosing the region-of-interest (cf. sec. III-A)
was 0.6 ± 0.4 mm (max: 1.2 mm) (n = 25).

The mean reprojection error was 0.3 ± 1.4 (max: 45.3)
pixels for the stereo SD images and 1.4 ± 0.4 (max: 7.2)
pixels for the (half-) HD images. For the SL system, the mean
RMS ray fit error was 0.4 ± 0.1 (max: 0.6) mm. For the ToF
endoscope, the reprojection error was 0.3 ± 0.2 (max: 1.1)
pixels.

The median reconstruction error, measured as the RMS
distance to CT reference data (cf. sec. III-H) ranged from
1.2 mm (Stereo-KIT) to 4.0 mm (ToF) when considering all
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Fig. 9. Box plot (median, first and third quartiles, minimum and maximum)
of the root-mean squared (RMS) surface reconstruction error according to
sec. III-H, determined for all shapes without blood and smoke (n = 35) for
all reconstruction techniques investigated in this study (cf. sec. II). Copyright
(c) 2010 IEEE

Fig. 10. Results for D-Smoke (cf. sec. III-A): Median root-mean squared
(RMS) surface reconstruction error for different liver shapes with (n = 5)
and without (n = 5) smoke. Copyright (c) 2010 IEEE

shapes and textures without smoke and blood (n = 35). A
box plots for the different methods is shown in Fig. 9. When
neglecting reconstruction outliers by considering the median
distance to the reference surface (as opposed to the RMS),
accuracy dropped below 1 mm for all stereo methods and to
1.2 mm (SL) and 2.8 mm (ToF) for the active methods. The
decrease in error was particularly high for the passive methods
(Stereo SD: 45%; Stereo HD: 51%, SL: 31%; ToF: 30%). The
corresponding FREs for the marker-based registration of the
reconstructed surface with the reference surface were 1.0 ± 0.5
mm (Stereo SD), 1.5 ± 0.9 mm (Stereo HD), 2.0 ± 1.3 mm
(SL), and 2.9 ± 1.9 mm (ToF). Fig. 12 and Fig. 13 visualize
the reconstruction error on organ parts with different shape and
texture. The number of data sets excluded from evaluation due
to poor marker detection was 0 (Stereo SD), 1 (Stereo HD),
5 (SL) and 2 (ToF).

For all methods, reconstruction accuracy decreased with
an increasing distance of the camera with increases in me-
dian RMS error up to 179% (Stereo-UCL(HD)) ((Stereo(SD):
64 ± 47%; Stereo(HD): 89 ± 64%; SL: 37%; ToF: 11%).
Most methods performed better when the endoscopic camera
directly faced the tissue with increases in error of up to
84% (Stereo-UCL(HD)) (Stereo(SD): 22± 31%; Stereo(HD):
23±44%; SL: 23%; ToF: -27%). While the stereo approaches

Fig. 11. Box plot (median, first and third quartiles, minimum and maximum)
of the surface coverage as defined in sec. III-G for an inter-vertex distance
of δ=3 mm and all data sets used in this study, including those with blood
and smoke. Copyright (c) 2010 IEEE

performed poorly in the presence of smoke, accuracy was not
affected in the cases of the active methods (cf. Fig. 10). Fig.
14 and Fig. 15 illustrate the decrease in performance when the
tissue was covered by smoke or blood.

Point density ranged from 45 ± 12 (SL) to 1.3 ·105 ± 0.4 ·
105 (Stereo-IC(HD)), as shown in Table I. In general, the
number of points decreased in the presence of smoke or blood,
as shown in example in Fig. 14 and Fig. 15. Fig. 11 shows
the surface coverage, as defined in sec. III-G, for a radius of
3 mm.

Method Mean ± SD
Stereo-KIT(SD) (3.1± 1.0) · 104
Stereo-KIT(HD) (1.2± 0.4) · 105
Stereo-UCL(SD) (3.0± 1.1) · 104
Stereo-UCL(HD) (9.4± 5.3) · 104
Stereo-IC(SD) (3.2± 1.0) · 104
Stereo-IC(HD) (1.3± 0.4) · 105
SL (4.5± 1.2) · 101
ToF (4.9± 2.3) · 102

TABLE I
NUMBER OF RECONSTRUCTED POINTS DETERMINED FOR THE ENTIRE SET

OF EXPERIMENTS USED IN THIS STUDY. THE 3D RECONSTRUCTION
METHODS ARE DESCRIBED IN DETAIL IN SEC. II (SD: STANDARD

DEFINITION; HD: HIGH DEFINITION).

In addition to these general observations, the following
method-specific conclusions can be drawn from our study:

Stereoscopy-based methods performed extremely well when
recovering both global and local shape, even when reconstruct-
ing homogeneous tissue. For all stereo methods, point density
was extremely high compared to the active methods (cf.
Table I), although in some cases, only very few points were
reconstructed in the case of the semi-dense method Stereo-
UCL. Moreover, the distribution of points was not always op-
timal, meaning that parts of the tissue were not reconstructed
at all. This holds again true especially for Stereo-UCL, as
shown in Fig. 12. While point density was generally higher
for the HD images, surface coverage was better for the SD
images. With respect to this measure, Stereo-KIT performed
best with a median coverage of 100% (SD/HD). Although
the median reconstruction error of all methods was lower
on the SD images, the difference did not reach statistical
significance according to a Wilcoxon rank sum test. The p-
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values for Stereo-KIT (Median: 1.2 mm (SD), 1.5 mm (HD)),
Stereo-UCL (Median: 1.7 mm (SD), 2.1 mm (HD)) and Stereo-
IC (Median: 1.3 mm (SD/HD)) were 0.07, 0.07 and 1.0,
respectively. The Stereo-IC method yielded significantly better
accuracy (p-value < 0.05) than both other stereo methods on
the HD images and also better accuracy than Stereo-UCL
on the SD images while the difference in error was not
statistically different when comparing Stereo-UCL and Stereo-
KIT.

The SL technique yielded very good results in terms of
both, accuracy under ideal conditions and robustness. The
coverage of the surface was generally good because of the
regular distribution of projected points (cf. Fig. 13). However,
the current sparsity of points resulted in a rough reconstruction
of the surface, and fine structures could not be recovered. This
was apparent in the calculation of CT marker coordinates,
which had to be done by interpolation, as explained above.

The variance in reconstruction accuracy was extremely
high for the ToF endoscope. Fig. 16 shows two qualitatively
very different reconstruction results for similar shapes. As
an intrinsic characteristic of the technique, point density and
framerate are invariant to the scene.

V. DISCUSSION

Optical imaging methods are an appealing modality for
recovering 3D geometry from the surgical site without expo-
sure to harmful radiation. To date, however, neither passive
nor active reconstruction methods have found wide-spread
use in clinical practice. Based on a preliminary feasibility
study [36], this work presented a comprehensive evaluation
of the major state-of-the-art surface reconstruction techniques
in vitro with a focus on (1) comparability of techniques and (2)
robustness with respect to a variety of clinically relevant
parameters, such as organ shape and texture, endoscope pose,
as well as smoke and blood in the FoV of the endoscope.
Previous works primarily validated individual techniques in
close to ideal settings, and the few comparative validation
studies were published in non-medical contexts [37] or in
the context of open surgery [37], [38], [39]. The following
sections discuss the performance of the individual reconstruc-
tion methods (sec: V-A) as well as the validation method
applied (sec: V-B).

A. Reconstruction Methods

With the exception of ToF, all reconstruction methods inves-
tigated yielded a median reconstruction error of 1−2 mm in the
absence of blood or smoke. Considering that the accuracy of
the reference (FRE typically 1-2 mm) cannot be expected to be
in the submillimeter range, these are very promising results.
The stereo methods outperformed the remaining techniques
with respect to point density and reconstruction of fine struc-
tures, while SL yielded the best performance in the presence
of smoke. The quality of the reconstructed surfaces generally
decreased with an increasing distance of the endoscope to the
object under observation and with an increasing angle of the
endoscope’s viewing direction to the surface normal.
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Fig. 12. Reconstruction results obtained with the stereo methods (cf.
sec. II-A) for different shapes: a porcine liver with homogeneous shape
and texture, a porcine kidney with a cut and a porcine heart with complex
shape and texture. The colors on the reconstructed surface represent the
distance to the closest point on the (registered) reference surface. The large
green/blue spheres represent the reference markers and reconstructed markers
respectively. Copyright (c) 2010 IEEE

In the following paragraphs, the performance of the
individual techniques is discussed in detail.

1) Stereoscopy: Although point density was higher for
the HD images, reconstruction accuracy was better on the
SD images for all stereo methods. The authors attribute this
to the calibration of the prototype HD stereo endoscope:
Artefacts due to chromatic aberration, for example, impeded
the procedure. This was especially problematic for finding the
image rectification parameters. As the correspondence analysis
is sensitive to large rectification errors and the rectification
error is smaller on lower image resolution in general, lower
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Fig. 13. Reconstruction results obtained with the active reconstruction
methods structured light (SL) (cf. sec. II-B) and Time-of-Flight (ToF) (cf.
sec. II-C) for different shapes: a porcine liver with homogeneous shape
and texture, a porcine kidney with a cut and a porcine heart with complex
shape and texture. The colors on the reconstructed surface represent the
distance to the closest point on the (registered) reference surface. The large
green/blue spheres represent the reference markers and reconstructed markers
respectively. Copyright (c) 2010 IEEE

(a) (b) Stereo-KIT (c) SL

Fig. 14. Reconstruction performance in the presence of smoke. Endoscopic
image of a liver (a) and surface reconstruction obtained with the Stereo-
KIT algorithm (b) (cf. sec. II-A) and with the prototype structured light (SL)
endoscope (c) (cf. sec. II-B). Copyright (c) 2010 IEEE

resolutions yield more robust results. Furthermore, we ob-
served a change in the rectification parameters over time,
which can be attributed to jitter (cf. sec. III-C) of the cameras.
Although we were able to automatically compensate for this
effect to some extent, we think that it could be a relevant
issue in practice. We also investigated manual tuning of the
parameters for individual data sets and were able to obtain
better reconstruction results.

(a) (b) (c)

(d) (e) (f)

Fig. 15. Reconstruction performance in the presence of blood. Endo-
scopic image of a liver covered with blood (a) and surface reconstruction
obtained with the Stereo-KIT algorithm (b) (cf. sec. II-A), the Stereo-UCL
algorithm (c) (cf. sec. II-A), the Stereo-IC algorithm (d) (cf. sec. II-A), the
prototype structured light (SL) endoscope (e) (cf. sec. II-B) and the prototype
Time-of-Flight (ToF) endoscope (f) (cf. sec. II-C). Copyright (c) 2010 IEEE

The better performance of the stereo algorithms for smaller
distances and angles can be explained by negative correlation
of disparity and depth as well as the reduced saliency of
features with increasing angle and distance. It was not surpris-
ing that performance generally decreased in the presence of
smoke (→ noise) and blood (→ homogeneous texture, specular
highlights) because of the challenging correspondence analysis
in this case. It is worth mentioning in this context that several
outliers of the Stereo-KIT method occurred in the images
without smoke within the D-Smoke data set, which explains
the decreasing error in the presence of smoke in this case (cf.
Fig. 10).

Considering point density, surface coverage and accuracy,
the dense reconstruction algorithms (Stereo-KIT and Stereo-
IC) yielded better performance in our study compared to
the semi-dense approach (Stereo-UCL). However, the median
surface coverage was surprisingly good for this method. One
major advantage of the sparse method is that it does not require
rectification of the stereo images. We attribute the comparably
low accuracy of the Stereo-KIT method on some of the high
resolution images to this effect. Manual observation of the
results showed that high errors occurred primarily at image
boundaries.

When comparing the two dense stereo methods, we ob-
served that the Stereo-IC algorithm showed higher recon-
struction accuracy and robustness while the surface coverage
was higher for Stereo-KIT. In this context, it should be kept
in mind that we ran all stereo algorithms on single image
pairs with a fixed parameter set without post-processing the
resulting meshes. As we determined accuracy as the RMS
surface reconstruction error, we included outliers that are
usually removed after triangulation in the case of Stereo-KIT.
The fact that the coverage of Stereo-IC was lower can partially
be attributed to the smoothness constraint: In the case of cuts,
for example, the regions of the deeper parts within the cuts had
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no corresponding point for this method, as shown in Fig. 8.
The run-time of the stereo algorithms has been assessed in

separate studies. For the Stereo-KIT approach, the computed
framerates were 14 fps and 10 fps for standard resolution
(640× 480) and half-HD resolution (960× 540), respectively
(Machine: i7 930, 2,8GHz, 24GB RAM Tesla C2050 graphics
card) [8]. The run-times for the Stereo-UCL algorithm were
1 fps (SD; 720 × 576) and 0.1 fps (HD; 1920 × 1080)
(Machine: i7-620M processor with 2 cores at 2.66GHz, 4GB
RAM) [13], [16]. According to a recent study [20], the run-
time for the Stereo-IC algorithm was 20 fps with a cost-volume
size 360×288×32 (Machine: i7-3930K, 3.2GHz, 16GB RAM
and GeForce GTX 670 2GB graphics card). It also shows
linear run-times with respect to the image resolution, e.g. 5
fps for 720 × 576 and 4 fps for 960 × 540 with the depth
range 32.

Although all stereo reconstruction methods proposed can be
implemented in real-time on the GPU, performance remains an
important issue in practice. This is particularly essential when
considering a clinical application that requires 3D information
in order to guide the surgeon. Video augmentation should
be sufficiently fast to maintain video frame rates without
lag or impedance to the normal visualization of the surgi-
cal site. Also, computational tasks such as registration or
biomechanical modelling potentially need further computa-
tional resources. The hardware loop to perform overlay of
such information is practically feasible but requires customized
equipment. Video hardware created for broadcasting has been
adapted for intra-operative use, but despite acceptable perfor-
mance, lag remains an issue. To date, processing HD images
in real-time is particularly difficult though with graphics pro-
cessing units this problem can be overcome with appropriate
parallelization.

In general, potential point density of the stereo methods
is directly linked to the image resolution of the cameras.
Therefore, with the trend in the microelectronics industry
of further improving the resolution of imaging chips, point
density is likely to increase. Defining the required distribution
of points will then be important for optimizing computational
performance versus data density.

Despite the issues related to run-time and robustness,
stereoscopy is currently the most well-placed technique
for translation into clinical practice because stereoscopic
hardware for both imaging and display is already used in
the operating room, for example with the da Vinci® surgical
system (Intuitive Surgical, Inc; Sunnyvale, CA, USA). Other
stereo systems are either already available or in development,
e.g. by Karl Storz GmbH (Tuttlingen, Germany), Richard
Wolf GmbH (Knittlingen, Germany), ConMed Corporation
(Utica, NY, USA) and Olympus (Shinjuku, Tokyo, Japan),
with more manufacturers looking at entering the market in the
near future. It is worth noting that stereo endoscope systems
developed in the early days of minimally-invasive surgery
were not adopted into wide-spread clinical use, most likely
due to the poor ergonomics of head-mounted display systems.
However, with recent developments in display technologies
and the popularity of 3D video in the entertainment industry,
it is likely that the re-emergence of stereo endoscope systems

will have a wider impact in surgical practice.

2) SL: SL performed comparably to stereo, however, the
FRE, which can be regarded as an indicator for the quality of
the reference, was higher on average. This can be attributed to
the fact that the marker positions needed to be interpolated due
to the sparsity of the projected pattern. Hence, we believe that
the determined error overestimates the true error more than in
the case of stereo.

One advantage of the SL system compared to passive
reconstruction techniques is that is does not rely on the
automatic detection of intrinsic features. In theory, this makes
the surface coverage approximately constant (for a certain
projector/camera distance), but we observed a relatively high
variance for reasons described below, as shown in Fig. 11.
The prototype SL system evaluated in this paper uses a
multispectral pattern to solve the active stereo correspondence
problem. In comparison to other SL approaches such as phase
shifting this has the advantage of acquiring 3D data on a
scene in a single snapshot. Also, the spectral sharpness of the
color features increases robustness, making them immune to
modulation by the background tissue. The probe is compatible
with current endoscopic technology, either through scope
instrument channel or trocar insertion.

A disadvantage of the prototype system investigated here
is the sparsity of projected points which led to a low point
density and the need to interpolate most parts of the surface.
This can potentially be improved in future device prototypes
by increasing the number of fibers or investigating different
projection designs. There are also limitations when imaging
conditions are less than ideal, for instance blob distortion
resulting from an angular pose or a large projector to tissue
distance leads to lower reconstruction accuracy. In regions
where a significant amount of blood is in the field of view,
strong absorption of blue light leads to poor detection of
spots in this wavelength range. The colours of the projected
spots were also not truly randomized, such that a large area
was typically covered by blue spots which were not detected,
giving a high variance.

In the presence of smoke, scattering of the projected pattern
and a decrease in the number of detected and accurately
identified spots potentially result in significant degradation
of the reconstructed surface. However, the SL reconstruction
results show robust operation in terms of average error when
compared to stereo. Due to the heterogeneous nature of the
smoke generated, some sections of the tissue were more
obscured than others. Thick smoke caused severe distortion
of projected spots, higher segmentation errors and detection
of numerous false centroids, resulting in a decreased overall
detection rate. However, if a spot could be detected, the only
observed effect was a slight shift in its actual position, similar
to the variability under ideal conditions. In contrast under
white light illumination the smoke becomes the dominant
salient foreground feature and, as such, is detected by stereo
techniques as the surface when the background is difficult
to distinguish. Stereo also triangulates a large number of 3D
points in a dense reconstruction while the SL system has a
much smaller number of more easily recognized large blobs
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to identify.
Another issue of the active stereo technique as implemented

here is the requirement for triangulation, which means that
the projection axis must be offset from the imaging axis, or a
stereo camera system must be used. A related limitation is the
need for a separate calibration for each arrangement of the
laparoscope and projector since, unlike stereo laparoscopes,
their relative positions are not permanently fixed and may
change significantly during experiments. For robust and repro-
ducible results future designs will incorporate the illumination
scheme into the laparoscope itself either as a separate fiber-
delivered system or by launching the pattern into one channel
in a stereo endoscope in a manner similar to that proposed by
Chan et al. [21].

For the prototype system described here the computation
time was approximately 2-3 s in total, almost entirely taken
up by the spot detection and labelling algorithm. However,
this code has not yet been optimized for speed and could, in
principle, operate at real-time rates as demonstrated by current
non-surgical commercial systems.

Future work related to the SL prototype system investigated
here will focus on three main areas: improving spot detection
accuracy, optimizing the projected features themselves and
making the SL pattern imperceptible to the user.

3) ToF: The ToF endoscope yielded the worst reconstruc-
tion results out of all techniques investigated in this study,
which can be attributed to a number of different reasons. Most
importantly, we used only a preliminary prototype. Many of
the problems that we have encountered have already been re-
solved or are currently being addressed. For example, the SNR
and thus the measurement precision in camera direction [25]
were very low due to the challenge in transmitting enough light
to the tissue. In fact, the inhomogeneous illumination with a
radial attenuation of the light led to a particularly bad SNR at
the boundaries of the images, which resulted in a rather poor
reconstruction accuracy for the markers and thus a relatively
high mean FRE of almost 3 mm for the registration with
the reference. We partially addressed this issue by temporal
averaging over successive frames, but the standard deviation
in each pixel was still much higher than that obtained with
conventional (non-endoscopic) ToF cameras. In the meantime,
major improvements have been undertaken. In particular, the
current prototype provides a higher number of lasers and
operates at a modulation frequency of 60 MHz, thus yielding
a much better SNR. Note that this is possible because in
contrast to standard ToF cameras, endoscopic cameras do not
need to ensure unambiguous depth ranges of several meters.
Another endoscope-related issue we encountered during the
experiments was the fact that rotation of the light cable led
to a inhomogeneous and changing illumination of the scene
because the lasers were continuously assigned to different
fibers. In the meantime, a fluid-filled cable is applied, which
ensures a much more homogeneous illumination even when
the cable is rotated.

Our measurements were further subject to severe systematic
errors (cf. sec. III-B). Pixel offsets, resulting from fixed pattern
noise and fixed pattern phase noise, for example, are clearly

visible in the range images. A comprehensive calibration
would involve acquisition of a large amount of reference data
in a high-dimensional space incorporating pixel ID, distance,
amplitude, integration time and temperature prior to operation.
While this was practically not feasible for the present study,
current work with the prototype focuses on practical depth cal-
ibration based on state-of-the-art ToF calibration methods [34].

Further issues that potentially contributed to the large
error include scattered light, penetration of IR light into
the tissue, and multi-path reflections. Although initial works
have been proposed to compensate some of these errors (cf.
Foix et al. [33]), much more research needs to be directed
towards these issues.

On the positive side, ToF is the only technique investigated
here that does not require a scanning component or baseline
and provides a very high frame rate without relying on sophis-
ticated image processing software. Furthermore, the effect of
smoke on ToF reconstruction performance in our study was
negligible. We attribute this to the usage of NIR light because
smoke light absorption is lower for longer wavelengths [40]
and organic smoke particles typically exhibit a lower optical
scattering then for visible light [41]. It should further be
pointed out that with the release of the Kinect 2 for the
Microsoft Xbox 360, the first low-cost ToF camera is now
available on the market. This development has led to further
improvements of the underlying chip technique, and even more
progress can be expected in the future.

In summary, due to the prototype stage of the ToF endo-
scope applied, no broad conclusions should be drawn from this
initial study with respect to the accuracy achievable with ToF
endoscopy in general. As a young technique that provides a
compact design it has a lot of potential for various applications
relying on miniaturization, such as endoscopy.

Fig. 16. Two qualitatively very different reconstruction results (yellow point
sets) obtained with the Time-of-Flight (ToF) endoscope. While the left point
cloud fits very well to the reference, the right one is erroneous. In the latter
case, the standard deviation obtained from temporal averaging over time, was
extremely high, indicating a poor signal-to-noise ration (SNR). Copyright (c)
2010 IEEE

B. Study design

As a unique characteristic of this work, a previously
proposed validation protocol was applied to enable a
comprehensive description including a detailed error analysis
and thus ensure reproducibility of our work. The following
paragraphs discuss our study design in detail.



0278-0062 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMI.2014.2325607, IEEE Transactions on Medical Imaging

15

1) Study conditions: To our knowledge the present study is
the first to assess not only accuracy of a given reconstruction
technique but also robustness with respect to factors like
smoke and blood. While in vivo data could provide clinically
realistic endoscopic video sequences, generation of adequate
reference data is a major challenge, especially due to tissue
dynamics. Furthermore, such a setting would not allow for
imaging identical objects with different techniques. For these
reasons, we chose an in vitro setting for this validation with
high-resolution CT images serving as reference. This gave us
more controllability at the cost of realism.

To minimize the risk of causing changes in shape due
to transport of the validation objects our experiments were
conducted on the CT stretcher in an interventional radiology
suite rather than in an operating room (OR). While this enabled
us to provide higher-quality reference images than we could
have obtained with an intra-operative CT, for example, this
also implied that we did not have the specific conditions (e.g.
temperature) an OR would provide. Furthermore, our systems
were operated by engineers as opposed to medical staff, and
the endoscopes were not hand-held, as they typically are
during surgery, but affixed to a mounting device. The reason
for this was three-fold. Firstly, this allowed us to acquire com-
parable images with the different hardware applied. Secondly,
the prototype SL system required a calibration of the projector
and the camera prior to image acquisition and thus a stable
pose of the projector relative to the endoscope at this stage.
Finally, temporal averaging for the ToF endoscope data was
necessary to acquire meaningful results at this stage.

Another practical issue to be discussed in this context is the
calibration of the endoscopes. We observed a small increase in
FRE over time, which indicates that the calibration parameters
changed over time. However, a full calibration of the endo-
scopes prior to each image acquisition would not be feasible.
Furthermore, while change of focus occurs quite regularly
in clinical laparoscopy, all calibration techniques applied in
this study assume a constant focus during operation. Although
some initial research has been conducted with respect to online
calibration of optical devices without calibration objects, the
issue can be regarded as an unsolved technical challenge.
Hence, evaluation studies at a higher level should investigate
whether the benefits of 3D reconstruction in a particular
clinical context can balance the potential need for leaving the
focus unchanged. However, emerging scopes with chip-on-tip
designs can solve this issue by having infinite focus.

In this study, smoke was generated with a surgical coagula-
tor. While this yielded realistic images, it should be pointed out
that the amount of smoke was not easily controllable. In fact,
we initially aimed to generate different amounts of smoke to
assess reconstruction accuracy and point density as a function
of the amount of smoke present in the scene but then decided
against this due to poor reproducibility. Hence, reconstruction
results obtained from different endoscopic images in the
presence of smoke are not directly comparable. In the case of
the stereo methods, for example, we believe that the higher
increase in error for the SD images compared to the HD
images (cf. Fig. 10) can be attributed to a larger amount of
smoke in these images.

To further obtain clinically realistic and challenging endo-
scopic images, we covered our validation objects with artificial
blood. In contrast to smoke, the artificial blood could be
distributed in a manner that allowed for imaging of almost
identical scenarios with the different techniques. Real blood
would have yielded even more realistic absorption/reflection
properties, due to, for example, the presence of hemoglobin
which is particularly relevant in the context of SL reconstruc-
tion. Porcine blood with anticoagulant or out-of-date human
blood bags could be a solution to this problem although other
forms of haemoglobin such as methaemoglobin may form
which also have different absorption spectra. Overall, more
realistic studies with larger data sets are required for a more
comprehensive evaluation of reconstruction robustness in the
presence of blood.

We focused on reconstructing organs of different shape and
texture. Future studies could incorporate additional clinically
relevant objects such as medical instruments. In particular,
reconstruction accuracy in the presence of fine structures such
as needles or threads could be interesting and could allow us
to understand performance in regions affected by shadows.

We had originally planned acquisition of much more data
sets within the two days scheduled for the experiments. How-
ever, despite several test runs we underestimated acquisition
time. Based on our experience and considering the immense
resources required for such a comparative validation study
(in our case more than ten researchers in addition to medical
staff for two full days and nights for the raw data acquisition
in addition to extensive image post-processing times), we
do not consider an even larger in vivo/in vitro validation
study of this kind feasible. Standardized phantoms (cf. e.g.
www.open-CAS.com) could be a solution to the problem be-
cause they would allow for acquisitions to be performed at
different locations and times. This would also overcome the
issue of advanced hardware; a new device would not require
repetition of the entire experiment. While phantoms are not as
realistic as real organs this approach would at least allow for
comparability at acceptable costs.

Future validation studies with advanced devices that
are ready for clinical application should focus on clinically
realistic conditions, with medical staff operating the equipment
in the operation room, even if this comes at the cost of loss of
control. In this context, practical aspects such as sterilization,
workflow issues related to calibration of devices and human
factor issues should also be investigated. Furthermore, a
specific hypothesis in a specific clinical context (cf. [14])
should be tested in this case.

2) 3D reconstruction methods: This was the first study to
validate the main optical laparoscopic surface reconstruction
techniques that work on single images in a comparative man-
ner. We consciously excluded methods that require movement
of the scope, such as structure-from-motion or Simultane-
ous Localization and Mapping (SLAM) for two reasons: to
focus on those techniques that are suitable for non-rigid
environments at present and to ensure comparable acquisition
conditions across techniques.

A disadvantage of our study could be seen in the fact that we
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investigated only one specific SL endoscope and one specific
ToF endoscope and that most of our hardware was still in
a prototype stage. Hardware modifications would require us
to repeat all the image acquisitions. Still, with the only ToF
endoscope prototype that we are aware of, one of the very
few SL endoscopic systems, and one of the first HD stereo
endoscope systems available, we did evaluate state-of-the-art
techniques in optical surface reconstruction. A general solution
to this issue would be to design standardized phantoms and
acquisition protocols as discussed above. In this case, however,
the measurement would not be performed on real tissue.

Comparative assessment of passive methods only would
be much more straightforward due to the reduced hardware
complexity, as demonstrated by Seitz et al. [37]. In this case,
however, care should be taken when designing the data acquisi-
tion protocol for calibration. Algorithms based on Shape-from-
Shading (SfS) [42], Shape-from-Focus [43] and photometric
stereo [44], for example, require more data than that used
for stereo calibration. In fact, we considered including SfS
algorithms after conducting the experiments for this study but
failed because of the missing calibration of the light source.

In this work, reprojection/ray fitting errors were used as
an indicator for the quality of camera calibration, but direct
estimates ÊMi

of the error of the different reconstruction
techniques were not available. For the stereo based approaches,
such errors could in theory be estimated by monitoring the
value of the similarity metric used for correspondence. For
example high correlation values could be associated with
reliable matches. However, this alone is insufficient when
dealing with homogeneous surfaces and potentially other
image characteristic such as local texture measures would
need to be incorporated. Obtaining a meaningful quantitative
prediction of the 3D reconstruction error remains subject of
further research. For the SL system investigated here, the
size and shape (e.g. circle vs ellipsoid) of the blobs could
be used as indicators for reconstruction accuracy, but again,
inferring a quantitative estimate of error requires further
research. In the case of ToF, initial work on estimating the
pixel quality has been conducted. Reynolds et al. [45], for
example, applied a random forest based approach to assign a
confidence value between 0 and 1 to each ToF pixel taking
into account a variety of different parameters such as the
measured amplitude and the object’s shape. Future work
should be directed to explicitly estimating the error (e.g. in
mm) for each surface point.

3) Reference: One issue related to reference generation is
that in silico validation is not possible due to the comparative
validation strategy. Instead, real objects with known shape and
a known pose relative to the camera coordinate systems are
required. While generating the reference shape using CT data
or scanning devices is feasible, computing the pose remains
a great challenge. One possible approach involves calibration
of the reference image modality (e.g. a CT scanner or a laser
range scanner) with the endoscopes. This could be done by
optically tracked markers attached to the different devices, for
example, but would add even more complexity to the hardware
setup and the acquisition protocol. Maybe most importantly,

we did not manage to generate a reliable hand-eye calibration
with the ToF endoscope due to the temperature dependent
systematic error.

We used CT data as reference and applied a point-based
registration of the camera coordinate system with the CT
coordinate systems. One drawback of this method is that the
quality of the reference depends on the quality of the recon-
struction technique, because it relies on the 3D reconstruction
of points detected in camera images using the techniques
evaluated here. This was particularly crucial in the case of the
active reconstruction techniques. Due to the radial attenuation
of light in the ToF images, the SNR at the boundaries and
thus the reconstruction accuracy of the markers was rather
poor. In fact, we obtained a mean FRE of almost 3 mm. In
the case of SL, one issue was the sparsity of reconstructed
points. The 3D marker positions needed to approximated (cf.
sec. III-E), which comes at the cost of reduced accuracy of
the reference. While the stereo methods generally yielded a
good FRE of the order of magnitude of 1 mm, one issue is
that marker reconstruction is potentially prone to error due
to specular reflections on the marker surfaces. Hence, we
recommend markers with duller surfaces for obtaining an even
better reference.

A further issue is that the reference CT and the endoscopic
images could not be acquired simultaneously. Ensuring that
there is no deformation between reference data acquisition
and observing the tissue with a laparoscope turned out to
be a practical challenge. However, the relatively low FRE
of 0.6 mm for registering different CTs of the same organ
suggests that only minor changes in shape occurred.

4) Validation criterion, comparison function and quality
index: We measured the RMS surface distance and the number
of points to quantify reconstruction performance. For this
purpose, the nearest neighbor function based on the Euclidean
distance was applied to establish correspondences between a
reconstructed surface and the reference surface. We have also
considered accounting for anisotropic reconstruction errors by
using a weighted distance, as proposed in [46], [47], but
this would have implied estimating a covariance matrix of
localization error for each reconstructed point and thus led
to a much higher complexity.

Reconstruction robustness to a number of factors, such as
the endoscope pose and the presence of smoke in the scene,
was assessed for the first time. Future studies with more
mature hardware (in the case of SL and ToF) should further
investigate robustness to tissue and endoscope motion as well
as to varying lighting conditions.

Run-time, although an important factor for intra-operative
applications, was not separately assessed in this study because
the different techniques were all implemented in different
programming languages and run on different machines. Still,
previous publications allowed for a comparison of the different
techniques with respect to this parameter.

We also considered comparing surface descriptors, such
as vertex normals, or curvature-based measures like mean
and Gaussian curvature, curvedness or shape index. Typically,
these measures are computed directly on the mesh data based
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on vertex connectivity, which, however, leads to an extremely
high sensitivity to noise, as discussed in [48]. An alterna-
tive approach to computing surface descriptors involves the
interpolation of a simple shape, such as a quadric, in the
local neighborhood of each vertex, and to use the curvature
properties of this shape [49]. This approach is much more
robust to noise [48] but raises the issue of choosing an
appropriate size for the neighborhood, which - on the one
hand - should contain a sufficient number of points to do
the interpolation and - on the other hand - should not be too
complex due to the required approximation by a simple shape.
As we were not able to generate coherent descriptor values for
varying numbers of points and noise levels even for identical
underlying meshes, we decided against surface descriptors as
validation criterion.

Currently, novel technical solutions often lack wide-spread
acceptance among physicians who tend to be reluctant to
change their established techniques. The lack of acceptance
for clinical use is partly due to a suboptimal integration of the
proposed systems into the clinical workflow. Future studies
should thus focus on validation criteria related to workflow
integration and human factor issues. Among others, time for
training and setup as well as usability of user interfaces
and displays should be assessed. A comprehensive evaluation
would further require a detailed cost analysis.

VI. CONCLUSION

To our knowledge, this is the first study that provides an
in-depth insight into the potential and limitations of state-of-
the-art laparoscopic surface reconstruction techniques. Based
on our results as well as the recently published review on the
different techniques [5], the strengths and weaknesses of the
individual techniques investigated here can be summarized as
follows:

The main advantages of stereoscopy is that it can be
used with standard laparoscopic equipment and can therefore
already be applied in the clinical setting. Both accuracy and
point density are high, and even fine structures can be recon-
structed. A current drawback is that stereo-based approaches
are computationally demanding, and performance depends
highly on the scene and the paucity of textural information.

In contrast, active techniques require additional light to be
introduced at the surgical site and as a result can reliably
deliver dense depth maps at high update rates because they
do not rely on natural features. A common limitation is
the required hardware equipment adaptation, which becomes
important in the context of workflow integration and costs. The
prototype SL device showed that reconstruction accuracy close
to that of stereo could be achieved, although with much lower
density. Further iterations of the device and the shape of the
projected features will allow for further increases in accuracy
and reconstruction density. ToF, as the youngest technique, is
still subject to severe systematic errors and noise. Although it
is not yet ready for clinical application, it has potential as the
only method that can generate dense depth maps in real-time
without requiring a baseline.

Common to all techniques is that robustness (with respect
to smoke and bleeding, for example) must be improved. Also,

online calibration to cope with changes in focus, for example,
remains a technical challenge to be addressed though newly
emerging scopes with chip-on-tip designs can solve this by
having infinite focus.

In conclusion, the study suggests that robustness to the
widely varying clinical challenges is practically not likely
in the short term with any of the methods reviewed here.
Despite the potential of the relatively new laparoscopic active
surface reconstruction methods based on SL and ToF, stereo is
currently the only practical and feasible approach to obtaining
3D information during surgery because stereo endoscopes are
already used in clinical practice.
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